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Abstract— A complete multiple reciprocity method

(CMRM), usually for the eigenvalue analysis of

Helmholtz equation, is introduced to the BEM for

frequency-dependent inductance extraction. Several

approaches are proposed to resolve the problem of

”ill-conditioned” series encountered when applying

the CMRM practically. Using the BEM combined

with CMRM, the major operations of calculating

the numerical integrals for a frequency point become

reusable, so that inductance extraction for a frequency

range is greatly accelerated. Numerical results verify

the accuracy and efficiency of the proposed method.

I. Introduction

The parasitic inductance of VLSI interconnect has be-
come very important as the operating frequency of circuit
keeps increasing [1]. Since the inductance is frequency-
dependent, inductance extraction for a range of frequency
points is usually needed for accurate simulation and ver-
ification. Besides, with the inductances and resistances
for a frequency range, the quality factor of an inductor
component in RF circuit can be calculated [2]. Therefore,
inductance extraction for a frequency range, not only for
a single frequency point, becomes another important re-
search topic.

There are two categories of methods for calculating
frequency-dependent inductance. The first category em-
ploys the interpolation method [3, 4]. For example, paper
[4] uses a coupled circuit method to calculate the low-
frequency inductance and the inversion of capacitance ma-
trix for high-frequency inductance, and then forms the
full-frequency inductance curve with an interpolation for-
mula. Although this category of methods has high com-
putational speed, their reliability and accuracy is very
limited because only several interpolation points for very
low frequency and very high frequency are computed ac-
curately.
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The other category is straightforward. To obtain the
inductance for a range of frequency, a method to ex-
tract the inductance must run repeatedly for all sampling
points throughout the frequency range. The methods
suitable for inductance extraction at arbitrary frequency
include FastHenry, a volume integral method [5], FastImp,
a boundary element method (BEM) [6], etc. These meth-
ods have high accuracy for inductance extraction at any
frequency point, but computational speed is relatively
slow. The BEM for inductance extraction proposed re-
cently employs much fewer unknowns and is suitable for
a wideband simulation [6]. This method has been im-
plemented as a software prototype named FastImp, avail-
able via the Internet [8]. Compared with FastHenry, the
FastImp is faster. However, using the FastImp, the time
of inductance extraction for a frequency range is still very
long, which approximates to the number of frequency
points times the computational time for one frequency
point. Speeding up the inductance extraction based on
BEM for a range of frequency is the main target of this
paper.

In the inductance extraction based on BEM, the time
is mainly spent on calculating all kinds of numerical inte-
grations and solving the linear equation system Ax = b.
The CPU time of solving Ax = b can be reduced greatly,
if an efficient iterative method, such as GMRES, is ap-
plied. So, the time of numerical integrations occupies
the major part of the whole. For example, computing
the example wire.inp in one frequency point, FastImp
needs 4.62s in total, where solving Ax = b costs only
0.58s and the frequency-dependent numerical integration
(with pFFT acceleration) costs 3.95s [8]. These numeri-
cal integrals can be divided into two types. One type is
frequency-independent, where the integral kernel is 1/r
or its derivative, coming from the fundamental solution
of the Laplace equation in dielectrics. Their results can
be reused among all sampling frequencies. The other
type is frequency-dependent, where the integral kernel is
e−jkr/r or its derivative, coming from the fundamental
solution of the Helmholtz equation in conductors, where
k is a complex number and means the wave number in
physics. The latter type must be recomputed in every



frequency point. Furthermore, the frequency-dependent
integrations are much more expensive than the frequency-
independent integrations in CPU time, since computing
the e−jkr is very arduous. For example, on a PC with
an Intel Pentium4 1.8G CPU, the time ratio of integrat-
ing e−jkr/r to 1/r is about 7:1. So how to shorten the
computing time of the second type of integration becomes
a key problem for inductance extraction based on BEM,
especially for many frequency points.

On the other hand, a multiple reciprocity method
(MRM) was proposed in [7] for boundary value prob-
lems of the Helmholtz equation. Then, it is applied to
the eigenvalue analysis of Helmholtz equation successfully
[9], which reduces the computational expense greatly. In
MRM, the integral

∫
e−jkr/r can be transformed into

a series
N∑

j=0

gj(k)
∫

fj(r), where
∫

fj(r) is a frequency-

independent series and gj(k) is a frequency-dependent
series. Based on this transformation, one can compute
and save the numerical integrals of

∫
fj(r) at first, and

then for a different sampling frequency, i.e., a different
k,

∫
fj(r) need not to be computed again. Instead, only

the coefficients of gj(k) are calculated for each frequency
point, and the integral

∫
fj(r) need to be computed only

once. Therefore, the computational time of the frequency-
dependent integral

∫
e−jkr/r can be greatly reduced for

the other frequency points except the first one.
In this paper, the MRM is applied to the interior bound-

ary value problem (BVP) of Helmholtz equation in 3-D
inductance extraction. To avoid the spurious eigenvalue
problem caused by the MRM formulation [10], a complete
MRM (CMRM) formulation proposed by [11] is actually
adopted in our method. Although it was proved that the
series in MRM or CMRM are convergent, a problem of
”ill-conditioned” series is still encountered when we apply
the MRM formulation to 3-D inductance extraction. Be-
cause the k (frequency) and r (distance) are both near to
1 in the eigenvalue analysis with MRM [10, 12, 13], this
problem did not emerge in literatures. But in the induc-
tance extraction of VLSI interconnect, the r usually varies
from 1mm to 90nm and the frequency f varies from 1 Hz
to 10 GHz. Therefore, several approaches are proposed
in this paper to handle the problem of ”ill-conditioned”
series. Several interconnect structures are calculated with
the BEM combined with CMRM. Numerical results show
that our method has high accuracy as that of FastImp,
and the CMRM exhibits large speedup for inductance ex-
traction with many frequency points.

II. Multiple Reciprocity Boundary Element
Method

In this section, we will briefly introduce the MRM [9]
and CMRM for the BEM used for inductance extraction.

A. Conventional MRM Formulation

In a 3-D closed domain Ω surrounded by the boundary
Γ, potential u satisfies the Helmholtz equation:

∇2u + k2u = 0, (1)

where k is the wave number. In the inductance extrac-
tion problem with MQS (magnetoquasistatics) assump-
tion, k =

√−jωµσ, where j, ω, µ and σ are the imaginary
unit, angular frequency, permeability and conductivity re-
spectively. µ and σ are constant.

From (1), it is easy to obtain the boundary integral
equation (BIE) as follows:

cu +
∫

Γ

(uq∗1 − qu∗
1)dΓ = 0, (2)

where u∗
1 = e−jkr

4πr , q∗1 = ∂u∗
1

∂n , c is constant depending
on the position of the source point and where the equation
is considered, r is the distance between the source and
filed point and −→n is the outward normal on the boundary.
The Eq. (2) is called complex-value formulation for the
Helmholtz equation in this paper. The FastImp belongs
to a direct BEM because it utilizes this formula [15].

Moving the second term on the left hand side (l.h.s.) of
(1) to the right, one gets a Poisson equation as:

∇2u = −k2u. (3)
Similarly, a BIE can be obtained:

cu +
∫

Γ

(uq∗0 − qu∗
0)dΓ = k2

∫
Ω

uu∗
0dΩ, (4)

where u∗
0 = 1

4πr , q∗0 = ∂u∗
0

∂n .
Although in (4), the Laplace fundamental solution

u∗
0, q

∗
0 is frequency-independent, for the volume integral

term on the r.h.s. of (4), directly applying it leads to
volume discretization needed, while the absence of the
volume discretization is thought as the key advantage of
the BEM compared with other volume integral methods.

The MRM is known as a powerful conversion scheme
from the domain integral to the boundary [7, 9]. Adopt-
ing the higher order fundamental solution of the Laplace
equation:

∇2u∗
j+1 = u∗

j = 1
4πr

r2j

(2j)! , q∗j = ∂u∗
j

∂n , j = 0, 1, 2, ...,

the domain integral of (4) can be transformed into:∫
Ω

u∇2u∗
1dΩ =

∫
Γ

(uq∗1 − qu∗
1)dΓ +

∫
Ω

u∗
1∆udΩ

=
∫
Γ

(uq∗1 − qu∗
1)dΓ − k2

∫
Ω

u∗
1udΩ,

(5)

where the first transformation uses the second Green theo-
rem and the second transformation uses (3). Substituting
(5) into the r.h.s. of (4), and arranging it, one obtains:

cu +
∫
Γ

(uq∗0 − qu∗
0)dΓ+

−k2
∫
Γ

(uq∗1 − qu∗
1)dΓ = (−k2)2

∫
Ω

u∗
1udΩ.

Repeating similar computation leads to

cu +
N∑

j=0

(−k2)j
[∫

Γ
(uq∗j − qu∗

j )dΓ
]

= (−1)N (k2)N+1
∫
Ω

u∗
NudΩ ≈ 0.

(6)

For sufficient large N, if r and k are bounded, the do-
main integral on the r.h.s. of (6) becomes negligible [7].
Eq. (6) is the basic formula in the MRM.

Note that (6) does not satisfy the Sommerfeld radiation
condition at infinity and cannot be employed for an un-
bounded domain such as: exterior BVP, But this is not a
problem in inductance extraction for that all the domains
in consideration are within bounded conductors.

B. Complete MRM Formulation

The MRM formulation mentioned above is called con-
ventional MRM formulation, where both u∗

j ,q
∗
j are real. If



the conventional MRM formulation is used for eigenvalue
problem, spurious eigenvalue will occur [10]. Ref. [11]
proposed a complete MRM formulation as follows:

u∗
j = 1

4π

[
1
r

r2j

(2j)! − ik r2j

(2j+1)!

]
, q∗j = ∂u∗

j

∂n , j = 0, 1, 2, ...,

u∗ =
N∑

j=0

(−k2)j
∫
Γ

u∗
jdΓ, q∗ =

N∑
j=0

(−k2)j
∫
Γ

q∗j dΓ,

(7)
by which this spurious eigenvalue problem can be solved
perfectly. Moreover, they pointed out that the final series
form of the kernel in (complete) MRM simply converges
to corresponding kernels in the complex-value formulation
[11].

To avoid the possible spurious eigenvalue problem
caused by the MRM formulation, the CMRM formula-
tion is adopted in our method for inductance extraction.
When applying the CMRM to the direct BEM in [15], we
only need to replace the u∗

1 and q∗1 in (2) with the u∗ and
q∗ in (7), respectively. It should also be pointed out that
the CMRM formulation actually expends more computa-
tional resources than the conventional MRM, but its good
numerical stability makes us choose it.

III. Difficulties and Solutions of Inductance
Extraction using CMRM

The numerical difficulties produced by directly apply-
ing CMRM formulation will be discussed in the first sub-
section. Then a set of methods to overcome these diffi-
culties are proposed in next three subsections. In the last
subsection a recursion formulation for accelerating com-
putation is proposed.

A. Ill-conditioned Series

In numerical methods textbooks, the series like:

e−x =
n∑

j=0

(−x)n

n!
(8)

is called ill-conditioned series [14]. In such a kind of series,
large terms which are many orders of magnitude larger
than the sum of the series cancel out with each other. So
very small errors in these large terms produce large errors
in the final result.

Reexamining the CMRM formulation, one will find the
series u∗

j ,q
∗
j and (−k2)j are all ill-conditioned. For a

slightly large k or r, numerical computations are impossi-
ble. Eigenvalue analysis doesn’t encounter this difficulty
because it guarantees both the k and r are near to 1 [10].
But in VLSI circuits, this cannot be satisfied. The nu-
merical difficulties are in three aspects. First, The very
small absolute value of r. In VLSI circuits, the unit of
distances is micron or nanometer. For avoiding the fussy
unit conversion, the International System of Units is usu-
ally adopted. Then r will be a very small number. Sub-
stituting it into ill-conditioned series directly will cause
the underflow. Second, The wide variation range of the r.
In VLSI interconnects, the ratio of the dimension in the
length to the one in the section is up to several decades.
This problem cannot be solved by simple unit conversion.

Finally, The wide variation range of the k. The frequen-
cies from 1hz to 10Ghz are taken into consideration. If
conductors are coppers, the k varies from 0 to 106.

If x is a large number, computing the series (8) directly
is not feasible, but its analysis result is known and ap-
proaches zero. In physics, the series is called exponential
decay. So it is possible to compute it by other approxi-
mate method or even to ignore it. If x nears to 1, however,
the series converges quickly. This feature is valuable.

B. Normalization of the Distance r

Without loss of generality, let’s consider the real part of
the u∗. Introducing a average distance ravg, one obtains:

u∗
real = 1

4π

N∑
j=0

(−k2)j
∫

1
r

r2j

(2j)!dΓ

= 1
4π

N∑
j=0

(−1)j(kravg)2j
∫

1
r

r2j
rel

(2j)!dΓ,

(9)

where: rrel = r
ravg

.

From the discussion above, the series
N∑

j=0

∫
1
r

r2j
rel

(2j)!dΓ can

converge very quickly if choosing an appropriate ravg to
keeping rrel near to 1. This transformation has two ef-
fects. The one is solving the first problem, i.e., the very
small absolute distance. The other is partially solving the
second and third problem, combining the variation of the
k or r respectively into the variation of the kravg together.

Note that a different ravg is needed between any two
panels. That means ravg is a matrix indeed, but it is
frequency-independent. In the program of this paper, the
formula of computing ravg is the average distance among
the distances between any corner of the integral panel and
the source point.

C. Localization of the Near Field

If kravg is a large number, a window with size W is
given. When kravg < W , u∗

real can be computed by se-
ries formula (9) directly. Then two questions should be
answered, that is how large of the window is big enough
and how many terms of the series are needed for a given
windows size W .

Let us consider the meaning of kravg in physics. Un-
der MQS assumption, one obtains k = (1 − j)kreal. For
simplicity, only considering krealravg, based on the fact
that:

kreal =
√

2
ωµσ

=
1
δ
,

where δ is the skin depth in the angle frequency ω, we
get:

krealravg =
ravg

δ
. (10)

In physics, the Eq. (10) indicates that the krealravg is
the ratio of the average distance between the panel and
the source point to the skin depth in current frequency.
It is nondimensional. In the electromagnetic wave theory,
the kreal is termed attenuation constant. If the filed point
is five times skin depth away from the source, the ampli-
tude attenuation is under one percent [2](pp.253). So for
the engineering application, letting W = 5 ∼ 6 is enough.



Next, considering that the real part of u∗ simply con-
verges to cos(kr), from the convergence curve of cosθ, one
obtains the relationship between the length N of the series
and the windows size W in Table I.

From the Table I, if W = 2π (a wave length), only
letting N = 11, four correct decimals can be obtained. If
W is smaller, for the same accuracy, the N is smaller too.

D. Approximate Calculation of the Far Field

If kravg > W , from the discussion above, the effect of
the source is feeble, so it is possible to sum this effect in
a coarse way.

Considering the fact that the complete MRM formula-
tion simple converges to the kernel in the complex-value
formulation, one can directly compute u∗ by the integral
of the kernel of the Helmholtz equation as follow:

u∗ =
1
4π

∫
Γ

e−jkr

r
dΓ ≈ e−jkravg

4π

∫
Γ

1
r
dΓ = e−jkravg · u0.

(11)
The reason of the ≈ in (11) is that now that the source

point is far away from the integral panel, it is meaningless
to exactly sum the integration on every r which is the dis-
tance between a guass point in the integral panel and the
source point, so a average distance between the integral
panel and the source point is enough.

Notice that this approximate formulation also includes
the arduous e−jkravg , but it is computed only on a dis-
tance ravg, not like the direct integral formula where com-
putation of e−jkr is needed on every gauss point. More
convenient, the u0 is right the first term of the series u∗

j ,
so the additional computation is unnecessary.

E. Fast Computation of the Series

Direct computing the power series as the formulation
proposed above will waste lots of CPU time. Fortunately,
it is easy to transform the direct form of the series into re-
cursion formula from which amounts of time can be saved.
Taking the real part of u∗

j as example, one obtain the re-
cursion form as follow:

u∗
j+1,real =

1
r

r2j
rel

(2j)!
=

r2
rel

(2j + 2)(2j + 1)
u∗

j,real,

where u∗
0,real = 1

r .
Moreover, in order to accelerate the computation, the

coefficient 1
(2j+2)(2j+1) can be computed and saved in a

table before. By now, on a gauss point, one term of the
series added needs only two extra multiply operators.

Note that when the source point locates in the integral
panel, u∗

0,real is weak singular integral and q∗0 is strong
singular integral. Both of them need special treatments.

IV. Numerical Results

The proposed method based on CMRM is implemented
in C++ language, and the original BEM for inductance
extraction is as same as that proposed in [15]. In the
following experiments, our method is compared with the
original direct BEM. The former is denoted by CMRM

and the latter by ODBEM. In the FastImp, which is also
based on the direct BEM of [15], a precorrected-FFT
(pFFT) acceleration algorithm is employed [6]. However,
pFFT also handles the boundary integrals, and conflicts
with the CMRM. Therefore, in the ODBEM, only a direct
solver of linear equation system is implemented, which
does not affect the performance evaluation of the CMRM
for extraction with many frequency points. Our CMRM
and ODBEM are used to extraction frequency-dependent
inductance for three interconnect structures. In the com-
putations, conductor surface is discretized into constant
rectangular elements, with collocation point located in the
center. To guarantee the accuracy of near singular inte-
grals, a 2D Guass-Legendre integral scheme with 20 × 20
integral points is used.

A. A Single Rectangle Wire

A straight conductor wire is 8µm long, 1µm wide and
1µm thick. The surface of this wire is discretized into
160(4× 4× 8) panels, as shown in Fig. 1. The number of
unknowns is 1122.
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Fig. 1. A Single Rectangle Wire

The red panels surrounding the contacts are for sum-
ming the current in the conductor with the high frequency
method and the Fh = 15Ghz [15]. Calculating the induc-
tance from 1.5Mhz to 40Ghz with the ODBEM, one ob-
tains the inductance curve in Fig. 2. Fig. 3 is the result
from [15](pp.110), where the frequency range is from 1Hz
to 1020hz. Note that the highest frequency compared is
only up to 40Ghz.
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In CMRM, the window size W = 2π and the length
of the series N = 12. From Fig. 2 both results from
the CMRM and the ODBEM coincide with each other
very well on the whole frequency range, and their results
coincide with the data from [15], i.e. Fig. 3.



TABLE I
Relation between W and N

N 1 2 3 4 5 6 7 8 9 10 11 12 exact
W=π/2 1.0000 -0.2337 0.0200 -0.0009 0.0000 0.0000
W=π 1.0000 -3.9348 0.1239 -1.2114 -0.9760 -1.0018 -0.9999 -1.0000 -1.0000

W=3π/2 1.0000 -10.1033 10.4439 -4.7656 1.2657 -0.2224 0.0279 -0.0026 0.0002 -0.0000 -0.0000
W=2π 1.0000 -18.7392 46.2002 -39.2566 20.9880 -5.4382 2.4653 0.7509 1.0329 0.9965 1.0003 0.99998 1.0000

Note that when f = 15Ghz, the skin depth δ = 0.54µm
and ravg < 3.3µm. That means the approximate formu-
lation has been employed when the distance between two
panels is larger than 3.3µm. At this frequency, the results
from the ODBEM and the CMRM still have the accuracy
of three correct decimals.

In order to compare the speed between the ODBEM
and the CMRM clearly, we briefly summarize the whole
steps in the program listed as follows.

1. calculate the integral of the Laplace kernel related
2. calculate the integral of the Helmholtz kernel related

(repeated in ODBEM, partly repeated in CMRM)
3. generate the linear system (repeated)
4. solve the linear system ( repeated)
5. postporcess. Obtain impedance matrix ( repeated)
The main differences lie in step 2. The ODBEM directly

compute numerical integrals. The CMRM divides this
step into three steps:

1. compute ravg matrix
2. generate and save the series
3. sum the series for a given k (repeated)

The time result is listed in Table II. The unit is second.
This program is run on a desktop PC with a Pentium4
1.8G CPU and 256M RAM. The symbol asterisk indicates
that the step should be recomputed at different frequency
points.

TABLE II
CPU Time of Single Wire Example

Lap.
Int.

Helm Int Gen.
Ax=b

Sol.
Ax=b

Post
proc.

ODBEM 11.141∗
1.766 Ravg Serial Combine 0.125∗ 2.766∗ 0.000∗

CMRM 0.000 9.234 0.156∗

From the Table II, we can conclude:

1. The time ratio of the Helmholtz integral to the
Laplace integral is about 7:1(11.141:1.766). For only
one conductor in the example, this ratio is also the
CPU time ratio of computing the kernel e−jkr/r to
1/r. Obviously, the Helmholtz kernel is much more
expensive than the Laplace kernel on the CPU time.

2. From the second frequency point, the time of the
integral is near to zero (0.156s) by the ODBEM, and
the rest is only the time of solving Ax = b.

3. Even for the first frequency point, CMRM (9.390s)
is still a little faster than ODBEM (11.141s).

The same conclusion can be obtained from the Fig. 4,
where the horizontal coordinate axis stands for the num-
ber of the sampling frequency points and the vertical co-
ordinate axis stands for the total time. The inductances
on twelve sampling frequency points are computed. The
advantage of saving time by CMRM is very apparent.
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B. A 2x2 Bus

The dimension and discretization of the bus2x2 exam-
ple is shown in Fig. 5.

The numbers of panels and unknowns are 256 and 1800
respectively. Because there are four conductors, the result
of the inductance should be a 4 × 4 matrix.

Table III gives this results at f = 15Ghz. The unit is
pH. For comparison, the result of the Fastimp is intro-
duced. Fig. 6 shows the mutual inductance of parallel
conductors i.e. the location (1,2) in inductance matrix
from 1.5Mhz to 40Ghz. All of them coincide with each
other very well. The result of CPU time Comparison is
not listed here because it is similar to the first example.

C. A 1x1 Bus

This example describes the relation between accuracy
and window size W . The dimension and discretization of
the bus1x1 example is shown in Fig. 7

The number of panels and unknowns are 320 and 2240
respectively. At f = 15Ghz, applying different window
size W and length of series N , the result of the self-
inductance in a conductor are listed in Table IV.

Take the result from the ODBEM as the exact result.
From the Table IV, one concludes that at high frequency,
even if N = 5, the resistance has a relative error about
10% and the inductance has a relative error about 3%. It



TABLE III
Inductance Matrix of a 2x2 Bus when f = 15Ghz

CMRM ODBEM FastImp
3.41942 1.66187 7.16e-4 7.32e-4 3.41989 1.66161 7.16e-4 7.32e-4 3.46971 1.68804 7.81e-4 7.10e-4
1.66187 3.41942 7.16e-4 7.32e-4 1.66161 3.41989 7.16e-4 7.32e-4 1.68802 3.4697 7.73e-4 7.08e-4
7.32e-4 7.16e-4 3.41942 1.66187 7.32e-4 7.16e-4 3.41989 1.66161 8.02e-4 6.59e-4 3.47036 1.68878
7.32e-4 7.16e-4 1.66187 3.41942 7.32e-4 7.16e-4 1.66161 3.41989 8.24e-4 6.76e-4 1.68877 3.47036

−2

0

2

4

x 10
−6

0
1

2
3

x 10
−6

−8

−7

−6

−5

−4

−3

−2

−1

0

x 10
−6

X
Y

Z

Fig. 7. A 1x1 Bus

TABLE IV
Relation between Accuracy

and (W, N)

(N , W) (R(Ω), L(pH))
(12, 2π) (0.143694, 4.21306)
(9, 2π) (0.147152, 4.18193)
(7, π) (0.157814, 4.31280)
(6, π) (0.157947, 4.31319)
(5, π) (0.158561, 4.30941)
ODBEM (0.143738, 4.21392)

is meaningful for saving double size of spaces with accept-
able loss of the accuracy.

V. Conclusions

In the inductance extraction with BEM, much of the
CPU time is spent on numerical integrals. A CMRM,
usually for eigenvalue analysis of Helmholtz equation, is
introduced to the BEM based inductance extraction. To
solve the problem of ill-conditioned series caused by large
variation of parameter k and r in inductance extraction,
several approaches are proposed for CMRM, including
the normalization of the distance r, the localization of
the near field and the approximate computation for the
far field. With the CMRM and proposed efficient tech-
niques, the computation of frequency-dependent integrals
in BEM becomes reusable. Numerical experiments show
that the proposed method greatly speeds up the induc-
tance extraction for a frequency range, while preserving
high accuracy.
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