
Analysis of Scratch-Pad and Data-Cache
Performance Using Statistical Methods

Javed Absar∗† and Francky Catthoor∗
∗IMEC vzw., Katholieke Universiteit Leuven, Belgium.

† STMicroelectronics Asia Pacific, Singapore.

{javed.absar, francky.catthoor}@imec.be

Abstract— An effectively designed and efficiently used memory
hierarchy, composed of scratch-pads or cache, is seen today
as the key to obtaining energy and performance gains in
data-dominated embedded applications. However, an unsolved
problem is – how to make the right choice between the scratch-
pad and the data-cache for different class of applications? Recent
studies show that applications with regular and manifest data
access patterns (e.g. matrix multiplication) perform better on
the scratch-pad compared to the cache. In the case of dynamic
applications with irregular and non-manifest access patterns, it
is however commonly and intuitively believed that the cache
would perform better. In this paper, we show by theoretical
analysis and empirical results that this intuition can sometimes
be misleading. When access-probabilities remain fixed, we prove
that the scratch-pad, with an optimal mapping, will always
outperform the cache. We also demonstrate how to map dynamic
applications efficiently to scratch-pad or cache and additionally,
how to accurately predict the performance.

I. INTRODUCTION

Multimedia and network applications are well-known to be

highly data dominated [5]. To reduce memory-access related

energy and performance costs in such applications, the mem-

ory hierarchy must be effectively designed (with respect to

capacity and number of levels) and efficiently used [18][16]

(i.e. data mapping to carefully exploit the hierarchy). Most

multimedia and network platforms today have at least one, two

or more levels of cache. Lately, software-controlled cache, also

known as scratch-pad memory (SPM), have also been viewed

as an alternative to the data and instruction cache [9][12][23].

SPM is software controlled. Therefore, the compiler or

the application developer must make, and instrument, all the

decisions about which data should reside on SPM at any

time. This situation is quite different from the cache, where

the hardware is in charge of exploiting the locality using a

circuit that implements the least recently used algorithm. The

hardware simplicity of SPM enables it to provide a low power-

consumption and access-time number, on a per access basis,

compared to cache [4]. Applications in which the data access

pattern is regular and manifest (i.e. known at compile time)

can be mapped easily and efficiently to SPM [1][9][11]. Such

applications include matrix multiplication, filtering and large

portions of audio and video compression algorithms. Since

SPM is cheaper than cache, in such cases the better choice is,

indeed, the SPM. If, however, the applications exhibits more

dynamism – objects being accessed in a data-dependent and

seemingly random fashion – mapping to SPM requires more

ingenuity. Applications involving trees, heaps, tries, graphs

and linked lists often exhibit this kind of dynamism. One may

reckon that the cache would do a better job in such cases and,

therefore, decide to let such objects be handled by the cache.

This may or may not hold true. We, therefore, require more

sound techniques for deciding between SPM and cache.

In this paper, we study the performance of dynamic ap-

plications, when mapped to SPM or cache, using models

of access probability. This allows us to analyze and predict

whether the cache would outperform the SPM, and by how

much. We back our theoretical conclusions with empirical

results. To the best of our knowledge, this is the first work

that analytically compares the performance of SPM with

cache. Previous studies [7][12] have focused on finding good

mapping techniques for SPM. As such, the comparison of SPM

performance with cache was limited to simulation results.

Unfortunately, that does not provide broader insight.

The remainder of this paper is organized as follows. Sec-

tion 2 gives a motivating example. Section 3 reviews related

work. Section 4 gives a brief description of the probability

model that we employ. Section 5 compares SPM and cache

performance with this model. And last, section 6 presents

empirical results.

II. MOTIVATING EXAMPLE

The function search in the program section below, does
a spell-check by performing a search of the given word,
of n letters, against its internal dictionary. The dictionary is
implemented as a trie (tree with variable number of child-
nodes) which enables fast searches.

typedef struct node{ //trie data-structure
struct node *next, *down; char letter;
}Node;

bool search(Node *nptr, char *word, int n){
for(i = 0 ; i < n ; i++){
while(nptr && (nptr->letter < word[i])){
nptr = nptr->next;

}
if(nptr){
if(nptr->letter == word[i])

nptr = nptr->down;
else return false; //word not found

}else return false; //word not found
}
return true; //word found

}

This application can be mapped to the SPM or the cache.

For the case of data-cache, since the tracking and migration

of data to and from the cache is handled by hardware, no

changes are required on the code. For the case of SPM,

however, additional instructions are necessary to place some

of the nodes on SPM. The rest of the nodes remain in external

memory from where they are directly accessed. Access to the

nodes mapped to SPM will be quick and energy efficient. If

the nodes are mapped intelligently such that most of the search

is to nodes on the SPM, then overall good performance and

energy efficiency can be expected. The question is: Can the

SPM really compete with the cache in such a dynamic and

data-dependent application. We will address such questions

both analytically and with empirical results.

As a side remark, note that pointer based data-structures

(such as trie) allow placement (of some of the nodes) on SPM

in a seamless way without requiring checks with each access.

On the other hand, if we place parts of an array on SPM and

the rest on the external memory, then each access to the array

(using an index expression) will require first a check to see

where that segment resides.

III. RELATED WORK

Banakar et al. [4] did a detailed study of the energy and area

advantage of the SPM over the cache. On a per access basis,

they found that a 2KB, 2-way cache consumed 4.57 nJ., while

a 2KB SPM consumed only 1.53 nJ. Initial work by Panda et

al. [17] on utilizing the SPM focused on scalars and highly

used, small-sized arrays. Their approach was extended and

improved upon by other researchers [3][21][23] who applied

knapsack formulation and ILP solvers to find the best set of

data objects (globals, stack variables and arrays) and program

routines that would still fit into the SPM and yet save the

highest amount of energy. For arrays larger than the SPM

size, these solutions do not work well. However, for arrays

accessed in a regular pattern – inside nested-loops by index

expressions which are linear functions of the loop iterators –

several additional SPM mapping techniques using data-space

and iteration space tiling have been proposed [9][11][12]. They

work well irrespective of the array size, and always outperform

the cache.

Dominguez et al.[7] explain a technique for mapping dy-

namic data structures, e.g. linked lists and trees, to SPM. The

size allocated in the SPM to each set, e.g. nodes of a particular

tree, is made proportional to the overall number of access to

that set. They do not compare between SPM and cache but are

only concerned with finding the best allocation of the SPM

for the different dynamic objects, each vying for space on the

SPM.

For the cache, itself, there have been numerous studies

to estimate its performance for regular and non-regular ap-

plications. Several studies have tried to quantify the cache

performance by summarizing or analyzing actual memory

access trace [2][20]. From analytical comparison perspective,

however, trace analysis is not fruitful. On the other hand,

the Independent Reference Model (IRM) of Rao [19][13] is

more suited to our purpose of analyzing cache behavior for

comparison with SPM. This model was recently extended

[8][15] to algorithmic analysis. Rao’s equations assume a

given (specified) data-layout. However, the results in our paper

allow conclusions to be drawn across all possible layouts.

IV. MODEL DESCRIPTION

Computations such as matrix multiplication generate mem-
ory reference strings, i.e. sequence of data memory addresses,

that are regular and input-independent, and can be determined

without even running the program. This enables good SPM

mapping, and as such the SPM is able to outperform the cache

for all these types of computations [12].

On the other hand, dynamic applications generate refer-

ence strings that are irregular and input-dependent. Therefore,

predicting SPM and cache performance (hit-rate) with the

techniques used for the regular case turns out to be unwieldy

and complicated. In this paper we use statistical methods [22]

to compare the SPM performance with the cache. We start

by characterizing the reference string using the Independent

Reference Model (IRM) [15][19].

Consider a set of objects O1, O2, . . . , On and a set of cor-

responding access probabilities p1, p2, . . . , pn. The reference

string can be denoted as r1, r2, . . . , rt, . . . , rN , where rt is the

object referenced at time t. Under IRM:

Pr[rt = Oi] = pi , 1 ≤ i ≤ n , t > 0

That is, the probability of rt being Oi is pi. Though this model

does not take into consideration the correlation between ac-

cesses, studies [10] show that the behavior modeled assuming

independent reference gives results that are very close to those

obtained using models that do indeed incorporate such corre-

lation. We will also show this with empirical results which

reconfirm that IRM is indeed able to accurately predict SPM

and cache performance for data-structures such as trees where

the access-pattern is clearly data-dependent and correlated.

Now, we will compute the cache hit-rate for the set of access

probabilities given above. Suppose we have a cache with just

one block and so it contains only the last object accessed.

It can been shown [13] that the states of this cache forms a

homogeneous Markov chain, where each state Si is defined as

having the object Oi inside the cache block. The equilibrium

probability of state Si equals pi [19] and hence, the probability

that object Oi is inside the cache, at anytime, equals pi.

Therefore, if object Oi is accessed, then the probability that

the access results in a hit (object found in cache) equals pi.

Averaging the hit-rate across all possible accesses, we get the

expected hit-rate η for a cache of size one as:

η =
n∑

i=1

p2
i (1)

Embedded systems usually contain caches with low associa-

tivity to reduce the energy and area. The results that we derive

are, therefore, in the context of the direct-mapped cache (DM-

Cache). Caches with low associativity perform similar to the

Head

np (n-1)p 2p p

p=2/(n*(n+1))

probability

node number 1 2 n-1 ni

(n-i+1)p

Fig. 1. Access-probabilities in a linked list, when each node is equally likely
to be the target of the next search. A search starts at head and stops when
target is found.

direct-mapped [19]. We will later present empirical results that

confirm this as well.

The expected hit-rate for a DM-Cache of more than one

block can be computed by placing the objects into disjoint

groups. Assume that the DM-Cache contains m cache blocks,

and each block can hold only one object. Let Gi denote the

set of objects which map to cache block i. Out of the n
objects O1, O2, . . . , On, assume (for simplicity) that k = n/m
objects map to each cache block. Objects in Gi are denoted as

O1(i), O2(i), . . . , Ok(i), and the corresponding probabilities

as p1(i), p2(i), . . . , pk(i), respectively. Let Di = p1(i) +
p2(i)+ . . .+pk(i). The following result, from Rao [19], gives

the expected hit-rate of a DM-Cache:

ηDM =
m∑

i=1

1
Di

k∑
j=1

p2
j (i) (2)

Essentially, a DM-Cache behaves as m disjoint, fully-

associative caches, each of size one. So, Eq. 1 can be applied to

each cache block, but with conditional probabilities pj(i)/Di.

The overall hit-rate equals the weighted sum of hit-rates of

each individual block. The weight for a block equals the

probability that the next access would be to that block. For

block i, this equals Di.

Let us now see how to compute access probabilities. A

linked list is shown in Fig. 1. Each node contains a key and

some data. The search for a node, with a certain key, starts

at the head and continues till that node is found. Each key

is equally likely to be the target of the next search. Now,

if the nth node has access probability p, then the (n − 1)th

node has access probability 2p. Reason: the (n − 1)th node

is referenced when the nth node is the target of a search, and

it is also referenced when it is, itself, the target of a search.

Probabilities for all the nodes is shown in Fig. 1. It is also

possible to assign probabilities in an application-specific way

or based on profiling as we will show later.

Next, consider a binary search-tree. A search starts at the

root and proceeds downward to the target leaf-node. From any

parent, the search-path has an equal chance of moving to the

left child-node or to the right child-node. Therefore, if the

access probability of a parent is p, each child-node has access

probability p/2. Fig. 2 shows the access probabilities of nodes

in a binary tree.

V. ANALYTICAL STUDY

In this section, we analyze SPM and DM-Cache perfor-

mance using the model discussed before.

1/(2^h)h

1/4h

1/2h

1/4h

1/h

1/4h

1/2h

1/4h

0

1

2

h-1

Height
Access-Probaility of Nodes

Fig. 2. Access-probabilities of nodes in a binary tree.

To recapitulate, we have n objects O1, O2, . . . , On with

access probabilities p1, p2, . . . , pn, respectively. Without loss

of generality, let p1 ≥ p2 ≥ . . . ≥ pn. To maximize the

SPM hit-rate, objects O1, O2, . . . , Om, where m is SPM size,

must be placed on SPM. The rest of the objects remain in the

memory, from where they are accessed directly. Hence, each

access to Oi, where i > m, constitutes a miss. The expected

hit-rate of this optimal SPM mapping is:

ηSPM =
m∑

i=1

pi (3)

Let us now compare this with the hit-rate of a

DM-Cache, also of size m, using Eq. 2. As before,

objects O1(i), O2(i), . . . , Ok(i), with access probabilities

p1(i), p2(i), . . . , pk(i), respectively, map to cache block i.
Again, without loss of generality, let p1(i) ≥ p2(i) ≥ . . . ≥
pk(i). Although we assume that exactly k = n/m objects map

to each block, it is not a limitation of the proof, but is done

so as to simplify the notation.

Since Di = p1(i) + p2(i) + . . . + pk(i) in Eq. 2, we have

p1(i) = Di −
∑k

j=2 pj(i) Now, Eq. 2 can be rewritten as:

ηDM =
m∑

i=1

1
Di

[
p2
1(i) +

k∑
j=2

p2
j (i)

]

=
m∑

i=1

1
Di

[
p1(i)

(
Di −

k∑
j=2

pj(i)
)

+
k∑

j=2

p2
j (i)

]

=
m∑

i=1

p1(i) −
m∑

i=1

1
Di

k∑
j=2

p1(i)pj(i) − p2
j (i)

=
m∑

i=1

p1(i) −
m∑

i=1

1
Di

k∑
j=2

pj(i)
(
p1(i) − pj(i)

)
(4)

Since p1(i) ≥ pj(i), 1 < j ≤ k, in Eq. 4 each expression

pj(i)
(
p1(i) − pj(i)

)
is always positive. Hence:

ηDM ≤
m∑

i=1

p1(i) (5)

The expression
∑m

i=1 p1(i) in Eq. 5 attains its maximum

value when the objects O1(1), O1(2), . . . , O1(m), with prob-

abilities p1(1), p1(2), . . . , p1(m), respectively, are any per-

mutation of the objects in the set {O1, O2, . . . , Om}. Note

that O1, O2, . . . , Om are the objects with the highest access

probabilities among all the n objects. Therefore, the highest

0

10

20

30

40

50

60

70

80

90

100

H
it

-R
at

e
(%

)

256 512 1K 2K 4K

Number of Nodes

SPM DM-Cache

Fig. 3. Hit-rates for key search on the linked list. Cache performance worsens,
compared to SPM, with increasing problem size.

value attained by ηDM is
∑m

i=1 pi. Comparing this with Eq. 3,

we conclude that ηDM ≤ ηSPM .

Therefore, under the given assumptions, we see that the

SPM with an optimal mapping can always outperform the

DM-Cache. The cache can have any data-layout, whatsoever,

and yet the SPM, with optimal mapping, will still perform

better. In the next section, we will validate this conclusion

with experiments. We will also show that our conclusion holds

even for set associative caches.

In this paper, we have looked at dynamic data structures

whose topology does not change or changes gradually over

time. For example, our result holds well for a tree on which

the basic operation is traversal. The tree’s topology may

change only very slowly over time through re-balancing,

deletion and insertions. Another class of problems is when

the topology changes very fast. In that case, the comparison

between SPM and cache has to take into consideration the

exact replacement policy of SPM. We are currently studying

this class of applications but do not discuss the solution any

further in this paper.

VI. EMPIRICAL VALIDATION

Let us now verify the theory with experiments. We will look

at three applications and see how they fare on SPM and cache.

A. Linked List

Fig. 3 plots the measured hit-rates for searches conducted

on the linked list of Fig. 1. In the experiment, the L1-memory

size is 4KB, with cache block-size 16B. Each node is 16 bytes.

In the case of SPM, the first m (256) nodes from the head of

the list were placed on SPM. For the DM-Cache case, the first

m nodes were placed in different cache blocks. From Fig. 3

we see that SPM does indeed outperform the direct-mapped

cache. The cache performance, with respect to SPM, worsens

for increasing problem size because of increasing conflicts.

B. Spell-Checker

The spell-checker [14] checks and reports whether the given

word exists in its dictionary. To enable fast searches, the

dictionary is built as a trie (tree with variable number of child-

nodes). A trie is shown in Fig. 4. The search-path to the word

the is delineated with a dotted line in the figure.

a b c t

b c

a t

z

a h

a

i t

e

i o

r
search-path

the

d

a o

a

thatthai

do

act

actor

Fig. 4. Spell-checker implemented with trie data-structure. Search-path to
the is delineated with dotted line.

0

10

20

30

40

50

60

70

80

90

H
it

-R
at

e
(%

)

2K 4K 8K 16K

L1-Memory Size

SPM (pred.) SPM (meas.) DM-Cache (pred.) DM-Cache (meas.)

Fig. 5. Spell-Checker: Predicted (pred.) and measured (meas.) hit-rates.
Predictions are within 2.6% accuracy.

At first, one might be tempted to map the spell-checker

onto the cache because it involves data-dependent traversal

of a pointer-based dynamic data structure. However, we will

see that with a smart mapping the spell-checker actually does

better on SPM. In our experiment, the trie contains over five

thousand commonly used words. By performing a mock spell-

check on a training-essay, the access probability of each trie-

node is estimated. The access probabilities are then used to

predict the hit-rates using Eq. 2 and 3. For SPM, it assumes

that the nodes with highest access probabilities are mapped to

SPM, while for the DM-Cache case it assumes that they map

to different cache-blocks. The actual hit-rates are measured by

running the spell-checker over another document of more than

hundred thousand words.

Fig. 5 shows the predicted and measured hit-rates. The

first observation is that the predictions, both for SPM and

DM-Cache, is close to the measured values. Therefore, IRM

is indeed able to model SPM and cache behavior for data-

dependent traversals to a high degree of accuracy. The second

observation is that, as proven in previous section, the SPM

with optimal mapping does indeed outperform the DM-Cache

– albeit by a small margin. However, since SPM is more

energy efficient than cache, SPM is better suited for this

application.

Let us now compare the previous SPM and DM-Cache

mappings with other mapping techniques. Typically, the trie

is grown by inserting new words into it. In the first version

0

10

20

30

40

50

60

70

80

90

H
it

-R
a
te

(%
)

2K 4K 8K 16K

L1-Memory Size

SPM-1 SPM-2 SPM-3 DM-Cache

Fig. 6. Spell-Checker: Hit-rate comparison of SPM with DM-Cache. Using
access-probabilities (SPM-3) gives better results over conventional mapping
schemes (SPM-1 & 2).

0

10

20

30

40

50

60

70

80

90

H
it

-R
at

e
(%

)

2K 4K 8K 16K

L1-Memory Size

SPM-3 1-way 2-way 4-way 8-way

Fig. 7. Spell-Checker: SPM performance compared to 1, 2, 4 and 8 way
set-associative caches. Increasing associativity does not improve performance
significantly.

SPM-1, the words are inserted into the trie in lexicographical

order and the nodes are allocated space in the SPM on a first

come first serve basis, till the SPM gets full. In the SPM-2

version, the trie is built by inserting the most commonly used

words (e.g. the, as, and) first, and then inserting the remaining

words. Therefore, words which are searched most often have

their paths almost entirely on the SPM. We say almost because

words inserted later-on could potentially add new nodes in

the paths to the commonly used words. Fig. 6 shows the hit-

rates for SPM-1 and SPM-2, and compares them with SPM-

3 and DM-Cache. The SPM-3 version puts the nodes with

highest access probabilities on SPM. Therefore, SPM-3 is

identical to SPM (meas.) in Fig. 5 but is shown again for

convenience. DM-Cache in Fig. 6 shows the hit-rate when no

customized mapping of nodes is done. This is different from

the experiment conducted for DM-Cache (meas.) in Fig. 5

where nodes with highest access probabilities were mapped

to different cache-blocks. Therefore, as expected, the hit-rate

values for DM-Cache in Fig. 6 are less than those of DM-

Cache in Fig. 5. From Fig. 6, we therefore conclude that

mapping using access probabilities can be superior compared

to conventional mapping techniques.

Next, we study the impact of increasing associativity on

the performance of the cache. In particular, we would like

to see if set-associative caches can outperform the SPM.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
3 10 9 7 15 11 9 11 15 8 16

3

10
11

15

4

7

9
9

11
15

8

16

4

Fig. 8. A binary-heap implementation of the priority-queue for the minimum
spanning tree algorithm.

Fig. 7 compares direct mapped (1-way) with 2, 4 and 8-way

set-associative cache. The SPM hit-rate (columns for SPM-

3) are also shown for comparison. We see that increasing

the associativity does not tilt the performance toward cache.

Moreover, set-associative caches are power hungry and hence

any performance gains comes at high energy penalty.

C. MST - Prim’s Algorithm

Prim’s algorithm finds a minimum spanning tree (MST) for

the given connected graph [6]. The algorithm starts with a

single node and adds one edge at a time, till all the nodes

have been connected. At any time, during the building of the

tree, there is a set of nodes T already in the tree, and another

set of nodes T ′ currently not in the tree. Each node in T ′ is

assigned a weight that is equal to the cheapest edge connecting

it to some node in T . Organizing the set of weights in T ′ such

that the cheapest edge can be found quickly is done using a

binary-heap. A binary-heap, such as in Fig. 8, is a complete

binary-tree embedded into an array. Each node in the heap has

a weight which is less than or equal to that of its two children.

Therefore, the node h with the least weight is at the top (root).

When h is removed, the last heap-node is moved to the top

and then it percolates down to its new appropriate place.

In estimating the hit-rates (using Eq. 2 and 3), we assume

that a node percolating downward, ultimately reaches the

bottom. This simplification has a certain degree of associated

error. Secondly, note that the tree shrinks in size as nodes

are removed from it. Therefore, the estimated hit-rate is the

mean for the entire range. Fig. 9 shows the predicted and

measured hit-rates on a complete graph of over thousand

nodes. We observe that the predicted values are slightly below

the measured values. The reason is that since some nodes do

not percolate all the way down, the access probabilities are

actually higher for nodes near the top of the heap as compared

to what was assumed in our calculations.

Fig. 10 gives the hit-rates for different set associative

caches. We see that increasing the associative does not have

a big impact on the cache performance and the SPM still

outperforms the cache.

0

10

20

30

40

50

60

70

80

90

100

H
it

-R
at

e
(%

)

1K 2K 4K 8K

L1-Memory Size

SPM (pred.) SPM (meas.) DM-Cache (pred.) DM-Cache (meas.)

Fig. 9. Minimum Spanning Tree: Predicted (pred.) and measured (meas.)
hit-rates of SPM and DM-Cache.

0

10

20

30

40

50

60

70

80

90

100

H
it

-R
at

e
(%

)

1K 2K 4K 8K

L1-Memory Size

SPM DM-Cache 2-way 4-way 8-way

Fig. 10. Minimum Spanning Tree: SPM performance compared to 1, 2, 4
and 8 way set-associative caches. Increasing associativity does not improve
performance significantly.

VII. CONCLUSION AND FUTURE WORK

Data-dependent access to data structures such as tries, trees,

heaps and linked lists can be modeled to a reasonable level

of accuracy in Independent Reference Model (IRM). We use

IRM to prove that scratch-pad memories, with an optimal

mapping based on access probabilities, can outperform the

direct-mapped cache, irrespective of the layout influencing

the cache behavior. This analytical result is then verified with

experiments. Increasing the associativity in the cache is shown

not to improve the cache performance in any significant way.

We, therefore, see our main contribution as demonstrating,

theoretically and empirically, that scratch-pad memories can

be effectively used more than just for regular applications.

This paper does not address the issue of SPM and cache

behavior when the topology of the data structure changes

rapidly with time – resulting from insertions, deletions and

restructuring of the nodes. In that case, scratch-pad and cache

performance evaluation has to take into consideration the

replacement policy of the scratch-pad, and the conflicts in the

cache from different placement (layout) of objects in memory.

Scratch-pad replacement policy can be application dependent

or be independent (using generic allocators).

REFERENCES

[1] Mohammed Javed Absar and Francky Catthoor. Compiler-based ap-
proach for exploiting scratch-pad in presence of irregular array access.

In Design Automation and Test in Europe (DATE), pages 1162–1167,
March 2005.

[2] A. Agarwal, J. Hennessy, and M. Horowitz. An analytical cache model.
ACM Transactions on Computer Systems, 7(2):184–215, 1989.

[3] O. Avissar and R. Barua. An optimal memory allocation scheme for
scratch-pad based embedded systems. ACM Transactions on Embedded
Computing Systems, pages 6–26, November 2002.

[4] Rajeshwari Banakar, Stefan Steinke, Bo-Sik Lee, M. Balakrishnan, and
Peter Marwedel. Scratchpad memory: design alternative for cache on-
chip memory in embedded systems. In CODES ’02: Proceedings of the
tenth international symposium on Hardware/software codesign, pages
73–78, New York, NY, USA, 2002. ACM Press.

[5] F. Catthoor, F. Balasa, E. D. Greef, and L. Nachtergaele. Custom Memory
Management Methodology: Exploration of Memory Organization for
Embedded Multimedia System Design. Kluwer Academic Publisher,
1998.

[6] T. Cormen, C. E. Leicerson, and R. Rivest. Introduction to Algorithms.
Prentice Hall, 1998.

[7] A. Dominguez, S. Udayakumaran, and R. Barua. Heap data allocation
to scratch-pad memory in embedded systems. Journal of Embedded
Computing, Cambridge Publishing, 2005.

[8] J. D. Fix. Cache performance analysis of algorithms. PhD Dissertation,
University of Washington, pages 22–36, 2002.

[9] I. Issenin, E. Brockmeyer, M. Miranda, and N. Dutt. Data reuse
analysis technique for software-controlled memory hierarchies. In
Design Automation and Test in Europe (DATE), pages 202–207, March
2004.

[10] P. R. Jelenkovic and A. Radovanovic. Least-recently-used caching with
dependent requests. Theoretical Computer Science, 326(1-3):293–327,
2004.

[11] M. T. Kandemir, I. Kadayif, and U. Sezer. Exploiting scratch-pad
memory using preseburger formulas. International Symposium on
System Synthesis (ISSS), 7(12), 2001.

[12] M. T. Kandemir and J. Ramanujan. A compiler-based approach for
dynamically managing scratch-pad memories in embedded systems.
IEEE Transaction on Computer Aided Design of Integrated Circuits and
Systems, 23(2):243–259, March 2004.

[13] W. F. King. Analysis of paging algorithm. Proceedings of IFIP
Congress, pages 485–490, August 1971.

[14] Karen Kukich. Technique for automatically correcting words in text.
ACM Comput. Surv., 24(4):377–439, 1992.

[15] Richard E. Ladner, James D. Fix, and Anthony LaMarca. Cache
performance analysis of traversals and random accesses. In SODA ’99:
Proceedings of the tenth annual ACM-SIAM symposium on Discrete
algorithms, pages 613–622, Philadelphia, PA, USA, 1999. Society for
Industrial and Applied Mathematics.

[16] Peter Marwedel. Embedded System Design. Kluwer Academic Publish-
ers (Springer), Norwell, MA, USA, 2003.

[17] Preeti Ranjan Panda, Nikil D. Dutt, and Alexandru Nicolau. Efficient
utilization of scratch-pad memory in embedded processor applications.
In EDTC ’97: Proceedings of the 1997 European conference on Design
and Test, page 7, Washington, DC, USA, 1997. IEEE Computer Society.

[18] Preeti Ranjan Panda, Alexandru Nicolau, and Nikil Dutt. Memory Issues
in Embedded Systems-on-Chip: Optimizations and Exploration. Kluwer
Academic Publishers, Norwell, MA, USA, 1998.

[19] Gururaj S. Rao. Performance analysis of cache memories. J. ACM,
25(3):378–395, 1978.

[20] Jaswinder Pal Singh, Harold S. Stone, and Dominique F. Thibaut.
A model of workloads and its use in miss-rate prediction for fully
associative caches. IEEE Transactions on Computers, 41(7):811–825,
1992.

[21] S. Steinke, L. Wehmeyer, B. Lee, and P. Marwedel. Assigning program
and data objects to scratchpad for energy reduction. Design Automation
and Test in Europe (DATE), pages 409–414, March 2002.

[22] Kishore S Trivedi. Probability and Statistics with Reliability, Queuing
and Computer Science Applications. John Wiley and Sons, New York,
USA, 2002.

[23] Manish Verma, Lars Wehmeyer, and Peter Marwedel. Dynamic overlay
of scratchpad memory for energy minimization. In CODES+ISSS ’04:
Proceedings of the 2nd IEEE/ACM/IFIP international conference on
Hardware/software codesign and system synthesis, pages 104–109, New
York, NY, USA, 2004. ACM Press.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

