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Abstract— Embedded systems in the form of vehicles and mo-
bile devices such as wireless phones, automatic banking machines
and new multi-modal devices operate under tight memory and
power constraints. Therefore, their performance demands must
be balanced very well against their memory space requirements
and power consumption. Automatic tools that can optimize for
memory space utilization and performance are expected to be in-
creasingly important in the future as increasingly larger portions
of embedded designs are being implemented in software. In this
paper, we describe a novel optimization framework that can be
used in two different ways: (i) deciding a suitable on-chip memory
capacity for a given code, and (ii) restructuring the application
code to make better use of the available on-chip memory space.
While prior proposals have addressed these two questions, the so-
lutions proposed in this paper are very aggressive in extracting
and exploiting all data reuse in the application code, restricted
only by inherent data dependences.

I. INTRODUCTION

Applications running on embedded/mobile systems face
very different constraints than their counterparts executing on
high-end systems. For example, power consumption, and
memory size and form factor limitations can severely limit the
datasets that can be handled. While sophisticated packaging
techniques help squeeze large datasets in small memories, such
techniques are costly and not scalable. Also, one does not have
the option of arbitrarily increasing memory size due to power
and form factor considerations. Therefore, techniques that re-
duce memory space requirements of embedded applications
and those that can help designers to maximize the utilization
of the available memory space are very important. In addition,
the fact that the embedded/mobile applications keep increasing
in both size and complexity makes the overall memory opti-
mization problem a very challenging one.

Regarding the memory management of embedded devices,
there are two critical issues: (i) designing the most suitable
on-chip memory configuration and (ii) restructuring the appli-
cation code to make better use of the available on-chip memory
space. In particular, exploiting small, fast, and power-efficient
on-chip memories is critical from both performance and power
angles. While it is conceivable that a knowledgeable applica-
tion programmer can restructure her application code for the
best memory behavior; in general this is a very hard task and
can benefit a lot from automation. Similarly, an automatic tool
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that helps the designer decide on the on-chip memory config-
uration (in particular, memory capacity) can be very impor-
tant. Therefore, recent studies have addressed memory archi-
tecture design and automated software optimization for data
reuse [4–6, 8, 13, 15, 18]. This paper mainly addresses two im-
portant questions:
• What is the minimum on-chip memory capacity (measured

in terms of fixed size blocks) that minimizes the frequency and
volume of data transfers between off-chip and on-chip mem-
ory in a two-level memory hierarchy? This is a particularly
important problem when one wants to design an application-
specific on-chip memory for a given data-intensive embedded
application.
• How can we restructure an application code to make better

use of the available memory hierarchy? This is a relevant prob-
lem in cases where one wants to adapt the behavior of a given
application to an existing memory hierarchy that has both on-
chip and off-chip components.

While prior proposals have addressed these two questions,
the solutions proposed in this paper are unique because they
are very aggressive in extracting and exploiting data reuse, to
the extent allowed by intrinsic data dependences. This helps
improve the quality of the solution for both the problems posed
above. That is, by maximizing data reuse we can make better
use of the available memory space and can also reduce the to-
tal required storage space. Our approach is based on dividing
large data structures into logical blocks and clustering com-
putations that access the same data block using a scheduler.
While our current implementation uses a software-managed
on-chip memory (e.g., a scratch-pad memory [15]), we believe
that the proposed techniques can also be adapted to work with
hardware-managed cache memories.

The rest of this paper is organized as follows. The next sec-
tion presents the details of our approach to determining the
minimum on-chip storage capacity for reducing the number of
data transfers between off-chip and on-chip memories. Sec-
tion III discusses our solution to code restructuring for an ex-
isting on-chip memory space. Section IV concludes the paper
by summarizing our major observations.

II. DETERMINING MINIMUM ON-CHIP MEMORY

CAPACITY

In this section, we present the details of our approach to de-
termining the minimum on-chip memory capacity. While the
other aspects of the on-chip memory are also important, in this
section, we focus our attention on the memory capacity prob-
lem.



do i = 1, N
do j = 1, N
... = U[i][j]

end do
do k = 1, N
do l = 1, N
... = U[k][l]

end do
(a)

do t1 = 1, N
do t2 = 1, N
... = U[t1][t2]
... = U[t1][t2]

end do
(b)

Fig. 1. An example fragment (a) and its transformed version (b).

A. Data-Centric View for Reuse

Our approach focuses on array-based data-intensive embed-
ded applications and operates with the concept of a data block,
which represents both the minimum amount of data transferred
from the off-chip memory in a single transfer and the min-
imum amount of on-chip storage. We use the term on-chip
block to refer to the unit (i.e., the building block) for the on-
chip storage, which is the same size as a data block. Then, our
problem can be expressed as one of determining the optimal
number of on-chip blocks for a given embedded application.
At the high-level, the goal behind our approach is to determine
the minimum on-chip memory size (capacity) in terms of the
number of on-chip blocks so that increasing that number will
not bring any additional performance benefits. To illustrate the
idea let us consider the code fragment in Figure 1(a), where
two separate loop nests iterate over a two-dimensional array
(U). Assuming that there are no data dependences between the
iterations of these loop nests, the entire code fragment can be
restructured as shown in Figure 1(b). In this case, the refer-
ences to the array are brought together; similar to the way a
loop fusion algorithm [9] would perform. Now, to execute this
fragment, only one on-chip memory block would be sufficient.
For example, if we have an on-chip block that can hold K ele-
ments, we bring the first K elements of the array to the on-chip
block and process them. Since these K elements are not needed
for subsequent computation, once we are done with them, we
can remove them from the on-chip storage and bring the next
group of K elements, and so on. With the transformed code
in Figure 1(b), having another on-chip block would not help
futher improve performance at all. In contrast, in the origi-
nal code fragment in Figure 1(a), the successive accesses to a
given data block are far apart from each other; in fact, they oc-
cur in different nests. Therefore, if one wants to exploit this
reuse, a total of N2/K on-chip blocks are needed (so that each
data block can be kept on-chip until its reuse takes place). As
a more complex scenario, consider the code fragment in Fig-
ure 2(a). While the two nests shown in this example share a lot
of data elements (i.e., they exhibit high data reuse), the code
fragment needs many on-chip blocks to exploit this data reuse.
In comparison, the transformed code depicted in Figure 2(b) –
obtained automatically through our approach to be explained
in this paper – needs only a single on-chip data block (though,
this fact is not very clear from this transformed code descrip-
tion!). Note that, the transformation performed to obtain Fig-
ure 2(b) from Figure 2(a) is not a simple application of loop
fusion.

In this section of the paper, we want to determine the mini-
mum number of on-chip blocks such that increasing this num-
ber does not bring any additional performance benefits. Con-
sequently, our approach comes up with the minimum on-chip
memory capacity with the high performance, and is thus suit-

do i = 1, N
do j = 1, N
... = U[i+j][j+3]

end do
do k = 2, N
do l = 1, N
... = U[k-1][k+l+2]

end do
(a)

do G = 1, N
do F = 1, N, K
do t1 = max(G-N,G-K-F+4,1),

min(G-1,N,G-F+3)
... = U[G][G-t1+3]

end do
if (G ≤ N-1 && G ≥ 0) {
do t1 = max(-G+F-3,1), min(N,-G+K+F-4)
... = U[G][G+t1+3]

end do
}

end do
end do

(b)
Fig. 2. An example fragment (a) and its transformed version (b).

able from the viewpoint of energy consumption (since a larger
on-chip storage would only increase the power consumption
without reducing the execution time any further). In doing so,
we also modify the application code (re-schedule its loop iter-
ations) as well. However, there exist several issues that make
this problem very challenging:
• In general, there can be both intra-loop and inter-loop data

dependences that prevent us from reusing a data block brought
from the off-chip memory completely before being replaced
(by another block). Therefore, one needs a suitable represen-
tation of data dependences across different loop nests. Most of
the prior research focuses only on intra-loop dependences.
• Since there can be multiple arrays accessed by the applica-

tion, this can increase the number of on-chip blocks required.
However, one can potentially reduce this number by consider-
ing the lifetimes of the data blocks of different arrays.
• Array access patterns can in general be very complex.

Consequently, the loop transformations required can be much
more complex than the simple fusion-like transformation illus-
trated in Figure 1(b). In fact, the loop transformation used for
obtaining the transformed code in Figure 2(b) from the one in
Figure 2(a) is not easy to derive using the conventional (linear
algebra based) loop transformation theory [14].

In the rest of this section, we present a mathematical model,
within which the potential problems posed above can be ad-
dressed.

B. Data Block Graph

We assume all array indices and loop bounds are affine func-
tions of enclosing loop indices. Let us assume, without loss of
generality, that the program to be optimized has v loop nests,
and I1, I2, I3, · · · , Iv denote iteration spaces of these loop nests.
Each iteration space is a set that contains the iteration points
executed by a loop nest. For example, a loop nest with two
loops each iterating N times has a total of N2 iteration points.
We say that these iteration spaces collectively define the com-
putation domain of the application; that is:

ID =
[

1≤i≤v

II ,

where ID is the computation domain. We use IU,i, j to represent
the set of iterations from loop nest i that access data block j of
array U . In formal terms, an iteration (point) l belongs to IU,i, j
if and only if the following holds:

∃R and ∃d ∈ data block j of U such that R(l) = d,



where R is a reference in loop nest i to array U . Note that, we
have:

S
i
S

U
S

j IU,i, j = ID.

That is, all IU,i, js when combined together cover the entire
computation domain. A data dependence is said to exists be-
tween IU,i, j and IU,m,n if an iteration that belongs to IU,m,n de-
pends on (the result generated by) an iteration of IU,i, j . A data
dependence imposes an execution order for the loop iterations
in IU,i, j and IU,m,n.

Conceptually, we can use a graph, called data block graph
(DBG), to represent IU,i, j nodes and the data dependence rela-
tionships between them. Specifically, each node of this graph
corresponds to a IU,i, j , and a directed edge from IU,i, j to IU,m,n
indicates a data dependence between them (which we extract
using well-known techniques [2,9]). Note that an execution of
the computation domain means visiting each node of the corre-
sponding DBG. Any legal execution is a traversal of this graph
that respects all data dependences between them. That is, if
there is a dependence from IU,i, j to IU,m,n, the latter can be ex-
ecuted only after the former is finished. The subsections below
discuss this scheduling problem in detail.

C. Scheduling Problem

In order to generate code for the application being opti-
mized, the entire computation domain must be covered. As
mentioned earlier, this can be achieved by visiting each node
of the DBG and by observing data dependences during this
traversal. While there may be many different traversal orders
that can generate legal (dependence-observing) results, we are
interested in ones that enhance data block reuse; that is, when
a data block is accessed, we want to reuse its contents as much
as possible before accessing the next data block. While con-
ventional loop transformations attempt to achieve this by trans-
forming each loop nest individually (and independently of the
others) as in the case of linear loop transformations [14], or
considering only neighboring nests as in the case of loop fu-
sion [9, 14], in this paper, we go beyond these techniques, and
consider the entire computation domain (i.e., the entire appli-
cation), denoted by ID, the entire computation domain. Our
goal is to extract and exploit much more reuse than what is
possible by well-known locality-enhancing techniques such as
loop tiling, linear loop transformations, and loop fusion.

It is to be noted that the two nodes in a DBG, IU,i, j and
IU,i′ , j (where i �= i′), exhibit data reuse between them. More
specifically, both these nodes access the same block j of ar-
ray U . Consequently, if one wants to exploit this reuse, these
two nodes should be scheduled one after another. However, as
mentioned earlier, data dependences should also be accounted
for. To simplify the problem, we first focus on the special case
(Section D), where we have only one array in the code, and
each loop nests operates on this array using an arbitrary num-
ber of references. We subsequently discuss how this scheme is
extended to the more general case, where we have multiple ar-
rays, each can be accessed by any loop nest using an arbitrary
number of references (Section E).

D. Solution for Single Array Case

While it is possible to formulate the scheduling problem
using known techniques such as integer linear programming
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Fig. 3. Two different data block graphs (DBGs) and potential schedulings.
The solid arrows denote data dependences, while the dashed arrows indicate
scheduling (execution) order. For clarity, only two nodes are explicitly
labeled in each DBG.

(ILP) or genetic algorithms (GA), these approaches would be
very expensive unless one focuses only on very small-sized
graphs/ problems. Therefore, our goal is to come up with a
heuristic solution that generates good results most of the time.
As mentioned earlier, since DBG nodes IU,i, j and IU,i′ , j exhibit
locality (as they access the same data block), the final schedule
should place such nodes into consecutive slots as much as pos-
sible. In other words, the access to IU,i, j should be followed
by an access to IU,i′ , j. We propose a heuristic scheduling algo-
rithm based on list scheduling, a scheduling paradigm used in
the past by optimizing compilers [14] and high-level synthesis
tools [7].

Our approach is a greedy heuristic that selects one node from
the DBG at a time and schedules it. In selecting the next node
to schedule, the proposed algorithm observes the following
two rules: (1) all the DBG nodes on which this node depends
must be already scheduled (data dependence constraint), and
(2) this node should access the same data block as the previ-
ous node if possible (data reuse constraint). Note that, while
breaking the first rule would lead to incorrect execution, break-
ing the second rule would reduce data reuse. If, at any step
during scheduling, the algorithm could not satisfy the second
rule, that means we are moving to another data block. This
may happen due to two reasons. First, it is possible that all
the nodes that access the current data block have already been
scheduled. This is the preferable case as this means we can
now use the same on-chip block for another data block, i.e.,
we do not need a new on-chip block for the new data block
that needs to be accessed. The second potential reason is that,
although we still have some unscheduled nodes that access the
current data block, we cannot schedule any of them as the next
node due to data dependences. As opposed to the previous one,
in this case, we need another on-chip block if we do not want
to incur any performance degradation.1 Each time this sec-
ond case occurs, we increment the number of on-chip blocks
by 1. The algorithm terminates when all the DBG nodes have
been scheduled. When this happens, the current number of
on-chip blocks gives us the total minimum on-chip memory
capacity required. However, during scheduling, whenever the
last node that accesses a data block is scheduled, the on-chip
block reserved for it is deallocated (recycled). Notice that, our
approach takes care of data dependences both across the dif-
ferent loop nests and across the different iterations of the same
loop nest.

We consider the following code fragment to illustrate how
our approach schedules the nodes of a DBG. The DBG cor-

1The alternative would be displacing the current data block from the on-
chip block, and placing the new data block into it. However, this incurs perfor-
mance penalty when the current block needs to be reused in the future. Recall
that our objective in this section is to determine the minimum number for on-
chip blocks that generate the best performance.



responding to this code fragment is given in Figure 3(a), as-
suming (for illustration purposes) that each array occupies four
data blocks.

do i = 1, N
U[i] = ...

end do
do j = 1, N
... = U[j]

end do
do k = 1, N
... = U[k]

end do

The solid arrows in Figure 3(a) indicate the data depen-
dences between the nodes. A possible schedule determined by
our approach is also shown in the figure using dashed arrows.
This schedule finishes one data block before moving to the next
one. Consequently, it schedules the entire graph using only a
single on-chip block. This on-chip block holds each data block
in turn, and when a data block is resident in it, all the 3 nodes
(coming from the different nests) are scheduled one after an-
other. In other words, in this particular case, we achieve perfect
data block reuse, i.e., even if we have more on-chip blocks, we
could not achieve a better performance. To illustrate the im-
pact of data dependences in preventing the scheduling from
exploiting the maximum data locality, let us now consider the
DBG in Figure 3(b). This DBG is similar to the one in (a), the
difference being the additional dependence arcs entering into
the nodes that belong to the third nest. These dependences pre-
vent us from scheduling the third node (that accesses the same
data block) right after the first two nodes. Consequently, one
possible schedule is the one shown in the figure (using dashed
lines/curves). To demonstrate our approach, let us trace the ini-
tial portion of the schedule shown in Figure 3(b). We use OB1,
OB2, ..., etc to denote the on-chip blocks used. We start with
IU,1,1 and assign it (actually the data accessed by it) to OB1.
Next, we move to IU,2,1 and still operate on OB1. However, af-
ter this, we cannot execute IU,3,1 from OB1 at this moment due
to the data dependence. Instead, we access IU,1,2 and assign it
to OB2. We subsequently proceed with IU,2,2 and continue to
use OB2. Once we are done with IU,2,2, we can execute IU,3,1
using OB1. Now, since all the nodes that access the first data
block of the array have been processed, we can discard the con-
tents of OB1 (that is, it can be overwritten/recycled). So, we
now use OB1 to load the third data block and schedule IU,1,3
and IU,2,3, at which point IU,3,2 can get scheduled, and so on.
To sum up, in this example, with only two on-chip blocks we
can schedule the entire DBG and the total number of off-chip
memory accesses (on-chip block loads/updates) is 4. Increas-
ing the number of on-chip blocks further would not bring any
performance benefits. For example, even if we have 4 on-chip
blocks, we would need 4 off-chip memory accesses. We dis-
cuss in Section III how such graphs can be scheduled with a
given (fixed) number of on-chip blocks.

E. Solution for Multiple Array Case

In this paper we explore two different methods for handling
the multiple array case. The first method, called single array
centric, is based on two observations: (i) although an embed-
ded application can access multiple arrays, there is typically
one or two arrays whose accesses constitute a large fraction
of overall memory accesses. (ii) Given a schedule in the data

block graph, it is possible to estimate the number of on-chip
blocks required to minimize the number of off-chip memory
accesses (on-chip block updates). This is possible as the com-
piler can determine the data access patterns and on-chip block
updates easily for array-based embedded applications. Based
on these two observations, the single array centric method con-
siders each array in the application in turn. When considering
an array, it builds the DBG for this array (omitting the other ar-
rays in the application), and performs the scheduling explained
above for the single array case. After the scheduling, we com-
pute the number of on-chip blocks required to minimize the
number of on-chip block updates. The important point here is
that, in determining this number (denoted Lu for array U), the
accesses to other arrays are also accounted for. It is to be noted
that this process restructures the entire computation around a
single array. It is repeated for each array, and array V that gen-
erates the minimum Lv among all alternatives is selected to be
the one, around which the application code (the computation
domain) is restructured and the output code is generated. The
main advantage of this method is its simplicity since it makes
use of the scheme explained in the single array case as a sub-
component. Its main drawback is that it fails to capture the
coupling between references to different arrays, and this can
lead to inefficiencies for applications with more than a single
dominant array.

Our second method, called global, tries to capture the inter-
action between different arrays by using a separate DBG for
each array. Specifically, this method operates with a combined
DBG (or CDBG for short), which is constructed as follows.
First, we build a DBG for each array. Then, we add some extra
edges to connect these DBGs. These extra edges, referred to as
locality edges, indicate how the data blocks of different arrays
are accessed together (by the same computation). To explain
the idea, we first consider the simple code fragment shown be-
low:

do i = 1, N
U[i] = V[N-i]

end do

Let IU,i,1 denote the DBG node that contains the iterations
that access the first data block for array U , i.e., the block
that contains the elements U [1], U [2], ..., U [K], assuming that
the an on-chip block can hold K elements. Note that, when
these elements of array U are accessed by IU,i,1, the elements
V [N − 1], V [N − 2], ..., V [N − K + 1] are accessed from ar-
ray V . Further, let us assume that there is a node IV,i, f in the
DBG for array V that accesses these array elements. Conse-
quently, in our CDBG, we put an (undirected) locality edge
between nodes IU,i,1 and IV,i, f . In a sense, this edge should
be visited whenever IU,i,1 (or IV,i, f ) is accessed. After build-
ing CDBG, the goal of the global method is to come up with a
scheduling such that the current contents of the on-chip blocks
are maintained (i.e., reused) as much as possible. It should be
noted that, in a sense, the locality edges impose constraints (for
scheduling) similar to those imposed by dependence edges.

To illustrate how the global method works, let us consider
the code fragment shown below, assuming for clarity that both
arrays have two data blocks:

do i = 1, N
U[i] = V[N+1-i] + ...

end do
do i = 1, N
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Fig. 4. A combined DBG (CDBG). The array region identifier attached to a
node indicates the array elements accessed by that node. For clarity, only four
nodes are labeled.

... = V[i] + ...
end do
do i = 1, N
... = V[N+1-i] + ...

end do

The CDBG for this fragment is illustrated in Figure 4. At-
tached to each node are the elements of the data block ac-
cessed. The locality edges are between the DBGs of the two
arrays. Now, let us trace the scheduling using this CDBG. We
start with IU,1,1 and assign it to OB1. As a result, the locality
edge forces us to assign IV,1,2 to OB2. We next move to IU,2,1
which reuses OB1. We can now schedule IV,2,2 and IV,3,2 as
well. Since, at this point, all accesses to the first block of U
and the second block of V are completed, OB1 and OB2 can
be deallocated. In the remaining part of the schedule, we as-
sign OB1 to the second block of U and OB2 to the first block
of V . Thus, we can schedule the entire CDBG with only two
on-chip blocks.

F. Code Generation

Once the DBG (or CDBG) has been scheduled (i.e., an or-
der in which its nodes are to be traversed has been determined)
as explained above, the next task is code generation. To do
this, we propose to use a polyhedral tool such as the Omega
Library [11]. The Omega library manipulates integer tuple re-
lations and sets, which are described using Presburger formu-
las, a class of logical formulas which can be built from affine
constraints over integer variables, the logical connectives (∨,
∧, and ¬), and the existential and universal quantifiers (∃ and
∀). In our context, the Omega library is used for generating a
loop that iterates over the elements (iteration points) that ac-
cess a data block; that is, the iterations that constitute a node
in the DBG. For example, let us consider an array reference
U [i + j − 1][ j + k + 3] that appears within a nest with three
loops (i, j, and k from outermost to innermost). Assume fur-
ther that LBi and UBi denotes the lower and upper bounds,
respectively, for loop index i, and similar lower/upper bounds
exist for the remaining two loops as well. The iteration space
of this loop nest can thus be described as:

IS = {[i, j,k] : (LBi ≤ i ≤UBi)∧ (LB j ≤ j ≤UB j)
∧ (LBk ≤ k ≤UBk)}.

Let us focus on a particular data block that contains array ele-
ments U [G][F], U [G][F +1], U [G][F +2], ... , U [G][F +K−1].
Within the Omega framework, this block can be defined as:

DB = {[a,b] : (a = G)∧(F ≤ b ≤ F +K−1)∧([a : b]∈ DS)}.
Here, DS represents the data (array) space, i.e., the elements
of the data block should be within the array bounds. Then,

the iterations in the DBG node that access this block can be
expressed as the following Presburger formulation:

ND = {[i, j,k] : ∃a∃b such that (a = i+ j−1)
∧(b = j + k + 3)∧ ([i, j,k] ∈ IS)∧ ([a,b] ∈ DB)}.

The last condition here forces the accessed element to be
within the data block, and the condition before the last one
makes sure that any iteration included in ND is legal, i.e.,
within the loop boundaries. Since an array has typically multi-
ple data blocks, to iterate over all of them in sequence, we can
construct the following code (assuming that K – the number
of elements in an on-chip block – divides N evenly and omit-
ting the condition on array bounds). In this loop nest, which
has been generated with the help of the “codegen” utility in
the Omega library, the first two loops iterate over the blocks of
the array, whereas the inner two loops visit the iterations that
access a given data block (indexed by the upper two loops).

do G = 1, N
do F = 1, N, K
if (K ≥ 1 && UB3 ≥ LB3) {
do t1 = max(G-F-K+LB3+5,LB1,G-UB2+1),

min(G+UB3-F+4,UB1,G-LB2+1)
do t3 = max(LB3,-G+t1+F-4),

min(UB3,-G+t1+F+K-5)
...U[G,G-t1+t3+4]...

end do
end do
}

end do
end do

III. SCHEDULING UNDER CAPACITY

CONSTRAINTS

In Section II, our main focus was on determining the mini-
mum number of on-chip blocks such that the number of on-
chip block updates is minimized (i.e., the memory capacity
problem). This is an important problem if one targets at de-
termining the minimum capacity of the on-chip storage for ex-
tracting the best performance from a given embedded applica-
tion. Another important question that needs to be answered,
though, is how can we schedule a DBG with a fixed number of
on-chip blocks (i.e., fixed storage capacity)? Obviously, this
problem is more relevant in cases where the on-chip memory
capacity is fixed. Our objective in this case is to minimize the
number of on-chip block loads/updates as much as possible.

We attack this (scheduling) problem by adopting a greedy
strategy, which works as follows. Let us assume that we have r
on-chip blocks of equal sizes, and that we have only one array.
In the first step of our approach, we determine a set of chains in
the DBG such that each chain consists of nodes that access the
same data block. Let us assume that the number of such chains
is t. If r ≥ t, that is, the number of on-chip blocks is larger
than the number of chains, we assign a private on-chip block
to each chain. Note that, with such an assignment, the con-
tents of an on-chip block are updated only for the initial load.
Therefore, the total cost of such an assignment is t. Consider
for example, the DBG depicted in Figure 5(a). We have five six
chains in this DBG, i.e., t = 6. Assuming that we have six on-
chip blocks (i.e., r = 6), we assign a private on-chip block per
chain. Consequently, the DBG can be easily scheduled with



only 6 (on-chip block) loads; i.e., each OB is reserved for a
data block. The difficult scenario occurs when r < t. In this
case, we still assign one on-chip block per chain. However,
an on-chip block is reassigned to another chain (temporarily
or permanently) during scheduling. More specifically, when
r < t, we need to consider two cases:
• When the first node of a chain is scheduled, all the remain-

ing nodes can also be scheduled. In other words, there are ei-
ther no any inter-chain data dependences, or the existing inter-
chain dependences are such that all the chains can be scheduled
one after another. Consider the DBG in Figure 5(b), which is
the same in Figure 5(a). If we only have 3 on-chip blocks (r
= 3), the different chains need to share on-chip blocks. In this
particular example, however, all the chains are independent of
each other. Consequently, we can schedule the chains one af-
ter another using only 1 on-chip block. In this case, the total
number of loads is 6. Even if we try to use all three on-chip
blocks, the total number of loads would not change.
• Due to inter-chain dependences, all the nodes in a given

chain cannot be scheduled one after another. In this case,
we use a greedy heuristic. More specifically, we start with a
chain and try to schedule all the nodes (in that chain) one after
another until it is not possible to proceed further due to depen-
dences. When this occurs, we select another node among the
schedulable ones, and schedule it using another on-chip block
if an unoccupied one is available. If not, we select an on-chip
block among the ones that are already occupied (by another
chain), and use it for the currently required block. While se-
lecting this victim on-chip block can be done using different
algorithms, in this paper we use a simple LRU-based one. That
is, we reassign the on-chip block that has not been touched for
the longest duration of time. This process is repeated until all
the nodes in the DBG are scheduled. Figure 5(c) illustrates
such a scenario with r = 2. The total number of on-chip block
loads is 6. In contrast, assuming that r is 1, we would need a
total of 12 on-chip block loads/updates.

This approach can also be extended to the multiple array
case. While it is conceivable that both the methods described
in Section E can be adapted to work for this case as well, our
current implementation uses only the first method, i.e., the one
tries each array in turn, and selects the best one to restructure
the entire computation (single array centric). Implementing the
global method and comparing it with the single array centric
method are in our future agenda as such an implementation is
more complex.

It should be noted that, the approach presented in this section
is very different from the one discussed in Section II. This is
because in the on-chip memory capacity problem our objective
is to determine the minimum number of on-chip blocks. There-
fore, during the scheduling process, we increment the number
of on-chip blocks when needed. In contrast, in the scheduling
problem addressed in this section, our objective is to sched-
ule the DBG with a fixed number of on-chip blocks (i.e., un-
der fixed capacity). Therefore, when we are short of on-chip
blocks, we need to vacate one that is currently in use to open
space for the new incoming block.

IV. CONCLUSION

We witness an unprecedented proliferation of embed-
ded/mobile applications. Most of the embedded environ-

OB1 OB2 OB3 OB4 OB5 OB6

OB2

OB1

OB1

OB2

OB1

OB1

OB2

OB1 OB2 OB3 OB1 OB2 OB3

(a) (b)

(c)

Fig. 5. Three different schedulings. The solid arrows denote data
dependences, while the dashed arrows indicate scheduling (execution) order.
OBi denotes the ith on-chip block. In (c), the nodes in the initial portion of
the schedule are marked with the associated on-chip block.

ments that execute these applications have severe power, per-
formance, and memory space constraints that need to be ac-
counted for. This paper presents an optimization framework
that maximizes data reuse to the greatest extent possible, by re-
structuring the application code based on data access patterns.
The proposed infrastructure can be used for (i) deciding the ca-
pacity for on-chip storage and (ii) effective use of the available
on-chip memory space.
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