
ASIP Approach for Implementation of H.264/AVC

Abstract - This paper presents an Application-Specific
Instruction Set Processor (ASIP) approach for implementation
of H.264/AVC. The proposed ASIP has special instructions for
intra prediction, deblocking filter, integer transform, etc. In
addition, the proposed ASIP has hardware accelerators for
inter prediction and entropy coding. Performance comparisons
show a significant improvement compared with existing DSPs.
The proposed hardware accelerators have small size and can
support real-time video processing. Moreover, the proposed
ASIP can handle various multimedia standards. The results
indicate that the ASIP approach is one of promising solutions
for H.264/AVC.

I. INTRODUCTION

With the rapid progress of semiconductor technology, the
market of ASIP is dramatically growing. Once algorithms
have been fixed, custom Application-Specific Integrated
Circuit (ASIC) chips have been implemented to reduce the
cost, size, and power consumption of systems. However,
custom ASIC solutions have been found inadequate to
upgrade standards since they should be redesigned. With the
rapid increase in clock speed it has become feasible to keep
the functionality entirely in a programmable DSP, greatly
improving time-to-market and allowing faster changes and
upgrades. However, a programmable DSP should solve the
disadvantages, such as cost, size, and power consumption.
ASIP can compromise advantages of custom ASIC chips and
general DSP chips [1]-[5]. In other words, ASIP chips adopt
high performance and low power of ASIC chips and
flexibility of DSP chips.

Multimedia signal processing technology has been
developed with the progress of semiconductor technology.
Technology related to multimedia signal processing has been
standardized as MPEG-2, MPEG-4, H.261, H.263, etc. The
Joint Video Team (JVT) announced H.264/AVC in Dec.
2003 [6]. The new video coding standard H.264/AVC can
provide twice as much as higher compression efficiency than
MPEG-4. However, it has about 2 times more hardware
complexity for a decoder, and about 10 times more hardware
complexity for an encoder than the MPEG-4 visual simple
profile codec [7]. Because of the hardware complexity, the
H.264/AVC codec is usually implemented with ASIC chips

or multiple processors, such as ARM and multiple
programmable DSPs.

In mobile communication, the implementation of
H.264/AVC needs high performance, low power
consumption and low cost. It also requires the flexible
system which can upgrade without replacing the system. The
ASIP approach can be suitable for these requirements. This
paper proposes the ASIP implementation of H.264/AVC.
Computation-intensive parts in H.264/AVC have been
implemented using hardwired accelerators and other parts
have been implemented using a programmable DSP.

This paper is organized as follows. Section II analyzes
H.264/AVC and describes existing DSP instructions to
implement multimedia standards. Section III proposes novel
instructions and their hardware architectures and introduces
hardware accelerators, and Section IV explains performance
comparisons. Finally, Section V contains concluding
remarks.

II. ANALYZING H.264/AVC AND EXISTING DSP
INSTRUCTIONS FOR VIDEO SIGNAL PROCESSING

A. Analyzing H.264/AVC

H.264/AVC has adopted new features to improve code
efficiency. The new features are as follows. H.264/AVC uses
several reference frames, variable block size, and a quarter
picture element in Motion Estimation (ME)/Motion
Compensation (MC). These features enable the encoder to
search for the best match for the current frame. However, the
memory access and hardware complexity are significantly
increased. The past standards should be transmitted the first
frame without compression. On the other hand, the
H.264/AVC encoder adopts intra prediction, which
eliminates the redundancy of intra frame.

The block based structure causes blocking artifacts.
H.264/AVC adopts the in-loop deblocking filter to eliminate
blocking artifacts. The Exponential Golomb Coding (EGC)
and Context Adaptive Variable Length Coding (CAVLC) are
also newly adopted features of the H.264/AVC baseline

 Sung Dae Kim, Jeong Hoo Lee, Chung Jin Hyun and Myung Hoon Sunwoo

School of Electrical and Computer Engineering, Ajou University
San 5, Wonchun-Dong, Yeungtong-Gu

Suwon, 443-749 Korea
Tel : 82-31-219-2390
Fax : 82-31-212-9531

e-mail : sunwoo@ajou.ac.kr

profile. EGC is variable length codes with a regular
construction [8]. CAVLC is the method used to encode
residual data, 4 x 4 blocks of transform coefficients [9]-[11].

Fig. 1 shows the operation complexity of the H.264/AVC
baseline profile [12]. As shown in Fig. 1, MC takes 53% and
VLC takes 18.20% of the operation complexity. Since these
features require heavy computational loads, the hardware
accelerator of each feature is required to implement the
H.264/AVC system. Therefore, the proposed ASIP employs
the hardware accelerators for these tasks, which can
efficiently perform real-time video processing.

Usage 53% 18.20% 0.10% 15.20% 13.50%

ME & MC VLC Loop Filter Integer Trans etc

Fig. 1. Complexity analysis of the H.264/AVC baseline profile

B. Existing DSP instructions for video signal processing

Existing DSPs support various instructions to execute
packed operations between two registers. These operations
are used for various video signal processing, such as DCT,
IDCT, ME/MC, etc. TMS320c6x of Texas Instruments
supports special instructions for multimedia signal
processing, such as SUBABS4, AVGx, etc. [13]. The
SUBABS4 instruction calculates absolute differences of four
pairs of the packed data. The AVG4 instruction calculates
averages of the packed data in two registers. After additions
of four packed data, four results are shifted a bit to the left
for division, and 0.5 is added to each result for rounding.
The TMS320c6x series also support the DOTPU4
instruction which calculates the dot product between four
sets of packed 8 bit values. Fig. 2 shows the operation flow
of the DOTPU4 instruction. The values in both src1 and src2
are treated as the unsigned 8 bit packed data. The 32 bit
unsigned result is written into dst. Four clock cycles are
required to execute this instruction.

DCT has a regular computation flow, while ME/MC and
entropy coding have control based computations.
TMS320c55x has a coprocessor for DCT computations, and
it requires 2.8 MIPS for DCT computations to achieve the
processing speed of 30 fps for the QCIF format. TMS320c6x
having eight function units requires 1.1 MIPS to implement
DCT of 30 QCIF fps video data using DSP instructions [14].

In entropy coding, the code word table is referred
according to the number of successive zeros in the input bit
stream. Moreover, packed compare operations are required.
To execute these operations, TMS320c64x supports the
LMBD and CMPEQ/GT/LT instructions, and the Blackfin
DSP of Analog Device supports the ONES instruction [14]
[15]. The LMBD instruction counts the number of zeros in a
register. The CMPEQ/GT/LT instructions compare pairs of 8
bits or 16 bit packed data.

DOTPU4

src1

src2

dst

a0 a1 a2 a3

b0 b1 b2 b3

(a0*b0) + (a1*b1) + (a2*b2) + (a3*a4)

Fig. 2. DOTPU4 instruction in TMS320c64x

III. NOVEL INSTRUCTIONS AND HARDWARE
ACCELERATORS

This section presents an overall architecture, new
instructions and hardware accelerators for the H.264/AVC
codec.

A. Overall architecture of the proposed ASIP

Fig. 3 shows the overall architecture of the proposed ASIP.
The proposed ASIP consists of two parts, a programmable
DSP part and a hardware accelerator part. The DSP part
has a program control unit (PCU), a data processing unit
(DPU), and an address unit (AU). The hardware accelerator
part has an Inter Prediction Accelerator (IPA) and an
Entropy Coding Accelerator (ECA). IPA consists of an ME
accelerator and an MC accelerator. ECA has a CAVLC
accelerator and an EGC accelerator. The hardware
accelerators can operate in parallel with the DSP units.

AUPCU

Program Counter

Instruction Register

FSM

Stack

Interrupt Controller

Program Memory

Data Memory 1

Data Memory 2

DPU

Program Bus (16 Bit)

Address Buses (16 Bit)
Data Buses (32 Bit)

AGU

MAC MAC ALU ALU Shifter

Register File

AGU

16 Bit Address Registers

Prefetch Logic

IPA

ME Hardware
Accelerator

MC Hardware
Accelerator

ECA

CAVLC
Accelerator

EGC
Accelerator

Fig. 3. Proposed ASIP architecture

PCU consists of a prefetch logic, a program counter, an
instruction register, an FSM (Finite State Machine), a stack,
and an interrupt controller. DPU consists of two Multiply

and Accumulate (MAC) units for two 16-bit by 16-bit
multiplications and accumulations, two Arithmetic Logic
units (ALU), a barrel shifter and a register file. AU has two
address generation units (AGU) for load and store. Each of
the internal word lengths is 32 bit. The instruction pipeline
consists of six stages, that is, pre-fetch, fetch, decode,
execute1, execute2, and execute3. The proposed ASIP has
35 arithmetic instructions, 11 logical and shift instructions, 6
program control instructions, 4 move instructions and 16
special instructions including instructions for H.264/AVC,
which will be discussed next.

B. Proposed instructions for in-loop deblocking filter and
intra prediction

The in-loop deblocking filter is used to eliminate blocking
artifacts as mentioned in Section II. Fig. 4 shows 8 pixels of
neighboring 4 x 4 blocks. The 8 pixel values are decided
according to the boundary strength (bS), which represents
the difference of two neighboring blocks, using p0 ~ p3 and
q0 ~ q3. The equations calculating pixel values are defined
in [6]. The equations can be classified into five categories as
follows.

012 ppp (1)
02122 ppp (2)
012332 pppp (3)

012 pp (4)
1)100(qp (5)

p0 ~ p3 are the packed data in a register, and q0 ~ q3 are
also the packed data in another register. Then, equation (1)
shows additions of three packed data in one register.
Equation (2) represents one bit shift left operations of two
data followed by additions of three packed data in the same
register. Equation (3) shows one bit shift left operation of
data and a multiplication operation of data followed by
additions of four packed data. Equation (4) shows one bit
shift left operation of the packed data followed by an
addition of two packed data. Equation (5) shows an addition
of the most significant byte (MSB) of one register and the
least significant byte (LSB) of the other register followed by
one bit shift operation.

Even though these computations are packed operations,
these operations do not occur between two registers as
shown in Fig. 4, but they occur between the packed data
within the same register.

q3 q2 q1 q0 p0 p1 p2 p3

boundary

Fig. 4. Block boundary

As mentioned in Section II, the intra prediction eliminates
the redundancy of intra frame and inter frame, which has
few redundancies between two frames. Fig. 5 shows an
identification of samples for 4 x 4 intra prediction. a ~ p in
Fig. 5 are predicted using A ~ Q according to the equations
defined in [6] and some of equations are represented in
equation (6), where A, B, and C represent pixel values, and a
pixel value is represented using 8 bits. For a 32 bit
architecture, A, B, C and D are stored in one register since a
~ p and A ~ Q in Fig. 5 are 8 bit values.

1)12(

1)1(

2)22(

BA

BA

CBA
 (6)

a b c d

e f g h

i j k l

m n o p

A B C D E F G H

I

J

K

L

Q

M

N

O

P

Fig. 5. Identification of samples for 4 x 4 intra prediction

As described in Section II, existing DSPs support only
packed operations between two registers. A large number of
instruction cycles is required to implement the in-loop
deblocking filter and intra prediction with the existing
packed instructions that execute packed operations between
two registers. Hence, H.264/AVC may require a new
instruction to execute packed operations within a register.

Fig. 6 shows the proposed three horizontal addition
(hadd) instructions. Three hadd instructions are as follows.
The proposed instruction in Fig. 6(a) packs a 32 bit register
into four 8 bit data, adds four packed data, and then saturates
the result to 8 bit data. Fig. 6(b) is similar with Fig. 6(a).
However, the packed data, which is selected by a mask, is
one bit shifted to the left. In Fig. 6(c), mask1 selects the data
to be added, and mask2 selects the data to be shifted. Intra
prediction and equations (1), (2), (4), (5) of the in-loop
deblocking filter can be implemented using the proposed
instructions. Equation (3) can be implemented using the
packed multiplication instruction, such as the DOTPU4
instruction of TMS320c6x or the PMUL instruction of the
proposed ASIP. Equations (1), (2), (4), (5) can also be
implemented using the existing packed multiplication
instructions. However, the DOTPU4 instruction in
TMS320c6x requires four clock cycles since a multiplication
should be executed.

dst = hadd(src)
dst = hadd(src:mask)
dst = hadd(src:mask1.mask2)

a0 a1 a2 a3

dst

src

(a) dst = hadd(src)

a0 a1 a2 a3

dst

a0 << 1 a2 << 1

mask 1 0 1 0

src

(b) dst = hadd(src:mask)

a0 a1 a2 a3

dst

a3 << 1

mask2 1 0 0 1
mask1 0 1 1 1

src

(c) dst = hadd(src:mask1.mask2)

Fig. 6. Proposed instructions for packed additions within one register

C. Proposed instructions for integer transform

The 4 x 4 integer transform can be operated using the
forward transform as shown in Fig. 7(a). The forward
transform is executed with four rows of four packed data.
Then, the forward transform is performed again with four
columns of four packed data to get the results of the 4 x 4
integer transform. Fig. 7(b) represents an inverse transform.
Similarly, the 4 x 4 inverse integer transform can be
executed using the operations in Fig. 7(b).

This paper proposes novel instructions to efficiently
execute the forward/inverse 4 x 4 integer transform as
follows.

dst = fTRAN (src)
dst = iTRAN (src).

Each instruction performs the operations of Fig. 7(a) and
(b). These instructions read a 32 bit general register in one
register file, which consists of four 32 bit registers, and
execute the operation flow in Fig. 7. Then, the results are
written in another register file consisting of four 32 bit
registers. These instructions can be implemented using the
adders and eight additional 2 x 1 multiplexers.

-2

2

x(0)

x(1)

x(2)

x(3)

X(0)

X(2)

X(1)

X(3)

-

-

-

(a) 1-D forward transform

1/2

1/2

-

-

-

x(0)

x(1)

x(2)

x(3)

X(0)

X(2)

X(1)

X(3)

(b) 1-D inverse transform

Fig. 7. Operation flow of 4 x 4 integer transform

D. Hardware architecture for proposed instructions

Fig. 8 shows the ALU for the proposed instructions.
Switching Logic 1, 2, and 3 which only consist of eight 2 x 1
multiplexers and two 1 x 2 de-multiplexers, are only the
additional hardware for the proposed instructions. One ALU
can perform one horizontal addition instruction and two
ALUs can execute fTRAN and iTRAN instructions.

8bit adder 8bit adder 8bit adder 8bit adder

Switching Logic 1

Switching
Logic 2

Switching
Logic 3

Fig. 8. ALU for the proposed instructions

E. Proposed hardware accelerator for inter prediction

As described in Section II, ME/MC should frequently
access memory. From a performance point of view and a
low power point of view, it is a serious problem. Thus, the
sliding window method is used to alleviate this problem [16].
Fig. 9 illustrates the proposed ME operation flow.

4 x 4 Current Block

Reference Picture

SAD operation

(a) ME operation in the first cycle

4 x 4 Current Block

Reference Picture

SAD operation

(b) ME operation in the second cycle

Fig. 9. Operation flow of the proposed motion estimation

The proposed ME architecture supports the [+16, -15]
search window. In the [+16, -15] search window, 32 4 x 4
blocks exist in a row. In the first cycle, four SADs are
simultaneously calculated as shown in Fig. 9(a). Next, the
search window shifts left and each operation unit repeats the
SAD calculation as shown in Fig. 9(b). SADs of upper four
pixels of every block in a row can be obtained after 8 cycles
and 32 SADs are stored in buffers. SADs of the second
upper are calculated in the same way, and 32 SADs are
accumulated with the 32 SADs in buffers, respectively. Then,
after 32 cycles, 32 SADs of 4 x 4 blocks can be obtained.

Fig. 10 shows the ME computation flows of existing
architectures and the proposed architecture. In Fig. 10(a), the
pixel values in the dotted block should be fetched again to
calculate SAD of the dotted block after SADs of two
adjacent blocks (block 1 and block 2) are obtained. However,
if a 4 x 4 block is shifted pixel by pixel as shown in Fig.
10(b), the data in the dotted block in Fig. 10(a) can be
reused.

block 1 block 2 pixel by pixel shift

(a) Existing computation flow (b) Proposed computation flow

Fig. 10. ME computation flow

F. Proposed hardware accelerator for entropy coding

The encoder of CAVLC finds the value of the codeword
and the length of the codeword in memory according to the
data. Therefore, the efficient memory address generator is
needed. The decoder of CAVLC is usually implemented with
a lookup table. In the decoding process, the level of the
nonzero coefficient decoding is an iterative method, which
can be implemented without a lookup table.

A generic decoding process for the level of the nonzero
coefficient is as follows. First, the decoder obtains the
number of successive ones in the input bit stream. Next, the
decoder calculates the current symbol length and decodes
the current symbol. Finally, the decoder updates the table
information used for next symbol decoding. The decoder
cannot decode the next symbol until the table information is
decided. The generic level of the nonzero coefficient
decoding process is shown in Fig. 11(a). Table updating is
decided whether the current symbol value is more than the
threshold value. Since each table’s threshold value has a
regular form, we can update the table before current symbol
decoding. Hence, the Level Decode stage in the current
symbol and the First 1 detect stage in the next symbol can be
executed in parallel. Fig. 11(b) shows the proposed level of
the nonzero coefficient decoding process. As you can see,
we can reduce the computation cycles for level decoding.

First 1 detect Level Decode Table Update

First 1 detect Level Decode Table Update

Pipeline Stage

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

(a) Generic level of the nonzero coefficient decoding flow

Level Decode

Pre Table
Update

First 1 detect

Level Decode

Pre Table
Update

First 1 detect

Pipeline Stage

Stage 1 Stage 2 Stage 3

(b) Proposed level of the nonzero coefficient decoding flow

Fig. 11. Comparison of flows for the level of the nonzero coefficient
decoding

If a ROM based look up table is used to implement the
runs of zero decoder, the area cost of the table will be
expensive. Hence, the ZTEBA (Zero-left Table Elimination
by Arithmetic) method was introduced by Chang [10]. In our
design, we improve the ZTEBA method. We eliminate the
SUB unit and the Saturation unit used in [10] by adding
some multiplexers and wires. Fig. 12 shows the block
diagram for the proposed runs of zero decoder.

Controller
Input

Zerosleft

First 1
detector

Inverter

Adder

Run_before

Code length

Fig. 12. Proposed runs of zero decoder block diagram

IV. PERFORMANCE COMPARISONS

H.264/AVC can be implemented using ASIP and
hardware accelerators. Several core blocks for generating an
intra predictor and an in-loop deblocking filter are coded
using the proposed application specific instructions and the
same blocks are also coded using the existing instructions of
TMS320c64x. The proposed architecture can reduce the
number of clock cycles for several core blocks for
generating an intra predictor about 40% than TMS320c6x.
Moreover, the total number of clock cycles to execute the
in-loop deblocking filter can be reduced about 20 ~ 25%
than TMS320c6x. TMS320C64x supports the DOTPU4
instruction that executes packed multiplications of two
registers and adds four results in four cycles. The
computation cycles of TMS320c64x can be reduced, since it
supports the DOTPU4 instruction. Hence, other DSPs,
which do not support the special instruction, require more
instructions.

The fTRAN and iTRAN instructions can be executed in
one cycle. Hence, 12 clock cycles are required to execute the
4 x 4 integer transform using the proposed instructions and
about 1,140,480 instructions for 30 frames ((24 cycles x 16
blocks) x 99 macro blocks x 30 frame) are required for
QCIF images, since a QCIF image has 99 16 x 16 macro
blocks. Table I shows the number of the required
instructions for 30 frames on existing DSPs [14] [17] and the
proposed ASIP. The proposed ASIP having the special
instructions can be more efficient than the implementation
using instructions of TMS320c55x (SW) and using a
coprocessor of TMS320c55x (HW) for the integer transform.
TMS320c64x has a VLIW architecture and has eight
function units while the proposed ASIP architecture requires
only two 32 bit adders.

Table I. Performance comparisons of the 4 x 4 integer transform

TMS320c55x
(SW) [17]

TMS320c55x
(HW) [17]

TMS320c64x
[14]

Proposed
ASIP

MIPS 12.8 2.8 1.1 1.1

The proposed hardware accelerators have been modeled
by Verilog HDL and synthesized using the Samsung SEC
0.18 standard cell library by the Synopsys Design
Compiler. The proposed ME accelerator can significantly
reduce the gate count and the required computation cycles
compared with the Samsung architecture [18] and can
support much larger search range than the Amphion
architecture [19]. Table II shows the comparisons among
Samsung, Amphion and our architecture. The Samsung
architecture has 64 Processing Elements (PEs) and can
support much larger search range than the other architectures.
However, it requires much larger computation cycles than
the other architectures. The total gate count and the required
computation cycles of Amphion are comparable with our
architecture. However, the search range of Amphion is much
smaller than our architecture.

The proposed hardware accelerator for CAVLC takes
average 368 clock cycles for a macro block. In order to
achieve the real-time processing requirement for H.264/AVC
decoding with HD1080i format, the proposed design should
run over 90 MHz. The proposed design can support
real-time processing since the maximum operating
frequency of the proposed design is about 130 MHz.

Table II. Performance comparisons of the hardware ME architectures

Clock cycles
/ frame

Search range
Supported block

size
Gate

counts

Samsung [18] 12,103,740
H :[-64, +63]
V :[-32, +31]

Variable block
support

64 PEs

Amphion [19] 406,077 [-8, +7]
Variable block

support
61K

Proposed
architecture

456,192 [-16, +15]
Variable block

support
76K

Fig. 13 shows computation times of DSP, ASIC, and ASIP
implementations according to the profiling results. Fig. 13(a)
shows the computation times of the DSP implementation. If
we assume that a single core is used to implement the
H.264/AVC algorithm, DSP serially executes all of the
algorithm blocks.

Fig. 13. Computation times of various implementations

Fig. 13(b) shows the computation times of the ASIC
implementation. Each block is executed using the dedicated
hardware. However, all of the blocks cannot be executed in
parallel, since the ME block needs the reconstructed results
of the previous frame and the transform block uses ME
results. Fig. 13(c) shows the ASIP having accelerators
implementation. ME/MC and entropy coding are
implemented using the accelerators. The ASIP having
accelerators implementation requires more computation
times than the ASIC implementation. However, it requires
much less computation times than DSP and can support
various profiles and standards.

V. Conclusions

This paper has presented efficient instructions to
implement the in-loop deblocking filter, intra prediction and
integer transform of H.264/AVC. This paper has proposed
the hardware accelerators for ME/MC and entropy coding.
Three hadd instructions can execute various packed
additions within a register. Performance comparisons have
shown that the number of clock cycles can be reduced about
20 ~ 25% compared with the existing DSP for the in-loop
deblocking filter. The fTRAN and iTRAN instructions can
perform the 4 x 4 integer transform in 12 clock cycles. The
integer transform can be implemented using much smaller
hardware size compared with existing DSPs. The proposed
hardware accelerators can efficiently perform ME/MC and
entropy coding of H.264/AVC and require minimal hardware.
Since the proposed ASIP having the hardware accelerators
can concurrently operate, it can handle real-time video
processing and can support various multimedia algorithms.

ACKNOWLEDGEMENTS

This work was supported in part by the NRL (National
Research laboratory) program of MOST (Ministry of
Science & Technology), in part by the ITSOC program of
MIC (Ministry of Information and Communication), and in
part by IDEC.

REFERENCES

[1] Jae S. Lee, Young S. Jeon, and Myung H. Sunwoo, “Design of new DSP
instructions and their hardware architecture for high-speed FFT,” in Proc.
IEEE Workshop on Signal Processing Syst., Sept. 2001, pp. 80-90,.
[2] J. Glossner, J. Moreno, M. Moudgill, J. Derby, E. Hokenek, D. Meltzer,
U. Shavadron, and M. Ware, “Trends in compilable DSP architecture,” in
Proc. IEEE Workshop on Signal Processing Syst., 2000, pp. 181-199.
[3] Jeong H. Lee, Jong H. Moon, Kyung L. Heo, Myung H. Sunwoo, Sung
K. Oh, and In H. Kim, “Implementation of Application Specific DSP for
OFDM Systems,” in Proc, IEEE IEEE Int. Symp. Circuit Syst., May 2004.
[4] Suk Hyun Yoon, Jong Ha Moon, and Myung Hoon Sunwoo, “Efficient
DSP Architecture for High-Quality Audio Algorithms,” in Proc. IEEE Int.
Symp. Circuits Syst., May 2005
[5] Kim, S.D., Lee, J.H, Yang, J.M., Sunwoo, M.H., and Oh, S.K., “Novel
Instructions and Their Hardware Architecture for Video Signal Processing,”
in Proc. IEEE Int. Symp. Circuits Syst., May 2005
[6] Draft ITU-T Recommendation and Final Draft International Standard of
Joint Video Specification (ITU-T Rec. H.264/ISO/IEC 14496-10 (E) AVC).
July, 2004.

[7] J. Ostermann, T. Wedi, et al.,“Video coding with H.264/AVC: tools,
performance, and complexity,” IEEE Circuits and Systems Magazine, vol. 4,
pp. 7-28, 2004.
[8] Wu Di, Gao Wen, Hu Mingzeng and Ji Zhenzhou, “An Exp-Golomb
encoder and decoder architecture for JVT/AVS,” in Proc. 5th International
Conference on ASIC, 21-24 Oct. 2003 vol. 2, pp. 910-913.
[9] Gisle Bjontcgaard and Karl Lillcvold, “Context-adaptive VLC (CAVLC)
coding of coefficients,” Doc. JVT-028, JVT of IS0/IEC MPEG & ITU-T
VCEG 3rd Meeting, Virginia, USA, May. 2002.
[10] Hsiu-Cheng Chang, Chien-Chang Lin, and Jiun-In Guo, “A Novel
Low-Cost High-Performance VLSI Architecture for MPEG-4 AVC/H.264
CAVLC Decoding,” in Proc. IEEE Int. Symp. Circuits Syst., May 2005.
[11] Yeong-Kang Lai, Chih-Chung Chou, and Yu-Chieh Chung, “A simple
and cost effective video encoder with memory-reducing CAVLC,” in Proc.
IEEE Int. Symp. Circuits Syst., May 2005.
[12] Woong IL Choi, Byeungwoo Jeon and Jechang Jeong, “Fast motion
estimation with modified diamond search for variable motion block sizes,”
in Proc. International Conference on Image Processing, Sept. 2003, vol. 3,
pp. 14-17.
[13] TMS320C6000 CPU and Instruction Set Reference Guide, Texas
Instruments Inc., Dallas, TX, 2000.
[14] TMS320C64x Image/Video Processing Library, Texas Instruments Inc.,
Dallas, TX, 2003.
[15] BlackfinTM DSP Instruction Set Reference, Analog Device Inc.,
Norwood, Mass. 2002.
[16] Thomas Wiegand, Xiaozheng Zhang, and Bernd Girod, “Long-Term
Memory Motion-Compensated Prediction,” Trans. Circuit Syst. Video
Technol., vol. 9, no. 1, pp. 70-84, Feb. 1999.
[17] TMS320C55x Hardware Extensions for Image/Video Applications
Programmer’s Reference, Texas Instruments Inc., Dallas, TX, 2002
[18] Jae H. Lee and Nam S. Lee, “Variable Block Size Motion Estimation
Algorithm and Its Hardware Architecture for H.264/AVC,” in Proc. IEEE
Int. Symp. Circuits Syst., May 2004.
[19] Swee Yeow Yap and john V. McCanny, “A VLSI Architecture for
Variable Block Size Video Motion Estimation,” Trans. Circuit Syst. Video
Technol., vol. 51, no. 7, July 2004.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

