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Abstract - We propose a framework to unify the process of 
false paths and multi-cycle paths in static timing analysis (STA).    
We use subgraphs attached with timing constraints to represent 
false paths and multi-cycle paths.  The complexity of the 
subgraph representation is reduced to improve efficiency.  
Finally, we present theorems to show that the unified framework 
produces correct timings.  The experimental results 
demonstrate that the minimization is effective for both artificial 
and industry test cases. 
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1. Introduction
Static timing analysis (STA) is widely used in performance 

driven optimization programs.  The overall procedure of STA 
performs a forward propagation to derive the arrival times, 
and a backward propagation to derive the required arrival 
times and slacks at all the points in the circuits [1].  These 
slacks are useful information for optimization programs. 

To derive accurate slacks, STA has to deal with false paths 
and multi-cycle paths.  A false path is a path not logically 
realizable [2].  False path timings must be eliminated from 
timing analysis.  A multi-cycle path is a path that signals 
propagate longer than one clock cycle [8].  The accurate 
slacks of multi-cycle paths should be computed using 
multi-cycle arrival times.  False paths and multi-cycle paths 
have to be dealt with efficiently because timing analysis is 
invoked heavily in the inner loop of optimization programs. 

Previous published works in STA focused on false paths [2]

[3] [4].  K. P Belkhale et al. [2] used tags to distinguish and 
remove false path timings.  Each tag contains a set of false 
subgraph labels.  E. Goldberg et al. [3] proposed to reduce the 
number of timings with tags according to the timing values.  
Because the timing values may change during the circuit 
optimization, the reduction is performed together with timing 
analysis, which induces runtime penalty in the optimization 
process.  D. Blaauw et al. [4] removed the specified false 
subgraphs and produced a new timing graph using node 
splitting and edge removal.  The optimal set of nodes for 
splitting is identified.  We are unaware of reports that can 
unify the process of false paths and multi-cycle paths 
efficiently. 

In this paper, we propose a framework to unify the process 
of false paths and multi-cycle paths with exceptional rules, 
and minimize the number of rule sets to improve the 
efficiency.  The contributions of the paper are as follows. 

We represent each exceptional rule with a subgraph
attached with the setup time and hold time.  The rules cover 
false paths and multi-cycle paths.  For the false subgraph, the 
setup time and hold time are unbounded, i.e., +∞ and -∞,
respectively.  

We use rule sets to group a set of rules when the timing 

information can be shared at a particular vertex.  We allow 
priority for the rules.  When there is a conflict among the 
rules in a rule set, the rule with the highest priority dominates. 

We devise time shifting to align the hold and setup times 
of the rules.  By doing so, we can merge the distinguished 
timings, and collect different rule sets into one rule collection.
For example, when a 2-cycle path and a 3-cycle path converge 
at a vertex, we can shift the arrival time of the 2-cycle path by 
one cycle, and merge the timing information. 

We adopt the biclique covering approach in [9] to 
minimize the number of rule collections at every vertex.  We 
present theorems to guarantee that based on the minimized 
tags timing analysis produces correct slacks.   

The cost of the rule collection minimization is only 
incurred at the initializing stage, thus not contributing to the 
CPU time of the optimization program. 

We test our approach on both artificial and industry test 
cases.  For four industry test cases, the number of rule 
collections is reduced by 84.6% and the runtime of STA 
decreases by 38.13% on the average.  The runtime of 
minimization is 383 seconds for the test case containing 
533,224 nets.  

The remainder of this paper is organized as follows. 
Section 2 defines terminologies.  In Sections 3 and 4, we 
propose the unified framework and the minimization 
algorithm.  The experimental results are presented in Section 
5.  In the last section, we give the conclusions.

2. Terminology
Timing analysis is performed on a timing graph, which is a 

directed acyclic graph G = {V, E}, where V is a set of vertices 
and E is a set of edges.  Each edge (u, v) is an ordered pair 
from vertex u to vertex v.  The input degree of vertex v, d-(v), 
is the number of edges ending at v.  The output degree of v,
d+(v), is the number of edges starting at v.  The begin set B = 
{v |v ∈ V, d-(v) = 0} is the set of primary input vertices.  The 
destination set D = {v |v ∈ V, d+(v) = 0} is the set of primary 
output vertices.   

A path p in graph G is a sequence of vertices and edges.    
We can represent path p by only the edges in the path [5]. Each 
vertex v separates path p into a head and a tail.  Since graph 
G is directed acyclic, all the paths in G are simple.  If a path 
starts from a vertex in the begin set B, it is a prefix path p-.  If 
a path ends at a vertex in the destination set D, it is a suffix 
path p+.  A complete path is both a prefix and a suffix path, 
which starts from a vertex in the begin set B, and ends at a 
vertex in the destination set D.  The prefix cone P- (v) of a 
vertex v contains all the prefix paths ending at v.  The suffix 
cone P+ (v) of v contains all the suffix paths starting at v.

In Figure 1, the begin set of graph G contains vertices 1 
and 2, and the end set contains vertices 8 and 9.  Prefix cone 
of vertex 5 has two prefix paths {(1, 3), (3, 5)} and {(2, 4), (4, 



5)}.  Vertex 5 separates complete path {(1, 3), (3, 5), (5, 7), 
(7, 9)} into head {(1, 3), (3, 5)} and tail {(5, 7), (7, 9)}. 
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2

1 3

4 7

8

9

3. Unified Framework Processing False Paths and 
Multi-cycle Paths

We represent false paths and multi-cycle paths as 
exceptional rules, and create rule sets to unify the process of 
false paths and multi-cycle paths.  We follow the procedure 
in [2] to compute the rule sets, except that both false and 
multi-cycle path rules are included in the rule sets.  By doing 
so, we can remove false path arrival times and compute 
correct slacks for multi-cycle paths according to multi-cycle 
arrival times. 
3.1 General Rule and Exceptional Rules

The general rule on graph G is that the complete path p in 
G satisfies the hold and setup time [h, s], i.e., h ≤delay (p) ≤s.

An exceptional rule r describes a false or multi-cycle 
subgraph, Gr = {Vr, Er}, a pair of hold and setup time [hr, sr], 
and a priority pr.

For the multi-cycle subgraph, [hr, sr] is the multi-cycle 
arrival time, and for the false subgraph, the hold time and 
setup time are unbounded, i.e., -∞ and +∞, respectively.  

Subgraph Gr describes a set of false paths or multi-cycle 
paths governed by rule r.  The begin set of Gr, denoted as Br,
is a set of vertices which have no input edges in Er.1  The 
destination set of Gr, denoted as Dr, is a set of vertices which 
have no output edges in Er.  A prefix path pr

- in Gr starts from 
a vertex in Br, and a suffix path pr

+ in Gr ends at a vertex in Dr.
The complete path pr in Gr is both a prefix and a suffix path in 
Gr.  A path p is a false path or multi-cycle path governed by 
rule r if the intersection of path p and Er is a complete path in 
subgraph Gr.  All the paths governed by rule r are 
constrained by an inequality hr ≤delay (p) ≤sr.

If a path is governed by various rules, the rule with the 
highest priority pr supersedes others. 

Figure 2 contains two rules, false subgraph rule 0 and 
multi-cycle subgraph rule 1.  Complete path {(1, 3), (3, 5), (5, 
6), (6, 8)} is a false path because it contains complete path {(3, 
5), (5, 6)} in subgraph G0.  Another complete path {(2, 4), (4, 
5), (5, 7), (7, 9)} is a 2-cycle path because it belongs to the 
subgraph G1.  Complete path {(1, 3), (3, 5), (5, 7), (7, 9)} 
belongs to both G0 and G1.  Because the priority of rule 0, i.e., 
p0 = 2, is higher than the priority of rule 1, i.e., p1 = 1, the 
complete path is a false path. 

When multiple rules are specified, we map the rules on 
graph G to formulate rule sets at every vertex v and edge (u,
v): 

Rule set F (v) = {r| v ∈Br} contains rules starting from v;
Rule set T (v) = {r| v ∈Dr} contains rules ending at v;
Rule set I (u, v) = {r| (u, v)∈ Er} contains rules covering 

edge (u, v). 
For example rule set F (3) of vertex 3 contains rule 0.  

Rule set T (9) of vertex 9 contains both rule 0 and rule 1. Rule 
set I (5, 7) of edge (5, 7) contains rule 0 and rule 1. 

1 Since a multi-cycle path is between a pair of flip flops, the vertices 
in the begin set and end set of a multi-cycle path rule are primary 
input and output vertices, respectively.  

rule 0: G0, [h0, s0] = [-∞, +∞], p0 = 2

Figure 2. Rules. 
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3.2 Rule Set Computation
We compute rule sets for prefix paths and use prefix rule 

sets to distinguished arrival times. 
Definition 3.1: Given a prefix path p-, the rule set of the 

prefix path p- is R(p-) = {r| p- ∩ Er is a prefix path in Gr and 
the tail of p-}.  Given a suffix path p+, the rule set of the 
suffix path p+ is R(p+) = {r| p+ ∩ Er is a suffix path in Gr) and 
the head of p+}. 

Figure 3. Rule sets. 
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Conceptually, the prefix or suffix rule set indicates 
whether the prefix or suffix path belongs to the paths 
governed by a rule.  In Figure 3, the rule set of prefix path p-

1

= {(1, 3), (3, 4)} contains rule 0 because p-
1 is the prefix path 

of {(1, 3), (3, 4), (4, 6)}, which is governed by rule 0.  
Another prefix path p-

2 = {(1, 3), (3, 4), (4, 5)} exits from G0

at vertex 4, which is not an ending vertex of rule 0.  
Therefore, rule set R(p-

2) does not contain rule 0, which means 
prefix path p-

2 does not belong to the path of rule 0. 
The prefix rule sets and the arrival times are computed as 

follows. 2

Rule Set Computation (v) 
I. If vertex v is a primary input  

If F(v)∩T(v) does not contain false subgraph rule, produce a 
rule set R = F(v); 

II. else  
For each edge (u, v) 
For each rule set R at vertex u 
1. R' = (R∩ I(u,v)) ∪F(v); 
2. If R'∩T(v) does not contain false subgraph rule, 

arrival_t(v,R')=max(arrival_t(v,R'),arrival_t(u,R) 
+delay(u,v));

In step I, if F(v)∩T(v) contains false subgraph rules, all the 
paths through vertex v are false paths.  Therefore, we 
eliminate the arrival times of these false paths by producing 
no rule set.  In step II.1, the intersection R∩ I(u,v) means that 
only rules containing edge (u, v) remain in the rule set.  The 
union with rule set F(v) means that we include rules starting 
from v in the rule set.  In step II.2, if the intersection R'∩T(v)
contains false path rules, we eliminate false path arrival times 
by producing no rule set.  Figure 4 illustrates the rule set 
computation, we compute rule set {0, 1} at vertex 2 by 
equation ({1} ∩ I(1, 2)) ∪F(2), where {1} is the rule set at 
vertex 1, I(1, 2) = {1} is the rule set of edge (1, 2), and F(2) = 
{0} is the starting rule set of vertex 2.  At vertex 8, rule set {0, 
1} is deleted because the intersection of rule set {0, 1} and 
ending rule set T(8) = {0} contains false subgraph rule 0. 

We calculate the required arrival time and slack for each 
rule set R by a backward sweeping.  If the arrival time of R is 

2 We only compute the maximum arrival times.  The minimum 
arrival times can be computed similarly using min in stead of max 
operation. 



forward propagated to rule set R', the required arrival time of 
R' is backward propagated to R.  For example in Figure 4, the 
required arrival time for rule set {0, 1} at vertex 4, req(4, {0, 
1}), is backward propagated from required arrival times req(7, 
{0, 1}) at vertex 7 and req(6, ∅) at vertex 6. 

Figure 4. The rule set computation in a forward propagation.
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We show that the unified framework based on rule sets 
produces correct slacks.

Definition 3.2: A prefix rule set R covers a prefix path p-,
if the arrival time labeled by R is the maximum arrival times 
of a set of prefix paths including p-.

For example at vertex 7 in Figure 4, prefix paths {(1, 2), (2, 
4), (4, 7)}, {(3, 4), (4, 7)} and {(5, 7)} are covered by rule sets 
{0, 1}, {1}, and ∅, respectively. 

Lemma 3.1: At each vertex v, the prefix rule sets produced 
by forward Rule Set Computation cover all the prefix paths in 
prefix cone P- (v), and the suffix rule sets produced by 
backward Rule Set Computation cover all the suffix paths in 
suffix cone P+ (v). 

Based on Lemma 3.1, we have Theorem 3.1 as follows. 
Theorem 3.1: The slack computation based on prefix rule 

sets produces correct slacks at every vertex. 

4. Rule Collection Minimization
The minimization follows the biclique covering approach 

in [9], which minimized the number of rule sets for false paths.  
In order to include multi-cycle paths, we devise time shifting 
to align different hold and setup times, and collects rule sets 
into rule collections.  In this section, we first define the rule 
collection.  Then, we use examples to show basic ideas of the 
biclique covering approach and time shifting.  Finally, we 
propose our minimization algorithm and show that the 
produced slacks are correct. 

Definition 4.1: A rule collection at vertex v is a set of rule 
sets of prefix paths which ends at v, i.e. ℜ(v) ⊆ {R(p-)| p- ∈ P-

(v),}, where P- (v) is the prefix cone at v.
Although the rule sets in a rule collection may contain 

rules with different hold and setup times, we use time shifting
to align, which is introduced 4.2.3. 
4.1 Motivation 

We use two examples to show that the arrival times 
distinguished by different rule sets can be merged; thus the 
rule sets can be collected. 

Example 1: The paths of three false subgraphs converge at 
vertex 5, and then diverge at vertex 6.  The rule set 
computation produces four rule sets at vertex 5 and 6.  
According to the rule set propagation relations in Figure 5 (b), 

we find that the arrival times a(5, {0}) and a(5, {1}) are both 
propagated through suffix paths {(5, 6), (6, 9)} and {(5, 6), (6, 
10)}.  Therefore, we can merge the arrival times and collect 
rule sets {0} and {1} into one rule collection {{0}, {1}}.  
Similarly, we can merge other arrival times and produce rule 
collections.  As a result, three arrival times distinguished by 
rule collections are enough to cover all the paths through 
vertex 5 as shown in Figure 5 (c). 
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Figure 5. Cover complete paths with fewer rule sets. 

(c) Three rule sets are enough to 
cover the paths through vertex 5. 
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Example 2: A 2-cycle path {(1, 3), (3, 4)} with hold and 
setup time [1, 2], and a 3-cycle path {(2, 3), (3, 4)} with hold 
and setup time [2, 3] converge at vertex 3.  Because the hold 
and setup times are different, the slack of these paths should 
be computed separately at vertex 4.  Therefore, at vertex 3, 
we have to distinguish the arrival times by rule sets {0} and 
{1}.  However, if we shift the arrival time of prefix path {(1, 
3)} forward by 1 cycle, we can merge two arrival times and 
use hold and setup time [2, 3] to compute the slack for both 
paths.  As a result, we can collect two rule sets into one rule 
collection. 

Figure 6. Time shifting: (a) 2-cycle and 3-cycle paths have hold and 
setup times [1, 2] and [2, 3], respectively; (b) Shift arrival time of 

path {(1, 3), (3, 4)} to align the hold and setup times. 
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The examples indicate that: 1) the rule set minimization 
requires information of the complete paths from both forward 
and backward sweepings, and 2) we can align the hold and 
setup times of various multi-cycle paths by time shifting, and 
merge the timings. 
4.2 Rule Collection Minimization Algorithm 

The basic idea of the minimization is as follows. 1) Gather 
prefix and suffix rule sets at each vertex. 2) Obtain and align 
hold and setup times of complete paths. 3) Collect rule sets 
into rule collections and cover the complete paths. 
4.2.1 Main Flow 

We first compute suffix rule sets of all the vertices by 
backward Rule Set Computation.  Then, the rule collections 
are minimized and propagated at every vertex in topological 



order.  The main flow is as follows. 
Main flow 
I. Produce suffix rule sets by a backward sweeping; 
II. For each vertex v in topological order  

1. If vertex v is a primary input 
  Produce an initial rule collection ℜ(v) = {F(v)}; 

2. Rule collection minimization(v); 
3. For each edge (v, u) Rule Collection Propagation (ℜ(v), v, u); 

The rule collection minimization of ΙΙ.2 is as follows. 
Rule collection minimization (v) 
I. For each rule collection ℜ(v)  

For each suffix rule sets R(p+), where p+ is the suffix path in the 
suffix path cone P+(v) 

Intersect rule collection ℜ(v) with suffix rule sets R(p+); 
II. Construct bipartite graph at v based on the intersections; 
III. Shift the hold and setup times of the intersections, and perform 

biclique covering on bipartite_graph(v);
The rule collection propagation in ΙΙ.3 propagates rule 

collection ℜ(v) to vertex u, which is introduced in Section 
4.2.4. 
4.2.2 Intersections of the Prefix and Suffix Rule Sets 

At each vertex, the intersections of the prefix and suffix 
rule sets provide the hold and setup times of the complete 
paths.  If rule r belongs to intersection R(p-) ∩ R(p+), the 
complete path of prefix path p- plus suffix path p+ is governed 
by rule r.  If there are various rules in intersection R(p-

i) ∩
R(p+), the rule with the highest priority is dominant.  

Definition 4.2: The intersection between a prefix rule 
collection ℜ(v) and a suffix rule set R(p+) intersects each 
prefix rule set in ℜ(v) with R(p+), i.e., Intersect(ℜ(v), R(p+)) = 
{R(p-

i) ∩ R(p+) | R(p-
i) ∈ℜ(v)}. 

Figure 7.  Example for rule collection minimization. 
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The intersections correspond to the complete paths.  For 
example at vertex 4 in Figure 7, there are three prefix paths 
and three suffix paths.  The first column in Table 4.1 contains 
the rule collections for the prefix paths, and the first row 
shows the suffix rule sets.  Rule collection {{3}} 
corresponds to prefix path {(2, 4)}, and suffix rule set {1, 3} 
corresponds to suffix path {(4, 5), (5, 8)}.  Intersect({{3}}, 
{1, 3}) = {{3}} corresponds to complete path {(2, 4), (4, 5), 
(5, 8)}, which is in rule 3 with hold and setup time [1, 2]. 

We construct a bipartite graph based on the intersections to 
cover the complete paths through the vertex.  For every 
intersection, we produce an edge from the rule collection to 
the suffix rule set and attach the hold and setup time of the 
intersection on the edge.  We eliminate the edge with hold 
and setup time [-∞, +∞], thus removing false paths.   

Table 4.1 Intersections of the prefix rule collections and the suffix 
rule sets at vertex 4 

R(p+)
ℜ(v)

{3} {1, 3} {2, 3} 

{{1[-∞, +∞]}} {∅[0, 1]} {{1[-∞, +∞]}} {∅[0, 1]}
{{2[-∞, +∞]}} {∅[0, 1]} {∅[0, 1]} {{2[-∞, +∞]}}
{{3[1, 2]}} {{3[1, 2]}} {{3[1, 2]}} {{3[1, 2]}}

Figure 8 illustrates the bipartite graph at vertex 4.  The 
bipartite graph does not contain an edge from rule collection 
{{1}} to suffix rule set {1, 3} because the hold and setup time 

of Intersect ({{1}}, {1, 3}) = {{1}} is [-∞, +∞]. 
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Figure 8.  Bipartite graph at vertex 4. 
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4.2.3 Time Shifting and Biclique Covering 
We cover the edges in the bipartite graph by a set of 

bicliques, i.e. complete bipartite graphs, and collect the prefix 
rule sets in each biclique into one rule collection.  By doing 
so, we cover the complete paths represented by the edges by 
rule collections. 

All the complete paths covered by one biclique should 
have aligned hold and setup times.  Therefore, we devise 
time shifting to align different hold and setup times.

Definition 4.3: Time shifting on rule collection ℜ(v) plus 
∆T cycles on the hold and setup time of every rule in ℜ(v).  
The rule collection after time shifting is denoted as ℜ(v)+∆T.

Definition 4.4: Biclique covering on a bipartite graph 
covers the bipartite graph by a set of complete bipartite 
subgraphs. 

We produce aligned bicliques by time shifting and cover 
the edges of the bipartite graph at vertex v.  A biclique b is 
aligned if for any suffix rule set R(p+) ∈ b, all the edges to 
R(p+) are attached the same hold and setup time.  A biclique 
b can be aligned by time shifting if there are a set of ∆Ts such 
that after time shifting on each rule collection ℜ(v)i ∈ b by ∆Ti,
and updating the hold and setup times of the edges, biclique b
becomes aligned. 
Biclique Covering (v) 
I. Initialize the biclique set as B = ∅;
II. For every rule collection ℜ(v) in minimum degree order 

a) For every biclique b in the biclique set B 
If b remains a biclique after including a set of edges from ℜ(v), 

and b can be aligned by timing shifting  
  Add edges from ℜ(v) to b, and do time shifting on b; 

b) If ∃ edges from ℜ(v) not covered by bicliques in B  
1. For every biclique b in B 

If b includes edges from ℜ(v), remove the edges from ℜ(v) 
and Shift the hold and setup times back; 

2. Produce a new biclique containing all the edges from ℜ(v); 
3. Add the new biclique to the biclique set B; 

III. For each biclique b in the biclique set B 
New ℜ(v)' = ∪ℜ(v)i

∆Ti, where ℜ(v)i ∈biclique b, the hold 
and setup time of ℜ(v)i is shifted by ∆Ti;

Since computing the minimum biclique covering on the 
general bipartite graph is NP complete [6, 7], we use a minimum 
degree order approach.  Each time, we try to cover the edges 
from a rule collection ℜ(v) by enlarging smaller bicliques.  If 
all the edges from ℜ(v) are covered and the enlarged bicliques 
are aligned under time shifting, we update the enlarged 
bicliques by adding the edges and shifting the hold and setup 
times.  Otherwise, we produce a new biclique containing the 
edges from the rule collection ℜ(v).  Based on each biclique 
b, the new rule collection is the union of all the rule 
collections in the biclique, i.e., ℜ(v)' = ∪ℜ(v)i, ℜ(v)i ∈ b.   

Figure 9 shows the biclique covering at vertex 4.  Rule 
collection ℜ'1 collects rule collections {{1}} and {{3}}.  The 
hold and setup time of {{1}}, [0, 1], is shifted by 1 cycle to 
align with the hold and setup time of {{3}}, [1, 2].  After 
minimization, two rule collections cover the complete paths 



through vertex 4. 

Figure 9.  Biclique covering at vertex 4.
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4.2.4 Rule Collection Propagation 
For edge (v, u), we propagate rule sets in rule collection 

ℜ(v) to vertex u similarly as the Rule Set Computation
computes the rule sets. 
Rule Collection Propagation (ℜ(v), v, u) 

For each R ∈ ℜ(v) 
1. R' = (R∩ I(v, u)) ∪F(u); 
2. ℜ(u) = ℜ(u)∪{R'}, where ℜ(u) is initialized as ∅;

4.2.5 Hold and setup Time Conflict 

The intersections R(p-
i) ∩ R(p+) in each Intersect(ℜ(v), 

R(p+)) should produce the same hold and setup time.  
Otherwise, there is hold and setup time conflict.  For 
example, Table 4.2 shows the intersections at vertex 5.  The 
rule collections are propagated from vertex 4.  The 
intersection of rule collection {{1}+1, {3}}, and suffix rule set 
{1, 3} contains two sets, {1}+1 and {3}.  The hold and setup 
time of rule 1, i.e., [-∞, +∞], conflicts with the hold and setup 
time of rule 3, i.e., [1, 2]. 

Table 4.2 Intersections at vertex 5 
R(p+)

ℜ(v)
{3} {1, 3} {2, 3} 

{{1}+1, {3}} {∅+1, {3}} {{1}+1, {3}} {∅+1, {3}} 
{{2}, {3}} {∅+1, {3}} {∅+1, {3}} {{2}+1, {3}} 
The hold and setup time conflict indicates that the 

complete paths corresponding to the intersection have conflict 
hold and setup times.  For example, intersect({{1}+1, {3}}, 
{1, 3}) at vertex 5 corresponds to two complete paths, p1 = {(1, 
4), (4, 5), (5, 8)} which is a false path, and p2 ={(2, 4), (4, 5), 
(5, 8)} which is multi-cycle path. 

Because each rule collection only labeling one arrival time, 
we cannot use time shifting to align these different hold and 
setup times. Therefore, in the bipartite graph we do not 
produce the edge between the rule collection and the suffix 
rule set if there is a conflict.  Theorem and lemmas in Section 
4.4 guarantee that all the paths are still covered. 
Bipartite graph Construction (v) 
I. Collect rule collections propagated from the previous vertices; 
II. For each rule collection ℜ(v) and suffix rule set R(p+) 

1. Intersect(ℜ(v), R(p+)) = {R(p-)i
∆Ti∩ R(p+)| R(p-)i∈ℜ(v)}; 

2. For each R(p-)i
∆Ti∩ R(p+) ∈ Intersect(ℜ(v), R(p+))

The hold and setup time is [hr+∆Ti, sr+∆Ti], where r is the 
rule in R(p-)i

∆Ti∩ R(p+) with the highest priority; 
3. If there is no conflict among all [hr+∆Ti, sr+∆Ti]s, and 

∀[hr+∆Ti, sr+∆Ti] ≠ [−∞, +∞]
Add an edge attached with [hr+∆Ti, sr+∆Ti] from ℜ(v) to 
R(p+); 

Figure 10 illustrates the bipartite graph at vertex 5, which 
does not contain edges from {{1}+1, {3}} to {1, 3} and from 
{{2}+1, {3}} to {2, 3} due to hold and setup time conflicts. 

[1, 2] 
[1, 2] 

[1, 2] 
[1, 2] 

Figure 10.  Bipartite graph at vertex 5. 
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Figure 11 summarizes the rule collections produced by our 
approach.  At vertices 4 and 5, the number of tags is reduced 
from 3 to 2. 

Figure 11.  Rule collections at every vertex: ∅+1s at vertex 6 and 
8 are propagated from {1}+1 and {2}+1 at vertex 5, respectively; 
∅+1 at vertex 7 is propagated from {1}+1 and {2}+1 at vertex 5. 
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4.3 Timing Analysis with Rule Collections 
We compute the arrival time, required arrival and slack for 

each rule collection by forward and backward sweepings 
similar as the timing analysis process based on rule sets.  The 
only difference is that for rule collections with time shifting, 
ℜ(v)+∆T, we forward and backward shift the arrival times and 
required arrival times by ∆T. In Figure 11, for the rule 
collection ℜ'1 = {{1}+1, {3}} at vertex 4, the arrival time of 
prefix path {(1, 4)} is shifted by 1 cycle and merged with the 
arrival time of {(2, 4)}.  When the required arrival time 
labeled by ℜ'1 is backward propagated to vertex 1, we shift the 
required arrival time back by 1 cycle. 
4.4 Correctness 

This section presents lemmas and theorems to guarantee 
the correctness.  We show that all the complete paths are 
covered by rule collections.  Thus, timing analysis based on 
rule collections produces correct slacks of all the paths.  We 
omit formal proofs due to space constraints. 

Definition 4.5: A rule collection ℜ(v) covers a complete 
path p through vertex v, where p is the concatenation of prefix 
path p- ∈ P- (v) and suffix path p+∈ P+ (v), if 1) p- is covered 
by prefix rule set R(p-) ∈ ℜ(v), 2) p+ is covered by suffix rule 
set R(p+), and 3) the bipartite graph at vertex v contains an 
edge from ℜ(v) to R(p+). 

Lemma 4.1: If rule collection ℜ(u) covers a complete path 
p at vertex u and edge (u, v) ∈ p, after Rule Collection 
Propagation, the produced rule collection ℜ(v) covers path p
at vertex v.

Theorem 4.1: All the complete paths through a vertex v
are covered by the rule collections at v.

Lemma 4.1 and Theorem 4.1 show that rule collections 
cover all the complete paths.  The next lemma and theorem 
show that timing analysis produces correct slacks.  

Lemma 4.2: If rule collection ℜ(v) covers path p and path 
p is governed by rule r, slack (v, ℜ(v)) covers the correct slack 
of path p, which is computed based on rule r.

Theorem 4.2: Timing analysis with rule collections 
produces correct slack at each vertex v, which covers the 
slacks of all the paths through vertex v.

5. Experimental Results 
We test our algorithm on both artificial and industry test 

cases.  The algorithm is implemented in C and tested on a 



Pentium 4 Linux machine. 
We first follow the experiments in [2] to randomly create 

false and multi-cycle subgraphs on a 100×100 mesh.  The 
average number of edges in subgraphs is 6000.  Each test 
case contains from 9 to 104 rules including 30 percent false 
subgraph rules.  The hold and setup times of multi-cycle 
paths are in the range from 2-cycle to 4-cycle.  We compare 
the number of rule collections with the number of prefix rule 
sets in Table 5.1.  The number of prefix rule sets equals to the 
number of tags produced by the approach in [2] if there are 
only false paths.  The average reduction ratio for five test 
cases is 31.22%. The CPU time for tag minimization increases 
when the number of rules in the case increases.  The largest 
case including 104 rules consumes 87 seconds. 

Table 5.1. Tag minimization on a 100 ×100 mesh 

 --Reduction ratio= (#prefix rule sets - #rule collections)/ (#prefix 
rule sets)

We also test our algorithm on four industry test cases and 
show the experimental results in Table 5.2.  The largest 
circuit, i.e., atmlcore, contains 533,224 nets, 2 false path rules 
and 2262 multi-cycle path rules.  We use Rule Set 
Computation to produce prefix rule sets, and minimize rule 
sets into rule collections.  The average reduction ratio of four 
test cases is 84.60%.  For the largest circuit, i.e. atmlcore, the 
runtime of minimization is only 383 seconds, including the 
CPU time for loading the test cases, mapping the rules on the 
graph, and minimizing the rule collections.  

Table 5.2 also shows runtimes of STA (STA).  If STA uses 
prefix rule sets to deal with false paths and multi-cycle paths, 
for the largest circuit, i.e., atmlcore, the runtime is 40.33 
seconds.  If rule collections are used in STA, the runtime is 

reduced to 19.5 seconds.  Though the reduction is only 20.83 
seconds for performing STA once, the reduction ratio is 
51.65%.  If timing analysis is repeatedly called during 
performance driven optimization, for example 100 times, the 
reduction on STA runtime would be 2083 seconds, which is 
larger than the minimization runtime cost 40.33 seconds. 

6. Conclusions 
We propose a framework to unify the process of false paths 

and multi-cycle paths in STA.  Furthermore, we improve the 
efficiency by minimizing the number of distinguished timings 
created for false paths and multi-cycle paths.  Finally, we 
present theorems to guarantee that our approach produces 
correct timing information with false paths and multi-cycle 
paths considered.  The experimental results demonstrate that 
our minimization is effective. 
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Table 5.2. Tag minimization on industry test cases 
#rules STA runtime Cases # nets 

False 
path 

Multi- 
cycle path 

# prefix 
rule sets 

# rule 
collections

reduction 
ratio 

Minimization 
Runtime (sec) Use prefix 

rule sets (sec) 
Use rule 

collections (sec)
Runtime 
reduction

tdl 27,555 1 27 158 67 57.59% 1 1.2 1.2 0 
cq_mod 38,535 2517 3181 217,456 14,972 93.11% 22 4.2 2 52.38%
pm25c 325,582 7 2574 1,781,400 101,238 94.32% 106 55.33 28.5 48.49%

atmlcore 533,224 2 2262 2,411,892 159,451 93.39% 383 40.33 19.5 51.65%
average 84.60%    38.13%

--Reduction ratio = (#prefix rule sets - #rule collections)/ (#prefix rule sets) 
--Reduction of STA runtime = (STA Runtime using prefix rule sets – STA Runtime using rule collections)/ STA Runtime using prefix rule sets

# rules # prefix 
rule sets 

# rule 
collections 

Reduction  
ratio 

Runtime 
(sec) 

9 9129 8281 9.29% 2
34 77102 49321 36.03% 19
69 137581 89987 34.59% 44
88 176384 97124 44.94% 61

104 209718 145484 30.63% 87
average 31.10% 
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