
Yield-Area Optimizations of Digital Circuits Using
Non-dominated Sorting Genetic Algorithm (YOGA)

Vineet Agarwal Janet Wang
Electrical and Computer Engineering Electrical and Computer Engineering
The University of Arizona,Tucson. AZ The University of Arizona,Tucson. AZ

vagarwal@ece.arizona.edu wml@ece.arizona.edu

ABSTRACT
With shrinking technology, the timing variation of a dig-
ital circuit is becoming the most important factor while
designing a functionally reliable circuit. Gate sizing has
emerged as one of the efficient way to subside the yield de-
terioration due to manufacturing variations. In the past
single-objective optimization techniques have been used to
optimize the timing variation whereas on the other hand
multi-objective optimization techniques can provide a more
promising approach to design the circuit. We propose a new
algorithm called YOGA, based on multi-objective optimization
technique called Non-dominated Sorting Genetic Algorithm
(NSGA). YOGA optimizes a circuit in multi domains and pro-
vides the user with Pareto-optimal set of solutions which
are distributed all over the optimal design spectrum, giv-
ing users the flexibility to choose the best fitting solution
for their requirements. YOGA overcomes the disadvantages
of traditional optimization techniques, while even providing
solutions in very stringent bounds.

1. INTRODUCTION
With recent shrinking of transistor feature size, uncer-

tainty in circuit response has become the most menacing
issue for the circuit designers. Data statistics indicate that
delay variation of a simple gate can go as high as 10%-15% of
the expected value. If no compensating techniques are em-
ployed to encounter these variations, the yield of nanometer
digital circuits can decrease drastically, thereby increasing
the manufacturing cost by multiple folds. In recent past the
technique of scaling the transistor W/L ratio, also known as
gate sizing, has emerged as one of the convincing technique
for combating these uncertainty due fickle fabrication pro-
cesses. In this technique, various algorithms and heuristics
are used to scale transistor sizes, so as to decrease the timing
variations of the circuit and increase the yield. Thus gate
sizing presents a promising approach to counter the diabolic
affects of manufacturing process uncertainty.

A survey of previous literature reveals that gate sizing
techniques have been in lime light for the past decade. The
issue of calculating the timing yield and optimizing it has
been addressed numerous number of times. Most generally
gate sizing problem has been viewed as minimizing a tim-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...�5.00.

ing variability while having constraints on area or delay [1].
Yield optimizations has also carried out using optimization
tools [2] under similar constraints, through modular neural
networks [3], geometric programming [4] and also in pre-
synthesis steps [5]. Yield issues for sequential circuits has
also been addressed in [6]. Song in [7] proposed an approach
in which gate sizing is done on statistical critical paths and
offers a trade off between area and variation deduction. But
most of these work concentrated on trade-off between area
overhead and timing variance reduction. Recently Orshan-
sky el al proposed an stochastic algorithm for power min-
imization under variability with a guarantee of power and
timing yield [8]. Thus power now played an vital role in
designing the circuit, while keeping an constraint on timing
yield. Thus the traditional framework for optimization can
be summarized as:

min f(x)
Subject to g(x) ≤ gmax

h(x) ≤ hmax

(1)

Doing optimization through techniques just mentioned in
Equation (1), which has a single objective function, have
various disadvantages. First and foremost, the final solution
of single objective optimization process will depend on the
constraints placed on other parameter (gmax, hmax), which
are user defined. Thus if these values are not properly chosen
then the resulting solution may not be the most appropri-
ate one. For example if we define penalty as the increase
in g(x) and h(x) , and if the bounds are set very loose, the
optimization may minimize f(x) while using all the penalty
it is allowed to incur. A second solution may be present
with similar objective function value but with considerable
less penalty. In those cases the traditional techniques may
not deliver the second solutions and thus may not spot the
most ‘attractive’ solution. Secondly, all the optimization
technique have been only single-objective function. Thus if
more than one objective have to be optimized, the tradi-
tional techniques, will optimize the first objective function
first and then redo the optimization on this solution with
second objective as primary aim. Thus it has to be done
in a ‘sequential’ sense. Multi-objective optimization pose
a better approach in which multi objectives are simultane-
ously optimized. Thus using multi-objective optimization
both f(x) and penalties on g(x), h(x) can be optimized
(minimized) simultaneously. Thirdly, if the bounds on g(x)
and h(x) are set too tight, then there may not exist any
feasible solution which satisfies all the constraints. In such
cases, the traditional techniques will flounder ending up in
giving no solution. Thus optimization techniques are re-
quired which can minimize multiple objectives, which are
user independent and which don’t crumple under too strin-

gent constraints.
Thus we propose our technique, Yield-area Optimization

using Genetic Algorithm, YOGA, which encounters the above
stated disadvantages. YOGA attempts to minimize all crite-
rion i.e, area, mean delay and delay variance simultaneously.
YOGA at the simulation end provides the user with multiple
solution spread over the optimum design spectrum. All the
solutions in the final set are called Pareto-optimal solutions
[9, 10], in which none of the solutions are better than any
other in the set, thus any one solution can be chosen without
hesitation of optimality. Thereby it gives the designers the
flexibility to choose the most appropriate solution according
to their needs. YOGA’s application can be easily extended
to simultaneously optimize power consumption of a circuit.
Just by including an extra objective of minimizing power
stochastically [8] the designers can get similar trade-off in-
formation between power and timing yield and find the best
fitting solution or otherwise get trade-off information of a
larger picture including area, power and timing yield all to-
gether.

Our rest of the paper is organized as follows. Section 2
provides a preliminary introduction to technique of gate siz-
ing. In Section 3, we describe the backbone algorithm of
Non-dominated Sorting Genetic Algorithm. Section 4 pro-
vides a demonstration of the technique while YOGA imple-
mentation for gate sizing is discussed in Section 5. The
experimental results are listed in Section 6 and Section 7
concludes our paper.

2. BASIC GATE SIZING TECHNIQUE
The traditional framework of gate sizing technique can be

summarized as:

find s
min σ2(dO)

Subject to µ(dO) ≤ µmax

π(G) ≤ πmax

(2)

where

1. µ(x) is the mean and σ2(x) is the variance of the ran-
dom variable x.

2. s = {s1, s2, . . . , sn}, where si is the size of gate gi,
G is the set of all gates and gi ∈ G. Size s for any
gate denotes, the ratio of area of the gate to that of a
minimum sized inverter.

3. O is the set of all the outputs of the circuit.
4. di is the delay of the ith output of the circuit and i ∈ O
5. π(G) denotes the area of circuit containing gates G
6. πmax and µmax are the maximum allowable Area and

Mean output delay of the circuit.

Thus a regular gate sizing algorithm will solve the non-linear
optimization problem stated in Equation 2 and provide the
end user with a single s. The constraints place an upper
bound on the penalty entailed while trying to optimize the
objective function, where penalty can be in form of area or
delay overhead.

3. NON-DOMINATED SORTING GENETIC
ALGORITHM

In this section we provide an overview of Non-dominated
Sorting Genetic algorithm (NSGA) which will be used as the
base for our gate sizing algorithm. Extensive study has
been done in multi-objective programming using genetic al-
gorithms in the past [9, 10, 11, 12]. One of the most influ-
ential work has been done by Deb in [13], in which he has
coined the primary prototype of NSGA.

Algorithm 1 NSGA Algorithm

1: pop ← GenerateInitialPopulation

2: if generation ≤ max generation then
3: rank ← NonDominatedRanking(pop)
4: fitness ← FitnessAssignment(pop, rank)
5: for i = 1 to N step 2 do
6: parent1 ← Selection(pop, fitness)
7: parent2 ← Selection(pop, fitness)
8: (child1, child2) ← Crossover(parent1, parent2)
9: newpopi ← Mutation(child1)

10: newpopi+1 ← Mutation(child2)
11: end for
12: pop ← newpop
13: generation ← generation + 1
14: end if
15: final rank ← NonDominatedRanking(pop)
16: NonDominatedSolutions ← popi, ∀i ∈ final ranki = 1
17: return NonDominatedSolutions

3.1 Pareto-optimal Solution
A solution is called Pareto-optimal solution, if there exists

no other solution for which at least one of its criterion has a
better value while values of remaining criteria are the same
or better. In other words, one can not improve any criterion
without deteriorating a value of at least one other criterion.
Thus a design vector x∗ is Pareto-optimum if and only if,
for an minimization problem and for any x and i,

fj(x) ≤ fj(x
∗) ∀ j = 1, . . . , m, j �= i

⇒ fi(x) ≥ fi(x
∗)

where fi(x) is the value of ith objective function.
NSGA gives rise to a set of such Pareto-optimal solutions.

In a multi-optimization problem, the designer may be inter-
ested in more than one of such solutions because of the equal
quality of the solutions. The concept of NSGA is discussed in
next section.

3.2 NSGA Algorithm
The algorithmic flow of NSGA is summarized in Algorithm

1. A Model multi-objective optimization problem can be
summarized as.

min fi(x) ∀i ∈ {1, M}
Subject to : xL

j ≤ xj ≤ xU
j ∀j ∈ {1, P} (3)

where fi is the ith objective function for i = 1, . . . , M and
x = {x1, . . . , xP } where xj is the jth design variable and
xj ∈ [xL

j , xU
j]. Henceforth all optimization will pertain to a

minimization problem, unless otherwise stated. The various
steps in Algorithm 1 are explained below.

3.2.1 GenerateInitialPopulation Operator
This process generates pop, an array of size N ×P , which

contains N (population size) members, each of which is a
vector for length P . This population is created by generating
uniformly distributed random numbers bounded by [xL

j , xU
j]

for each xj .

3.2.2 NonDominatedRanking Operator

Definition 1. Say operator ‘�’ denotes worse and ‘�’
denotes better solution i.e, for a minimization problem a � b
means a > b while for a maximization problem a � b means
a < b and vice-versa for ‘�’ operator. Thus a solution xa is
said to dominate xb if both of following condition is true:

Algorithm 2 Non-Dominated Ranking Algorithm

χ ← 1 {comment: pop is the current population and
{xa, xb} ∈ pop}
repeat

N ← length(pop)
for a = 1 to N do

if ∃ b such that xb � xa then
push(xa, dominated)

end if
end for
for a = 1 to N do

if xa /∈ dominated then
rankxa ← χ
remove(xa, pop)

end if
end for
χ ← χ + 1
clear dominated

until pop = {∅}
return NonDominatedRanking

1. xa is no worse than xb for any of the objective func-
tions. In other words, fi(x

a) � fi(x
b) for all j =

1, . . . , M .

2. The solution xa is strictly better than xb in at least
one objective. In other words, ∃j for which fj(x

a) �
fj(x

b).

Now for a set of N solution vectors, the non-dominated rank-
ing can be done according to Algorithm 2.

3.2.3 FitnessAssignment Operator
After the population of size N has been ranked, fitness

values are assigned each of the solution. At first all the
solutions in a particular front (having same rank) are as-
signed same fitness value (fk) and then those fitness value is
shared with other solutions in the same front. The sharing
procedure for a solution xa in the kth front is performed as
follows:

i. Compute Euclidean distance measure with another so-
lution xb in the kth front as:

dab =

√√√√ P∑
p=1

(
xa

p − xb
p

xU
p − xL

p

)2

ii. The Sharing function value is then computed as [12]:

S (dab) =

{
1 −
(

dab
ξ

)2

, if dab ≤ ξ

0 otherwise

where ξ ≈ 0.5
P√10

iii. The niche count is then computed as:

na =

pk∑
b=1

S(dab)

where pk is the number of solutions in the kth front.

iv. Then the new fitness value is computed as:

f ′
i =

fk

na

This procedure is repeated for all the fronts with fk+1 =
min(fk) − κ where κ is a small positive value.

3.2.4 Selection Operator
After fitness has been assigned to all the solutions of the

current population, one solution is randomly picked up from
the pool. The probability of selection of a solution xa with
fitness value fa is given by [12]:

P (xa) =
fa

N∑
j=1

fj

3.2.5 Crossover Operator
Crossover is the fundamental mechanism of genetic rear-

rangement for both real organisms and genetic algorithms.
After two parents are selected by the Selection operator,
these two parents are crossed over with a probability of 0.9
to give rise to two new children. The Crossover operation
can be summarized as:

i. Calculate βq as:

βq =

⎧⎨
⎩ (uα)

1
ηc+1

, ifu ≤ 1
α

(1
2−uα

)
1

ηc+1
otherwise

where ηc = 30, u is a random number between 0 and 1
and α = 2− β−(ηc+1) where β is calculated as follows:

β = 1 +
2

xb
i − xa

i

min[(xa
i − xL

i), (xU
i − xb

i)]

ii. The children are then calculated as follows:

ya
i = 0.5[(xa

i + xb
i) − βq

∣∣xb
i − xa

i

∣∣]
yb

i = 0.5[(xa
i + xb

i) + βq

∣∣xb
i − xa

i

∣∣]
3.2.6 Mutation Operator

Mutations modify a small fraction of the solution vari-
ables: roughly one in every 10,000. Mutation alone does not
generally advance the search for a solution, but it does pro-
vide insurance against the development of a uniform popu-
lation incapable of further evolution. After the two children
are generated by the Crossover operator, they are mutated
by using the polynomial probability distribution [13]. The
following steps are used on each yi for i ∈ {1, P} with a
probability pm:

i. Parameter δq is calculated as:

δq =

⎧⎪⎪⎨
⎪⎪⎩

[2u + (1 − 2u)(1 − δ)ηm+1]
1

ηm+1 − 1
if u ≤ 0.5

1 − [2(1 − u) + 2(u − 0.5)(1 − δ)ηm+1]
1

ηm+1

otherswise

where u is a random number between 0 and 1, δ =
min[(ya

i −yL
i), (yU

i −ya
i)], ηm = 100+iteration number.

ii. The mutated child portion is calculated as follows:

za
i = ya

i + δq(y
U
i − yL

i)

The mutation probability pm is linearly varied from 1
P

till
1.0.

For minimization problems in NSGA, the objective function
of the form fj(

−→x) ≤ tj is modified to min〈fj(
−→x)−tj〉 where

the operator 〈x〉 returns x if x is positive or 0 otherwise. A
much detailed explanation for these operators can be found
in [10]

4. NSGA DEMONSTRATION
We shall now demonstrate the application of NSGA on

a sample non-linear multi objective optimization problem.
The sample problem is formulated as:

goal f1 = 10x1 ≤ 2 ≡ min 〈f1 − 2〉
goal f2 = 10+(x2−5)2

10x1
≤ 2 ≡ min 〈f2 − 2〉

Subject to F ≡ (0.1 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 10)
(4)

Figure 1 shows a values of f1 and f2 for randomly chosen
values of x1 and x2. It is noticed that there exists no feasible
solution to this problem, since no values of (x1, x2) can make
both the objective function meet their goal. In this situation

Figure 1: Non-overlapping Criterion Space and De-
cision space of the problem stated according to
Equation 4

the traditional optimization technique will cease to give any
fruitful results, and on the other hand the solutions provided
by NSGA are plotted in Figure 2. Thus NSGA provides solu-
tions which are concentrated in a certain neighborhood and
tries to bring both the objective functions near their goals
and also the tries to keep the penalty of the solutions to
a minimum. Thus instead of providing no-feasible-solution,
it provides the solutions from the decision space which are
closest to the required non-feasible objective function point.
Thus the advantages of NSGA over the traditional techniques

1 2 3 4 5 6 7
1

2

3

4

5

6

7

f
1

f 2

Criterion
Space

Decision
Space

1st Generation solution
50th Generation solution

Figure 2: NSGA solution to the Equation 4

are evident from this example. YOGA can thus use NSGA in
order to do circuit optimization in the similar way, which is
explained in further details in next section.

fan−in
1

fan−in
m

A
1

A
m

i

j

k

n

fan−out
1

fan−out
n

s
j

s
n

s
k

d
gate

i

Figure 3: Depth based Nodal delay model for STA

5. YOGA IMPLEMENTATION
NSGA in [13] concentrated on convergence of such Pareto-

optimal set, while YOGA maintains wide diversity in the so-
lution set, so as to provide the designer with ample different
solutions distributed over design spectrum. Thus for using
NSGA in YOGA, the problem is formulated as in Equation 5.

find s
Minimize max (−→σ O/−→µ O)
Minimize π (G)
Subject to sL

j ≤ sj ≤ sU
j , ∀j ∈ [1, N] , gj ∈ G

(5)

where O is the set of all the outputs of the circuit, G is the
set of all the N gates in the circuit, −→µ O is a vector of mean
delay values of all the outputs in O, −→σ O is a vector of delay
deviation of all the outputs in O and gi is the ith gate with
a sizing factor of si.

Thus the solution vector of YOGA will be set of vectors
each of length N , where each element of each solution will
correspond to the sizing factor of the respective gates.

5.1 Gate Delay model
In the past, for the purpose of Statistical Timing Anal-

ysis (STA) of digital circuit, the delay was modelled as a
random variable to incorporate the manufacturing uncer-
tainty. Song in [7] modelled the variation in delay as sum of
a factor directly proportional to delay and another random
factor whereas Raj in [2] assumed variation to be 15% of the
expected value. In our work we model the delay as:

di = max (Ai1, . . . , Ain) + dgatei + dloadi (6)

where di is the delay at wire i, (Ai1, . . . , Ain) are the arrival
times of fan-ins of node i, dgatei is the intrinsic delay of gatei

and dloadi is the delay incurred due to fan-out loads of node
i. The situation is depicted in Figure 3. Here the scaling
factors (s1, . . . , sN) are modelled as random variables. In-
tuitively it can be comprehended that a smaller the sizing
factor, larger is the uncertainty in manufacturing. Thus the
factor (σ/µ) decreases with increasing size (where σs and
µs are the variance and mean of sizing factor respectively).
With this kind of delay model and delay characterization
(Section 5.2.1), delay at node i can be computed fairly ac-
curately by considering effects of arrival time, intrinsic delay,
the loading effect.

5.2 Statistical Timing Analysis (STA)
Block based and event propagation techniques [14, 15]

are efficient ways for doing the STA for the circuit. Our
methodology is based on techniques mentioned in [15]. At
first arrival times are assigned to all the primary inputs of
the circuits depending on the fan-out load for each of the in-
puts. Then the whole circuit is divided into different depths.

The gates which receive their inputs from the primary in-
puts of the circuit are assigned a depth 1. If Fi is the set of
fan-ins of the gate gi, and Di is the depths of members of Fi,
then the depth of a gate gi, is given by max (Di)+1. A gate
is not assigned its depth unless and until all the elements
in Fi have been assigned their corresponding depths. After
the depth assignment is completed, the mean and variance
values of delay are computed for all the gates having depth
1. Then the delay values are propagated from depth 1 to
depth 2 and so on from depth k to depth k + 1. The delay
at the output of any gate gi is given by Equation 6. The
max (Ai1, . . . , Ain) operation is performed with the use of
formulation for z = max (x, y) [16] according to Equation 7.

a2 = σ2
x + σ2

y − 2σxσyρ
α = (µx − µy) /a
ν1 = µxφ(α) + µyφ(−α) + a ϕ(α)
ν2 = (µ2

x + σ2
x)φ(α) + (µ2

y + σ2
y)φ(−α) + (µx + µy) a ϕ(α)

(7)
where x ∼ N(µx, σx) and y ∼ N(µy , σy) and ρ = r(x, y)
where r() is the correlation operator. Thus we can get µz =

ν1 and σz =
√

ν2 − ν2
1 .

Thus the delay values are propagated from depth 1 till the
last front which are the primary outputs of the circuit. After
the mean and variance values are computed at the primary
output, the factor max (σ1/µ1, . . . , σL/µL), where L is the
number of outputs of the circuit, is computed and returned
to YOGA as the value of one of it objective function. Though
this is not a very accurate technique of doing STA, but since
our main concentration in this work is the effectiveness of
YOGA, we can compromise with a less complicated model for
doing STA.

The area of the whole circuit is simply calculated as :

Area(G) =

N∑
j=1

αjsj

where N is the number of gates in the circuit. sj is the size
of gate i which has a weighting factor of αj . The value of αj

for any particular gate depends on the number of its input
and the type of the gate. For example a 2-input XOR gate
has an α value of 24 units while a 3-input NAND gate has
α value of 15 units. The weighting factor α depicts the size
of a minimum sized gate of that type.

5.2.1 Delay Characterization
For shorter run time while doing the STA of any circuit,

delay characterization is done before hand. In this tech-
nique, the effect on delay at node i due to variations in si of
gate gi and size of fan-outs can be captured simultaneously.
Initially a sample circuit is constructed consisting a chain
of 2 inverters which have size as sD, sR respectively. Then
the sample circuit is simulated using SPICE for some set of
random values pairs of sD and sR and the delay of 1st in-
verter is computed for each value pair. From Elmore delay
analysis we conclude that the delay is of the form:

d = κ1 + κ2

(
sR

sD

)
+ κ3

(
sR

sD

)2

. (8)

Any curve fitting technique, like Response Surface Method
(RSM) or Singular Value decomposition (SVD) can be used
to estimate the three coefficients of Equation 8. This delay
model can be used for STA. If 50 different values are used for
characterization, then the error in estimated delay is around
0.0001% of the actual value, which is fairly acceptable.

6. EXPERIMENTAL RESULTS

20 30 40 50 60 70 80 90 100
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Area

m
ax

(σ
/µ

)

50th Gen Soln
1st Gen Soln

Design SpectrumHigh σ/Low π High π/Low σ

Figure 4: Results of YOGA on ISCAS C17 Benchmark

This section presents the results of application of YOGA

algorithm on the variety of benchmark circuits of ISCAS
family [17] and few circuits for which the types of gate in it
were chosen arbitrarily. The STA was done using Berkeley
PTM [18] 70nm model cards for NMOS and PMOS transis-
tors. The results of YOGA on c17 circuit is shown in Figure
4. It can be inferred from the figure that given a random set
of gate sizes, YOGA delivers a variety of solutions at the de-
signers disposal. All the solutions marked with ‘+’ in figure
4 consist the Pareto-optimal set in which no one solution is
better than any other. Few of the Pareto-optimal solutions
for other benchmarks circuits are listed in Table 1.

If traditional single objective function techniques were
used to solve this optimization problem, in a way to mini-
mize max(σ/µ) and to keep total area under 120 units, then
the solution provided will be a single set of gate sizes which
will lie on the right extreme section of design spectrum of
Figure 4. But it can be noticed from the figure, that other
solutions exist which can minimize objective function to the
same amount but can still account for lesser area of the cir-
cuit. Single objective function techniques fail to see these
solutions and thus may not provide solutions which are op-
timum in multi-sense. On the other hand, YOGA gives a wide
range of solutions and designers can pick any of the pareto-
optimal solution according to their need. For example low
area solutions can be selected from left section of design
spectrum, while least variation solutions can be picked from
right section. The pareto-optimal solutions provide the users
with visible trade-offs for choosing their solutions. If they
don’t wish to loose much on both end of area and delay vari-
ability, then they can choose solutions from middle sections
of spectrum. This flexibility is be provided by traditional
techniques.

For the case of c17 benchmark the designer has varied
solutions to pick any one of them according to their require-
ments. For example if the area is of more concern then he
can choose solutions such as (area = 25.1485, max(σ/µ) =
0.0769) or (area = 32.4708, max(σ/µ) = 0.0425), where
he gets low area solution but has to compensate by get-
ting a high variance circuit along with. But on the other
hand of timing variance is of more importance then he can
choose solution from the other end of the spectrum, such
as (area = 71.5729, max(σ/µ) = 0.0193) or (area =96.1451,
max(σ/µ) = 0.0163) where he has to compromise on area
to get a low variance circuit. Whereas if he needs to keep
both in objective in control then he can choose the so-
lution which are midway in the design spectrum such as

(area=54.8, max(σ/µ) = 0.0275).
Similarly, solutions from different portion of design spec-

trum for any given circuit can be provided to suit the de-
signers needs and requirements. The only input which is re-
quired is circuit topology and the minimum and maximum
allowable gate sizes.

7. CONCLUSION
In this paper, we have shown the advantages of Multi-

objective optimization techniques over the traditional single
objective techniques. A new algorithm YOGA was proposed
to use multi-objective optimization technique for gate sizing
domain of digital circuits and flexibility obtained by it was
demonstrated for various benchmark circuits.

8. REFERENCES
[1] S. H. Choi, B. C. Paul, and K. Roy, “Novel sizing

algorithm for yield improvement under process
variation in nanometer technology,” in DAC, 2004.

[2] S. Raj, S. Vrudhula, and J. Wang, “A methodology to
improve timing yield in the presence of process
variations,” in DAC, 2004, pp. 448–453.

[3] A.A.Ilumoka, “Optimal transistor sizing for cmos vlsi
circuits using modular artificial neural networks,” in
Twenty-Ninth Southeastern Symposium on System
Theory, 1997.

[4] J. Singh, V. Nookala, Z.-Q. Luo, and S. Sapatnekar,
“Robust gate sizing by geometric programming,” in
DAC, 2005.

[5] A. Nardi and A. L. Sangiovanni-Vincentelli,
“Synthesis for manufacturability- a sanity check,” in
Design Automation and Test in Europe, 2004.

[6] M. Pan, C. C. N. Chu, and H. Zhou, “Timing yield
estimation using statistical static timing analysis,” in
Intl Symposium on Circuits and Systems, 2005.

[7] O. Neiroukh and X. Song, “Improving the
process-variation tolerance of digital circuits using
gate sizing and statistical techniques,” in Design
Automation and Test in Europe, 2005.

[8] M. Mani, A. Devgan, and M. Orshansky, “An efficient
algorithm for statistical minimization of total power
under timing yield constraints,” in DAC, 2005.

[9] C. M. Foncesa and P. J. Flemming, “Genetic
algorithms for multi-objective optimization:
Formulaton, discussion and generalization,” in 5th Intl
Conf on Genetic Algorithms, 1993, pp. 416–423.

[10] N. Srinivas and K. Deb, “Multi-objective function
optimization using non-dominated sorting genetic
algorithms,” in Evolutionary Computation, 1994.

[11] A. G. Cunha, P. Oliveira, and J. A. Covas, “Use of
genetic algorithms in multicriteria optimization to
solve industrial problems,” in Proceedings of the
Seventh International Conference on Genetic
Algorithms, 1997, pp. 682–688.

[12] D. E. Goldberg, Genetic algorithms for search,
optimization, and machine learning. MA:
Addison-Wesley., 1989.

[13] K. Deb, “Non-linear goal programming using
multi-objective genetic algorithms,” Evolutionary
Computation Journal, 1994.

[14] A. Devgan and C. Kashyap, “Block-based static
timing analysis with uncertainty,” in ICCAD, 2003.

[15] J. Liou, K. Cheng, S. Kundu, and A. Krstic, “Fast

Table 1: Few solutions of Pareto-optimal set ob-
tained by YOGA for ISCAS benchmark circuits

Circuit No. of
Area =

N∑
j=1

αjsj max (σ/µ)
Run

Name gates time(s)
25.1485 0.0769
32.4708 0.0425

c17 6 54.7947 0.0275 4.42
71.5729 0.0193
96.1451 0.0163

769.5831 0.0538
1054.2467 0.0317

c432 160 2131.5073 0.0169 43.43
3028.1891 0.0142
3798.7005 0.0121
1418.9510 0.0231
2025.2311 0.0189

c499 202 3869.6068 0.0145 51.37
4932.4860 0.0135
6420.8214 0.0126
1818.4447 0.0618
3102.6154 0.0432

c880 383 4756.7919 0.0281 94.25
6281.9218 0.0228
7554.7382 0.0205
2681.1763 0.0117
3817.4057 0.0085

c1355 546 3965.4355 0.0068 137.18
8815.9168 0.0057

10672.4103 0.0042
3218.8936 0.0247
5476.0578 0.0202

c1908 880 8981.3529 0.0163 227.20
12692.8132 0.0148
15834.0099 0.0131
6973.1389 0.0687
9281.2028 0.0534

c270 1193 16315.1987 0.0323 341.68
22180.6038 0.0241
24872.2772 0.0213
7281.1988 0.0357

14672.0153 0.0248
c3540 1669 21915.7468 0.0162 470.75

29180.4415 0.0151
34971.9318 0.0138

172.4660 0.0631
275.4186 0.0421

circuit1 20 438.8642 0.0284 7.67
569.5252 0.0231
661.2028 0.0208
252.6721 0.0648
628.8381 0.0408

circuit2 30 912.0196 0.0256 10.20
1181.6013 0.0237
1263.3795 0.0228

statistical timing analysis by probabilistic event
propagation,” in DAC, 2001, pp. 661–666.

[16] C. Clark, “The greatest of a finite set of random
variables,” Operations Research, vol. 9, no. 2, 1961.

[17] M. Hansen, H. Yalcin, and J. P. Hayes, “Unveiling the
iscas-85 benchmarks: A case study in reverse
engineering,” IEEE Design and Test, 1999.

[18] “Berkeley ptm.” [Online]. Available:
http://www-device.eecs.berkeley.edu/∼ptm/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

