
Compaction of Pass/Fail-based Diagnostic Test Vectors for Combinational and
Sequential Circuits ∗

Yoshinobu Higami, Kewal K. Saluja∗, Hiroshi Takahashi, Shin-ya Kobayashi and Yuzo Takamatsu

Department of Computer Science, Ehime University
∗Department of Electrical and Computer Engineering, University of Wisconsin-Madison

Abstract— Substantial attention is being paid to the fault diag-
nosis problem in recent test literature. Yet, the compaction of test
vectors for fault diagnosis is little explored. The compaction of di-
agnostic test vectors must take care of all fault pairs that need to
be distinguished by a given test vector set. Clearly, the number of
fault pairs is much larger than the number of faults thus making
this problem very difficult and challenging. The key contributions
of this paper are: 1) to use techniques for reducing the size of fault
pairs to be considered at a time, 2) to use novel variants of the
fault distinguishing table method for combinational circuits and
reverse order restoration method for sequential circuits, and 3) to
introduce heuristics to manage the space complexity of consider-
ing all fault pairs for large circuits. Finally, the experimental re-
sults for ISCAS benchmark circuits are presented to demonstrate
the effectiveness of the proposed methods.

I. INTRODUCTION

Increase in testing cost is one of the most significant prob-
lems in testing LSI circuits. This is primarily due to the fact
that testing large scale circuits requires a large number of test
vectors which in turn increase the test application time, tester
memory space, and hence the total test cost. Numerous re-
search papers have proposed various compaction techniques to
reduce the number of test vectors and the volume of test data
[4]. In particular, [8] studied the effect of detection-oriented
test compaction on fault diagnosis experimentally and showed
the loss of diagnosis capability of such methods. Little or no
attention has been paid to reduce the number of diagnostic vec-
tors. We believe that with respect to fault diagnosis, reducing
the number of test vectors is also important. Reduction of the
number of diagnostic test vectors will shorten real execution
time for fault diagnosis, reduce tester memory space, and thus
reduce the cost of design debug. Further, it will also allow a
reduction in the size of fault dictionary, which is an important
method for fault diagnosis.

Below, we briefly explain the relation between the com-
paction for fault detection and fault diagnosis. This is included
here for the sake of completeness of this paper and can be

∗The work was supported in part by JSPS under the Grant-in-Aid for Sci-
entific Research

found in [5]. While compacting detection test vectors, it is
important to find redundant vectors efficiently. An approach to
find redundant vectors is to use a fault detecting table which
contains information about detection of all faults by every test
vector. If the fault detecting table is given, compaction of de-
tection test vectors can be formulated as a set-cover problem.

Compaction of diagnostic test vectors can also be similarly
formulated by using a fault distinguishing table, which con-
tains information about distinguishability of all fault pairs by
every test vector. Once the fault distinguishing table is ob-
tained, the minimum number of diagnostic test vectors can be
obtained by solving the set-cover problem as before. However,
it is important to note that number of fault pairs is a square
function of the number of faults in the circuit and hence it may
be rather difficult, if not impossible, to store a complete fault
distinguishing table to arrive at an optimal solution. How to
reduce the size of fault pairs that need to be stored in mem-
ory is one of the very important components for compaction of
diagnostic test vectors

In this paper, we propose algorithms to compact diagnostic
test vectors for combinational and sequential circuits. The pro-
posed algorithms introduce some heuristics for reducing the
size of the fault distinguishing table to be considered at any
time. The fault distinguishing table is constructed by consider-
ing a chosen subset of fault pairs. A nearly minimum set of test
vectors that can distinguish the fault pairs is selected by solving
the set-cover problem. After that, fault simulation is performed
to find the fault pairs that are distinguished by the selected test
set. If not all the fault pairs are distinguished, then further con-
struction of the fault distinguishing table and selection of test
vectors is performed. In the present work, we only consider
the pass/fail information, that is, we do not take into account
the locations of primary outputs where a fault effect is prop-
agated. Thus our method is well suited for BIST-based fault
diagnosis [2, 9]. None the less we must add that our method is
general and is also applicable for diagnosis methods that con-
tain the information on locations of primary outputs as well as
extra observation points [7] to which a fault effect is propa-
gated. Note also that this work is different from the method
that deal with generation of diagnostic test sets as in [1].

Compaction of test vectors for sequential circuits is even
more difficult than that for combinational circuits, just as di-

agnostic fault simulation and test generation for sequential cir-
cuits are more difficult than for combinational circuits. The
proposed method uses a variant of reverse order restoration
(ROR) technique proposed in [3] and found to be very efficient
for detection-oriented test compaction for sequential circuits.
When diagnostic test sequences are compacted using ROR, the
list of fault pairs distinguished by the original test sequence is
required. However, it is difficult to store information about all
fault pairs since the number of fault pairs is much larger than
the number of faults. Therefore, we also propose a method to
reduce the number of target fault pairs for ROR.

The rest of the paper is organized as follows. In Section 2
we give the necessary definitions. In Section 3 a compaction
algorithm for combinational circuits is explained and the ex-
perimental results for implementing our algorithm are given.
In Section 4, compaction algorithms for sequential circuits are
explained, and experimental results for sequential circuits are
given. Finally in Section 5, conclusions are described.

II. PRELIMINARIES

The problem we consider in this paper is to find a subset
of test vectors or test subsequences from a given test set or
test sequence such that the new set or sequence is as small as
possible while providing the same level or better diagnosis as
the original test set or test sequence. We need the following
definitions for developing algorithms.

[Definition 1]: Two faults f1 and f2 are said to be distin-
guished by a test vector v if there exists at least one test vector
v such that v detects f1 but not f2 or that v detects f2 but not
f1.

[Definition 2]: A fault detecting table (FDETT) for a test
set T contains information about faults detected by each test
vector. Similarly, a fault distinguishing table (FDIST) for
T contains information about fault pairs distinguished by each
test vector.

Note that we do not take into account the faults that are not
detected by the original test set or the original test sequence.
This is because a circuit with such an undetected fault can not
be identified to be a faulty circuit, and thus such a fault can not
be the target of fault diagnosis.

III. COMPACTION FOR COMBINATIONAL CIRCUITS

A. Basic idea

If we can construct a complete FDIST, that is, if the infor-
mation about all the pairs of detected faults is available, the
minimum test vectors can be selected by solving the set-cover
problem. However, since the number of fault pairs is gener-
ally very large, it is difficult to store a complete FDIST. There-
fore we must work with a partial FDIST. The partial FDIST
includes information only about a subset of all possible candi-
date fault pairs. Using such a partial FDIST, a small number

of test vectors are selected, and then fault simulation is per-
formed with the selected test vectors. If the selected test vec-
tors do not achieve the original diagnostic resolution, another
subset of fault pairs is selected and a partial FDIST is obtained
to select additional test vectors. Such process is repeated until
all distinguishable fault pairs are distinguished. The following
theorem provides conditions for an initial choice of test vec-
tors.

[Theorem 1]: Let V0 be a set of test vectors, and Fd1 be the
set of those faults each of which is detected by only one test
vector in V0. Further, let FP be a set of fault pairs constructed
from faults in Fd1 and distinguished by ∀v ∈ V0. Now collect
the test vectors that detect ∀f ∈ Fd1, and the set of the test
vectors is denoted by V1. If any two test vectors are removed
from V1 and the resulting vector set is V ′

1 , then at least one
fault pair in FP can not be distinguished by ∀v ∈ V ′

1 .

(Proof:) Let v1 and v2 be test vectors in V1, and f1 and f2

be faults detected only by v1 and v2, respectively. If v1 and v2

are removed from V1, then fault pair < f1, f2 > is not distin-
guished by the remaining vectors in V1. Since V1 contains only
test vectors that detect f ∈ Fd1, the above statements are true
no matter which pair of test vectors are selected as v1 and v2.

B. Proposed algorithm

We now state an algorithm for diagnostic compaction for
combinational circuits, called DCOMP-C. This algorithm
makes use of the above result in selecting the initial vector set,
thus keeping the FDIST to a manageable size. The steps of the
algorithm are explained following the algorithm proper and an
example is also given.

Algorithm: DCOMP-C
/* V0: a given test set */
1) Set Vs = φ.
2) Perform fault simulation with V0 and obtain Fd1, which is
a set of faults detected by only one test vector in V0.
3) Collect test vectors that detect faults in Fd1, add the test
vectors to Vs, and remove the test vectors from V0.
4) Perform fault simulation with Vs and select np fault pairs
among the fault pairs that are not distinguished by any v ∈ V s.
Let P be a set of the selected fault pairs.
5) Perform fault simulation with V0 and P in order to construct
an FDIST.
6) If no fault pairs in P are distinguished by any v ∈ V0, then
go to 8).
7) Select test vectors among V0 that distinguish fault pair
p ∈ P by solving the set-cover problem, add the selected test
vectors to Vs, remove them from V0, and go to 4).
8) Obtain all the fault pairs that are not distinguished by v ∈
Vs. Let P be a set of selected fault pairs.
9) Make an FDIST with V0 and P .
10) Select test vectors among V0 that distinguish fault pair
p ∈ P and add them to Vs. (Vs is a resultant compacted test

set.)

In steps 2) and 3), test vectors that detect the faults detected
once are collected. Theorem 1 implies that all such test vectors
are necessary even in the compacted test set for diagnosis, pre-
cisely speaking, all except for one test vector are necessary. In
steps 4) and 5), np fault pairs are selected among the fault pairs
that are not distinguished by the currently obtained test set, and
an FDIST is constructed, where np is a predetermined num-
ber. After the FDIST is constructed, approximately minimum
number of test vectors can be obtained by solving the set-cover
problem so that they can distinguish the selected fault pairs in
step 7). This process is repeated until no fault pair among the
selected fault pairs is distinguished by the remaining vectors in
V0, in step 6). Usually, set P includes faults distinguished and
not distinguished by V0. After selecting sufficiently many test
vectors, P includes no fault pairs distinguished by V0. In such
a case, the process goes to step 8), where fault pairs undis-
tinguished by Vs are all collected. By selecting test vectors
that can distinguish such fault pairs except for indistinguish-
able ones, the obtained test set Vs can distinguish all the fault
pairs distinguished by the initial V0.

Example1: Consider a test set V0 = {v1, v2, v3, v4, v5}
and faults f1, f2, f3, f4, f5, f6 and f7 that are detected by
v ∈ V0. Table I shows an FDETT for this example. (Note
that DCOMP-C does not use such a table explicitly.) Con-
sider the case where DCOMP-C is applied to V0. In step
2), faults that are detected only by one test vector are col-
lected, and Fd1 = {f1} is obtained. In step 3), test vectors
that detect the fault in Fd1 are collected, and Vs = {v1} is
obtained. In step 4), fault simulation is performed with v1,
and np fault pairs are selected among the fault pairs that are
not distinguished by v1. Now suppose that np is set to 2
and P = {< f2, f3 >, < f4, f5 >} is obtained. In step
5), fault simulation is performed with V0 = {v2, v3, v4, v5},
and an FDIST is constructed. In step 7), the set-cover prob-
lem is solved. In this case, suppose that v2 and v3 are se-
lected. The process goes to step 4) again. Next suppose that
P = {< f3, f4 >, < f5, f6 >} is obtained in step 4). In step
6), since no fault pair in P is distinguished by V0, the process
goes to step 8). Fault pairs that are not distinguished by current
Vs are all collected, and P = {< f3, f7 >, < f4, f7 >} is ob-
tained. In step 9), the FDIST is constructed, and in step 10), v5

is selected. Finally the compacted test set Vs = {v1, v2, v3, v5}
is obtained.

C. Experimental results

We implemented DCOMP-C in C programming language
and ran it on a Pentium IV 2.6GHz platform targeting IS-
CAS’85 and ISCAS’89 (scan version) benchmark circuits. In
these experiments, 1024 random vectors were used as a given
test set. Table II shows results by DCOMP-C, where name of
the circuit (circuit), fault coverage (cov), the number of fault
pairs (pair), the number of undistinguished fault pairs (undis),
the number of compacted test vectors (vect), the percentage

TABLE I
EXAMPLE OF AN FDETT
v1 v2 v3 v4 v5

f1 d
f2 d d d
f3 d d
f4 d d
f5 d d
f6 d d
f7 d d d

d: detected

of removed test vectors for the number of original test vectors
(%) and CPU time in seconds (cpu) are shown. The prede-
termined number np was set to 100,000 and 1,000. It is evi-
dent from these results that the compaction algorithm provides
substantial test compaction without loss of diagnostic resolu-
tion. In comparison of results between np = 100, 000 and
np = 1, 000, fewer test vectors and shorter CPU time are
achieved with np = 100, 000 than np = 1, 000. For the circuit
s38584, the test vectors were compacted to 509 test vectors,
while handling over half a billion fault pairs. In general, as the
table shows, the proposed algorithm can deal with circuits hav-
ing several hundred million fault pairs in an efficient manner.

IV. COMPACTION FOR SEQUENTIAL CIRCUITS

A. Reverse order restoration

Test compaction for sequential circuits is substantially more
difficult than that for combinational circuits. In case of sequen-
tial circuits when a test vector is deleted from a test sequence,
faults detected by the original test sequence may become un-
detected by the compacted test sequence as well as new faults
may be detected by the compacted sequence. Therefore in or-
der to keep fault coverage and diagnostic resolution as high as
the original one, fault simulation must be performed or state
transition must be checked. Reverse order restoration (ROR)
has been proposed [3] as an efficient detection oriented test
compaction method. ROR first removes all the test vectors ex-
cept for initialization vectors. Next it restores test vectors so
that a subset of all faults are detected. The restoration is re-
peated until all the originally detected faults are detected. As
this method forms the basis of our approach, we briefly explain
how ROR works through the following example.

Example 2: Suppose that a test sequence T0 consisting of
seven vectors v1, v2, ..., v7 is given. Sequence T0 detects 3
faults f1, f2 and f3, and f1, f2 and f3 are detected by v3, v4

and v7, respectively. Table III shows an FDETT for T0. ROR
first removes all the test vectors except for the initialization
vectors. Now suppose that v1 and v2 are restored. Compacted
test sequence Tc initially consists of v1 v2. Next, faults that
are detected at the latest time are collected. In this example
this is fault f3 which is detected by the test vector v7. There-
fore, v7 is restored. After that, fault simulation is performed to

TABLE II
RESULTS BY DCOMP-C

np = 100, 000 np = 1, 000
circuit cov pair undis vect % cpu(s) vect % cpu(s)

c432 97.52 1.30 ∗ 105 93 68 93.4 0.1 71 93.1 0.1
c880 97.52 4.45 ∗ 105 104 63 93.8 0.2 70 93.2 0.3

c1355 98.57 1.25 ∗ 106 878 88 91.4 0.8 89 91.3 1.3
c1908 94.12 1.84 ∗ 106 1208 139 86.4 2.1 144 85.9 2.8
c2670 84.40 3.08 ∗ 106 1838 79 92.3 2.8 79 92.3 3.9
c3540 94.49 5.95 ∗ 106 1585 205 80.0 10.6 207 79.8 16.6
c5315 98.83 1.57 ∗ 107 1579 188 81.6 15.4 199 80.6 25.1
c6288 99.56 2.97 ∗ 107 4491 37 96.4 1659 38 96.3 3560
c7552 91.97 2.76 ∗ 107 4438 198 80.7 33.8 208 79.7 110.5
s5378 94.55 9.47 ∗ 106 1802 231 77.4 12.2 245 76.1 21.0
s9234 73.86 1.31 ∗ 107 6798 246 76.0 36.1 261 74.5 100.6

s15850 85.05 4.97 ∗ 107 9368 261 74.5 141.8 279 72.8 389.4
s35932 89.81 6.16 ∗ 108 16655 91 91.1 962.2 96 90.6 2023
s38417 86.58 3.64 ∗ 108 12480 436 57.4 1848 453 55.8 7021
s38584 90.60 5.41 ∗ 108 31607 509 50.3 2069 537 47.6 10030

check if Tc = v1 v2 v7 detects f3. If it does, fault simulation
is performed again in order to drop faults detected by T c from
the fault list. Otherwise, test vector v6 is restored, and it is
checked whether Tc = v1 v2 v6 v7 detects f3. After f3 is de-
tected by Tc, test vectors are restored while targeting fault f2.
These steps are repeated until all the target faults are detected.

TABLE III
EXAMPLE OF AN FDETT

v1 v2 v3 v4 v5 v6 v7

f1 d
f2 d
f3 d

d: detected

B. Basic algorithm

We now present a diagnostic compaction algorithm for se-
quential circuits using ROR, called DCOMP-S. Similar to the
detection-oriented ROR, DCOMP-S first removes all the test
vectors, except for initialization vectors. After that, it restores
test vectors such that a targeted subset of fault pairs are distin-
guished. The restoration is repeated until all fault pairs distin-
guished by the original test sequence are distinguished. The
steps of the algorithm are explained following the algorithm
and an example is given to further clarify the steps.

Algorithm: DCOMP-S
/* T0: a given test sequence */
/* vi: i-th test vector in T0 */
/* F0: a set of faults detected by T0 */
/* FP0: a set of fault pairs that are constructed from f ∈ F0

and distinguished by T0 */
1) Set Tc = φ and FPtrg = φ.
2) Restore test vectors from v1 to vinit as initialization vectors.

3) Drop fault pairs distinguished by Tc from FP0.
4) Find the latest time among the times when fault pairs in FP0

are distinguished. Let the time to be t.
5) Add fault pairs that are distinguished by vt to FPtrg.
6) Restore vt to Tc.
7) Check whether fault pairs in FPtrg are distinguished by Tc.
8) If at least one fault pair is not distinguished, then t = t − 1
and go to 5).
9) Drop fault pairs distinguished by Tc from FP0, and set
FPtrg = φ.
10) If FP0 �= φ, then go to 5).

First, the algorithm removes all the test vectors and restores
init test vectors as initialization vectors, where init is a prede-
termined number and it is usually a small number. At this time,
compacted test sequence Tc = v1 v2 . . . vinit. Fault pairs that
are distinguished by Tc are dropped from FP0 in step 3). Next
the algorithm investigates the time when each fault pair is dis-
tinguished in T0, and finds the latest time t among them in step
4). Note that when a fault pair is distinguished at more than
one time, only the latest time is used and all other times are
ignored. Fault pairs that are distinguished by vt in T0 are col-
lected in step 5), and they are targeted for vector restoration.
In step 6), test vector vt is restored to Tc. If FPtrg includes
only fault pairs distinguished by vt, then vt is concatenated at
the end of Tc. Otherwise, vt is inserted at the one time earlier
position than vt+1 in Tc. If the current Tc does not distinguish
at least one fault pair in FPtrg, time t is decreased in step 8)
and vt is further restored in step 6). If Tc distinguishes all the
pairs in FPtrg, other fault pairs that are distinguished by Tc

are dropped from FP0 in step 9).

Example 3: Suppose that a test sequence T0 consisting
of 7 vectors is given, and that T0 distinguishes 5 fault pairs
fp1, fp2, fp3, fp4 and fp5. Table IV shows an FDIST of T0.

TABLE IV
AN FDIST OF T0

v1 v2 v3 v4 v5 v6 v7
fp1 D
fp2 D
fp3 D
fp4 D
fp5 D

D: distinguished

Now suppose that v1 and v2 are first restored as initialization
vectors. Fault simulation is performed to check if each fault
pair is distinguished by Tc = v1 v2. In this case no fault pair
is distinguished. Next the time when each fault pair is distin-
guished is investigated, and it is found that the latest one t is
set to 7 in step 4). In step 5) fault pairs distinguished by v7

are collected, and FPtrg = {fp1} is obtained. Vector v7 is re-
stored in step 6), and it is checked whether fp1 is distinguished
by Tc = v1 v2 v7. If it is not distinguished, then t is decreased
and the process goes to step 5). In step 5), fault pair fp2 is
added to FPtrg, and in step 6), v6 is restored. It is inserted
between v2 and v7, thus Tc = v1 v2 v6 v7 is obtained. In step
7), it is checked whether fp1 and fp2 are both distinguished
by Tc. If both of them are distinguished, then it is checked
whether other fault pairs fp3, fp4 and fp5 are distinguished
by Tc. In this case suppose that fp4 and fp5 are distinguished.
Next the process goes to step 4), and t = 4 is obtained, be-
cause the remaining fault pair fp3 is distinguished by v4 in T0.
In step 6), v4 is restored, and it is concatenated at the end of
Tc. It is checked whether fp3 is distinguished by Tc in step 7).
If it is distinguished, then the process is terminated and finally
Tc = v1 v2 v6 v7 v4 is obtained.

C. Results by DCOMP-S

We implemented DCOMP-S algorithm using C program-
ming language, and experimented with ISCAS’89 benchmark
circuits on a Pentium IV 2.6GHz platform. We used test
sequences generated by HITEC[6] as initially given test se-
quences. Table V shows the results by DCOMP-S. In the ta-
ble, circuit name (circuit), the original test length (len), com-
pacted test length (comp), the percentage of removed test vec-
tors for the original test length (%), the total number of target
fault pairs (pair), the number of fault pairs undistinguished by
the original test sequences (undis) and CPU time in seconds
(cpu) are given. Variable init was set to 2% of the original
test length. It is found that for every circuit, more than 10%
test vectors could be removed from the original test sequences.
In the best case, for s526, about 72% test vectors could be re-
moved. These are all relatively small circuits. DCOMP-C can
not be used for large circuits as the size of the FDIST will be
too large to store. This aspect is dealt in the next subsection.

TABLE V
RESULTS BY DCOMP-S

circuit len comp % pair undis cpu(s)
s344 127 82 35.4 50721 367 0.3
s349 134 85 36.6 52650 402 0.3
s382 2074 846 59.2 48516 1806 16.4
s386 286 164 42.7 49141 106 0.7
s400 2214 845 61.8 61075 2343 24.9
s444 2240 956 57.3 75466 2994 21.3
s526 2258 631 72.1 64980 6617 19.4
s641 209 123 41.1 80601 129 0.7
s713 173 113 34.7 113050 383 0.8
s820 1115 745 33.2 330078 284 33.9
s832 1137 761 33.1 333336 270 42.6

s1196 435 295 32.2 766941 167 18.2
s1238 475 316 33.5 822403 191 22.9
s1423 150 134 10.7 261003 3823 4.9
s1488 1170 787 32.7 1041846 355 75.7
s1494 1245 772 38.0 1054878 411 106.2

D. Algorithm applicable for large circuits

DCOMP-S algorithm needs the information of all the fault
pairs that are distinguished by the original test sequence, and
hence can compact test sequences only for small circuits. For
large circuits, FPtrg , a set of target fault pairs, can not be
stored. We now propose another algorithm applicable for large
circuits, called DCOMP-LS. DCOMP-LS has similar steps as
DCOMP-S. It first constructs a compacted test sequence Tc

by selecting S test vectors v1 to vS among the original test
sequence T0, where S is predetermined. Fault simulation is
performed in order to collect fault pairs that are distinguished
by T0 but not distinguished by the initial Tc. The set of the
collected fault pairs is referred to by FPtrg . By making S
large, FPtrg can be small enough to store in a computer mem-
ory. Although DCOMP-S requires the list of all the target fault
pairs, denoted by FP0, DCOMP-LS requires only a subset of
fault pairs FPtrg, which can be made much smaller than FP0.
Only the fault pairs in FPtrg are targeted during vector restora-
tion. Next test vectors are restored from T0 such that fault pairs
in FPtrg are all distinguished. DCOMP-LS algorithm is de-
scribed below.

Algorithm: DCOMP-LS
/* T0: a given test sequence */
1) Set Tc = φ.
2) Restore test vectors from v1 to vS in Tc.
3) Perform fault simulation, and collect fault pairs distin-
guished by T0 but not distinguished by Tc. Let FPtrg be a
set of the collected fault pairs.
4) Same as step 4) to 10) in DCOMP-S algorithm.

E. Results by DCOMP-LS

DCOMP-LS algorithm was implemented and experiments
were performed on ISCAS’ 89 benchmark circuits. First we
compare the results by DCOMP-LS with those by DCOMP-

S. In this experiment, test sequences generated by HITEC[6]
were also used as original test sequence, and variable S in
DCOMP-LS was set to 50% of the original test length. Table
VI shows the results, where column “S” and “LS” show the re-
sults by DCOMP-S and DCOMP-LS, respectively. The results
by DCOMP-S are the same as in Table V. Columns “com-
pacted vectors” show the number of compacted test vectors,
column “%” shows the percentage of the number of deleted
test vectors for the original test length, and columns “cpu(s)”
show CPU times in seconds. Although DCOMP-LS could not
achieve as short test sequences as DCOMP-S, it still deleted
about 3% to 35% test vectors. CPU times by DCOMP-LS
were shorter than DCOMP-S for most of circuits. For s382,
s400 and s444, DCOMP-LS restored much more test vectors
than DCOMP-S, and this increased the fault simulation time,
and thus increased CPU time.

TABLE VI
COMPARISON BETWEEN DCOMP-S AND DCOMP-LS

compacted vectors cpu(s)
circuit S % LS % S LS
s344 82 35.4 98 22.8 0.3 0.1
s349 85 36.6 111 17.2 0.3 0.1
s382 846 59.2 1580 23.8 16.4 18.5
s386 164 42.7 233 18.5 0.7 0.6
s400 845 61.8 1865 15.8 24.9 42.4
s444 956 57.3 1648 26.4 21.3 34.4
s526 631 72.1 1468 35.0 19.4 19.6
s641 123 41.1 177 15.3 0.7 0.4
s713 113 34.7 154 11.0 0.8 0.4
s820 745 33.2 940 15.7 33.9 19.1
s832 761 33.1 998 12.2 42.6 31.5
s1196 295 32.2 366 15.9 18.2 12.5
s1238 316 33.5 398 16.2 22.9 17.7
s1423 134 10.7 145 3.3 4.9 2.6
s1488 787 32.7 992 15.2 75.7 35.2
s1494 772 38.0 1074 13.7 106.2 47.1

TABLE VII
RESULTS BY DCOMP-LS FOR LARGE CIRCUITS

circuit len comp % pair undis cpu(s)

s5378 912 839 8.0 5.064 ∗ 106 5.912 ∗ 103 20.0
s35932 496 496 0.0 6.090 ∗ 108 6.641 ∗ 106 3409
s35932 546 536 1.8 6.098 ∗ 108 6.641 ∗ 106 2502
s35932 1024 921 10.1 3.753 ∗ 108 1.121 ∗ 108 3522

Table VII shows the results for s5378 and s35932. In the
second and the third row, the results for HITEC test sequences
are shown, in the fourth row, the results for HITEC sequence
plus 50 random test vectors are shown, and in the fifth row,
the results for 5 initialization vectors plus 1019 random test
vectors are shown. Variable S in DCOMP-LS was set to
90% of the original test length. Each column in Table VII
has the same meaning as that in Table V. For s5378 with the
HITEC sequence and s35932 with initialization vectors plus

random vectors, 8.0% and 10.1% test vectors could be deleted
by DCOMP-LS, respectively, but for s35932 with only HITEC
sequence, no compaction was achieved. It should be noted,
however, that the proposed algorithm can deal with large cir-
cuits that have more than 600 million fault pairs.

V. CONCLUSION

In this paper, we proposed compaction algorithms of diag-
nostic test vectors for combinational and sequential circuits.
The algorithm for combinational circuits uses an FDIST table
and finds a subset of test vectors that achieve the same diag-
nostic resolution as that for the original test set. Since for large
circuits a complete FDIST can not be stored, the algorithm uses
a partial FDIST and repeats selection of test vectors.

The algorithm for sequential circuits uses a ROR technique.
Since the original method needs a complete list of target fault
pairs, it is difficult to apply it to large sequential circuits.
Therefore, we developed heuristics for use in the improved al-
gorithm for reducing the target fault pairs, and it is applicable
to large circuits.

REFERENCES

[1] D. H. Baik, Y. C. Kim, K. K. Saluja, and V. D. Agrawal, “Exclu-
sive test and its applications to fault diagnosis,” Proc. Int. Conf.
on VLSI Design, pp. 143–148, January 2003.

[2] J. G.-Dastidar, d. Das and N. A. Touba, “Fault Diagnosis in Scan-
based BIST using both Time and Space Information,” in Proc.
Int. Test Conf., pp. 95–102, 1999.

[3] R. Guo, I. Pomeranz, and S. M. Reddy, “On speed-up vector
restoration based static compaction of test sequences for sequen-
tial circuits,” in Proc. Asian Test Sympo., pp. 467–471, Dec.
1998.

[4] Y. Higami, S. Kajihara, H. Ichihara and Y. Takamatsu, “Test Cost
Reduction for Large Circuits: Reduction of Test Data Volume
and Test Application Time,” in Wiley Interscience Journal of Sys-
tems and Computers in Japan, vol. 36, No. 6, pp. 69-83, 2005.

[5] W. H. Kautz, ”Fault Testing and Diagnosis in Combinational
Digital Circuits,” in IEEE Trans. on Computers, vol. EC-15, pp
352-366, April 1968.

[6] T. M. Niermann and J. H.Patel, “HITEC: A test generation pack-
age for sequential circuits,” in Proc. European Conf. on Design
Automation, pp. 214–218, Feb. 1991.

[7] I. Pomeranz, S. Venkataraman, and S. M. Reddy, “Z-DFD:
Design-for-diagnosability based on the concept of Z-detection,”
in Proc. Int. Test Conf., pp. 489–497, 2004.

[8] Y. Shao, R. Guo, I. Pomeranz, and S. M. Reddy, “The effects of
test compaction on fault diagnosis,” in Proc. Int. Test Conf., pp.
1083–1089, 1999.

[9] H. Takahashi, Y. Yamamoto, Y. Higami, and Y. Takamatsu, “En-
hancing BIST Based Single/Multiple Stuck-at Fault Diagnosis by
Ambiguous Test Set,” in Proc. Asian Test Symp., pp. 216–212,
2004.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

