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Abstract— In this paper, we give the necessary and

sufficient condition that all nets can be connected by

monotonic routes when a net consists of a finger and a

ball and fingers are on the two parallel boundaries of

the Ball Grid Array package, and propose a monotonic

routing method based on this condition. Moreover, we

give a necessary condition and a sufficient condition

when fingers are on the two orthogonal boundaries,

and propose a monotonic routing method based on

the necessary condition.

I. Introduction

Ball Grid Array (BGA) packages as shown in Fig. 1, in
which I/O pins are placed in a grid array pattern, realize
a number of connections between chips and the printed
circuit board (PCB). Bonding fingers are connected to
chips, and solder balls are I/O pins of the package in a
grid array pattern. Since the structure of BGA packages
is simple, many routes can be realized in few layers in the
packages if connection requirements and routing patterns
are suitable for the structure. In current package routing
design, the designer generates satisfactory routing pat-
terns by using the properties of connection requirements
effectively. But it takes much time for large packages since
the huge number of routes needs to be realized. So, the
demand for automation of package routing is increasing.
In this paper, we consider routing for a single-layer BGA
package as the first step for BGA packages routing.

In the literature on for planar routing, there are a lot
of problem formulations and approaches. For example,
problem formulations for single-row and double-row rout-
ing, where terminals are placed on single-row and double-
row, are proposed in [1] and [2], respectively. Though
these problem formulations are similar to problems for
single-layer BGA packages, approaches for them are not
enough to obtain satisfactory routes for BGA packages.
Actually, many parts of the routing process for BGA pack-
ages are realized manually with support tools.

In order to obtain a satisfactory routing pattern, the
analysis of manual routing patterns is necessary. In the
routing pattern by manual, though routes may snake,

most of them do not go back. The route which do not
go back are said to be monotonic. In monotonic routing
patterns, it is expected that the total wire length tends
to be small, and it is easy to decide the route of each
net. But there exists a netlist that cannot be realized by
monotonic routes in one layer with any design rule. There
also exists a netlist in which a design rule may be satisfied
if non-monotonic routes are allowed. In these cases, non-
monotonic routes are needed. Though we aim to realize
nets in one layer under a certain design rule, in this paper
we propose an approach in which all nets are realized by
monotonic routes. The obtained monotonic routes will be
an initial solution in iterative improvement to satisfy the
design rule.

In literatures for BGA package, several approaches fo-
cusing on monotonic routes were proposed. The first ap-
proach for single-layer BGA packages was proposed in [3]
and it was improved in [4]. Their approach generates opti-
mal uniform distribution of wire by generating connection
requirements. An approach for 2-layer BGA packages was
proposed in [5]. It is given connection requirements, and
optimizes the total wire length and the wire congestion
by improving via assignment.

Also, several approaches considering non-monotonic
routes were proposed. The approach for multilayer Pin
Grid Array (PGA) and Ball Grid Array packages were
proposed in [6] and [7], respectively. They assign each
net to a layer, and realize nets in respective layer.

All of them divide the package into several sectors, and
nets are realized within each sector. Basically, each sector
consists of bonding fingers on the same boundary of the
package and solder balls, and a net in each sector consists
of a bonding finger and a solder ball. Namely, their ap-
proach cannot be applied if it is impossible to divide the
package into such sectors. So, we propose an approach for
the region consisting of solder balls and bonding fingers
on two boundaries of the package as shown in Fig. 2.

Section II introduces routing model, and gives some
definitions for analysis. Connection requirements are the
set of nets and are called a netlist. A parallel netlist, in
which bonding fingers are on two parallel boundaries of
the package, is shown in Fig. 2(a). In section III, we give
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Fig. 2. Monotonic Netlists Decision Problem

the necessary and sufficient condition that all nets in the
parallel netlist can be realized by monotonic routes, and
propose a monotonic routing method based on this condi-
tion. An orthogonal netlist, in which bonding fingers are
on two orthogonal boundaries of the package, is shown in
Fig. 2(b). In section IV, we give a necessary condition
and a sufficient condition that all nets in the orthogonal
netlist can be realized by monotonic routes, and propose
a monotonic routing method based on the proposed nec-
essary condition. There may exist more than one mono-
tonic routing pattern that corresponds to a parallel netlist
and an orthogonal netlist, respectively. How to select one
among them that meets the design rule, if it exists, is in
our future works. Since it is not guaranteed that our rout-
ing method for orthogonal netlists completes routing, we
implement our method for orthogonal netlists with C++
language, and applied it to orthogonal netlists in section
V. Section VI concludes this paper.

II. Preliminary

A. Definitions

In this paper, we assume that the BGA package has
connection requirements between bounding fingers placed
on boundaries of the package and solder balls placed in a
grid array pattern. A solder ball, which we will refer to
as a ball, is an I/O pin of the package and is connected
to the PCB. A bonding finger, which we will refer to as
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a finger, is connected to the chip by a bonding wire. In
this paper, we assume that all nets are two-terminal nets
connecting a finger to a ball. A netlist is the set of such
nets and is represented by N. We refer to a finger placed
on a bottom boundary of the package as a bottom finger,
and refer to a net which consists of a bottom finger and
a ball as a bottom net. Similarly, a top net and a left
net are defined. Bottom nets and top nets are labeled
according to the order of fingers from the left to the right
as b1, b2, b3, . . . and t1, t2, t3, . . ., respectively. Left nets are
labeled according to the order of fingers from the bottom
to the top as l1, l2, l3, . . . . Let B,T and L be the sets of
bottom, top and left nets, respectively.

We define the relation between nets according to their
ball positions as shown in Fig. 3. Let (xa, ya) and (xb, yb)
be the coordinates of the balls of nets a and b, respectively.
The relation between a and b is defined as follows.

• If xa < xb, ya = yb then a is said to be to the left of
b and the relation is represented by aHb.

• If xa = xb, ya < yb then a is said to be below b and
the relation is represented by aVb.

• If xa < xb, ya < yb then a is said to be to the lower-
left of b and the relation is represented by aSb.

• If xa < xb, ya > yb then a is said to be to the upper-
left of b and the relation is represented by aSb.

• bHa, bVa, bS
a and bSa are defined symmetrically.

B. Order Graphs

We use some order graphs where a vertex v corresponds
to a net v ∈ N. The edge from a vertex u to a vertex v

is represented by the ordered pair (u, v). In this paper,
every order graph has edges corresponding to the order
of fingers in each boundary. Eb

f , Et
f and El

f are the sets
of edges corresponding to the order in bottom, top and
left boundaries, respectively. Formally, they are given as
follows:

Eb
f = {(bi, bj) | bi, bj ∈ B, i < j},

Et
f = {(ti, tj) | ti, tj ∈ T, i < j},

El
f = {(li, lj) | li, lj ∈ L, i < j}.

C. Monotonic Routes

A boundary, where the finger of a net is placed, is called
the finger boundary of the net. For example the finger
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Fig. 4. Monotonic and non-monotonic routes

boundary of b1 in Fig. 2(a) is the bottom boundary. In
this paper, a monotonic route and a non-monotonic route
are defined as follows:

Definition 1 If the route from a finger to a ball intersects

any straight lines running parallel with the finger bound-

ary at most once, then the route is said to be monotonic.

Otherwise the route is said to be non-monotonic.

Let R(v) be the route of a net v ∈ N. All routes are
monotonic in Fig. 4(a), but R(b6) is non-monotonic in
Fig. 4(b).

If all nets in a netlist can be realized by monotonic
routes without intersecting each other, the netlist is said
to be monotonic. A netlist is said to be single if the fingers
of nets in the netlist are placed on the same boundary.

Consider that nets consist of bottom fingers and balls as
shown in Fig. 4. A single netlist is monotonic if and only
if nets on each row are in increasing order. Since a netlist
in Fig. 4(a) satisfies this condition, it is monotonic. On
the other hand, either R(b6) or R(b9) is non-monotonic
in Fig. 4(b) since b6 and b9 are in decreasing order. A
monotonic routing pattern for a monotonic single netlist,
in which all routes are monotonic, is unique. Similar ob-
servations are found in [3, 4, 5].

Whether a single netlist is monotonic is decided by the
order graph GS . E(GS) consists of Eb

f and edges that
correspond to the order of nets on each row. For example
in Fig. 4(a), GS has edges (b2, b5), (b2, b8) and (b5, b8) cor-
responding to the bottom row. Similarly, GS has edges
for other rows. Clearly, GS is cyclic if and only if there
exist nets on a row which are in decreasing order, such as
b6 and b9 in Fig. 4 (b).

III. Parallel Netlists

A parallel netlist is a netlist in which fingers are placed
on the two parallel boundaries of the package. In this
section, we analyze parallel netlists.

A. Monotonic Parallel Netlists

The Monotonic Parallel Netlist (MPN) Decision Prob-
lem is defined as follows:
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Fig. 5. MPN Decision Problem

Definition 2 MPN Decision Problem

Input:

A parallel netlist.

Question:

Is it possible to realize all connection requirements by

monotonic routes?

An example of MPN Decision Problem is given in
Fig. 2(a). In this case, N = B ∪ T. The necessary and
sufficient condition for being monotonic is that nets on
each row are in increasing order without distinguishing
bottom and top nets. This condition is represented by
the order graph GP . E(GP ) consists of Eb

f , Et
f and edges

corresponding to the order of nets on each row. In Fig. 5,
GP has edges (b2, t4), (b2, b5) and (t4, b5) corresponding to
the bottom row. Similarly, GP has edges for other rows.
In Fig. 5, the transitive edges like (b2, b5) are omitted. A
parallel netlist is monotonic if and only if GP is acyclic.

Theorem 1 A parallel netlist is monotonic if and only if

the order graph GP is acyclic, where E(GP ) = Eb
f ∪Et

f ∪
Ep and Ep = {(x, y) | x, y ∈ N, xHy}.

Proof. If the order graph GP is acyclic, then an order
can be obtained by GP . A monotonic routing pattern
can be realized according to the order as shown in section
III.B. Conversely, consider that GP has a cycle C. If C

consists of only bottom nets, then non-monotonic routes
are needed since it means that bottom nets are in decreas-
ing order on a row. The same discussion is possible for
top nets. So we assume that C consists of bottom nets
and top nets. Without loss of generality, we assume that
C has (bj , tp) and (tq, bi), where bi, bj ∈ B (i < j) and
tp, tq ∈ T (p < q). Since bj

Htp
and tq

Hbi
, non-monotonic

routes are needed by at least one of them as shown in
Fig. 6. �

B. A Parallel Routing Method

A partial order is defined by GP , and some orders are
obtained by the partial order. This order corresponds to
an order such that the sources in GP are removed one by
one. For example, the following order

t1 → b1 → b2 → t2 → b3 → b4 → t3 → t4 → b5
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is obtained for Fig. 5. According to the obtained order,
we put virtual fingers on bottom boundary of the package
for top nets and put virtual fingers on top boundary for
bottom nets. All nets can be realized because we can con-
nect a finger to its virtual finger via its ball by monotonic
route one by one from the left. An example of solution
are given in Fig. 7.

For a monotonic parallel netlist, there are several mono-
tonic routing patterns since the order obtained by GP is
not unique in general. The selection of the order that
reduces the density is in our future work.

IV. Orthogonal Netlists

An orthogonal netlist is a netlist in which fingers are
placed on the two orthogonal boundaries of the package.
In this section, we analyze orthogonal netlists.

A. Monotonic Orthogonal Netlists

The Monotonic Orthogonal Netlist (MON) Decision
Problem is defined as follows:

Definition 3 MON Decision Problem

Input:

An orthogonal netlist.

Question:

Is it possible to realize all connection requirements by

monotonic routes?

An example of MON Decision Problem is given in
Fig. 2(b). In this case, N = B ∪ L.

A.1 A Sufficient Condition

An orthogonal netlist is monotonic if the order graph Gs,
which has edges corresponding to the order of nets on each
row and column without distinguishing bottom and left
nets, is acyclic. According to the order given by Gs, we
put virtual fingers. Nets are realized by connecting each
finger to its virtual finger via its ball from the lower left.
Examples of MON Decision Problem and it’s monotonic
routing pattern are given in Fig. 8.
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Theorem 2 An orthogonal netlist is monotonic if the or-

der graph Gs is acyclic, where E(Gs) = Eb
f ∪El

f ∪Es and

Es = {(x, y) | x, y ∈ N, xHy ∨ xVy}.

If b2 in the second column in Fig. 8 is swapped for b3,
Gs becomes cyclic. But, the netlist is monotonic since
a monotonic routing pattern for the netlist is given in
Fig. 2(b). So, this condition is not a necessary condition.

A.2 A Necessary Condition

A route can be regarded as the set of points. Let b be a
bottom net and v be a net. If there exists a point (xb, yb)
on R(b) and a point (xv, yv) on R(v) such that xb < xv

and yb = yv, then R(v) is said to be to the right of R(b).
In other words, R(v) is said to be to the right of R(b) if
there exists a point on R(v) which is to the right of R(b).
Similarly, R(v) for net v is said to be above R(l) for left
nets if there exists a point on R(v) which is above R(l).

Theorem 3 Let GR be the directed graph constructed for

a routing pattern, where the vertices correspond to the

nets, and edge set is defined as follows:

• An edge (b, v) (b ∈ B, v ∈ N) exists if and only if
R(v) is to the right of R(b).

• An edge (l, v) (l ∈ L, v ∈ N) exists if and only if R(v)
is above R(l).

If the routing pattern is monotonic, then GR is acyclic.

Proof. Consider that GR is cyclic. Let C be a cycle
in GR. The cycle cannot consist of only bottom nets or
only left nets since there is no non-monotonic route. So,
there is an edge from a bottom net to a left net and an
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edge from a left net to a bottom net. Without loss of
generality, we assume that C includes (bj , lp) and (lq, bi),
and that R(bi) is above R(lq), where bi, bj ∈ B (i ≤ j)
and lp, lq ∈ L (p ≤ q). See Fig. 9. Since all routes are
monotonic, the ball of bj and R(bj) need to exist in region
O shown in Fig. 9. Similarly, the ball of lp and R(lp) need
to exist in region I. Therefore, R(lp) is not to the right of
R(bj), since xi < xo if yi = yo where (xi, yi) and (xo, yo)
are points in region I and O, respectively. However, GR

has the edge (bj , lp). It contradicts definition of E(GR).
So, GR is acyclic if all routes are monotonic. �

GR is not defined when a monotonic routing pattern
is not given. However, depending on the relationship be-
tween bottom net b and left net l, there are cases such
that it is decided that R(l) is to the right of R(b) or R(b)
is above R(l) in any monotonic routing pattern. In such
cases, (b, l) or (l, b) exist in GR for any monotonic routing
pattern. A graph where only such edges exist is the graph
obtained from GR by removing some of edges. Therefore,
we consider such order graph Gn. Clearly, an orthogonal
netlist is not monotonic if Gn is cyclic.

For example, if R(b) and R(l) are monotonic and bHl

as shown in Fig. 10, then an edge (b, l) is in Gn since R(l)
is always to the right of R(b). Similarly, R(b2) is always
above R(l) if three balls of nets b1, b2 and l are placed as
shown in Fig. 11(a). In Fig. 11(b), R(b1) and R(b2) are
always above R(l1).

A necessary condition is given focusing on two or three
nets. Gn can be constructed by necessary conditions for
being monotonic.

Theorem 4 An orthogonal netlist is not monotonic if the

order graph Gn is cyclic, where E(Gn) = Eb
f ∪El

f ∪Eh ∪

Ev ∪ Eb
1 ∪ El

1 ∪ Eb
2 ∪ El

2,

Eh = {(b, x) | bHx},
Ev = {(l, x) | lVx},
Eb

1 = {(l, bj) |
bj Sbi

∧ (lHbi
∨ lS

bi) ∧ bj Sl},
El

1 = {(b, lj) |
liSlj ∧ (bVli ∨ bS

li) ∧ bSlj},

Eb
2 = {(l, bi) | bj

Sbi ∧ lS
bi ∧ (bj

Hl ∨
bj Sl ∨ lVbj

)},
El

2 = {(b, li) | lj S
li ∧ bS

li ∧ (bHlj ∨
bSlj ∨ lj Vb)},

where x ∈ N, b, bi, bj ∈ B, l, li, lj ∈ L and i < j.

In addition, there are alternative constraints. When
three balls of nets b1, b2 and l1 are placed as shown in
Fig. 12, R(l1) is non-monotonic if R(l1) is to the right
of R(b1) and below R(b2). So R(l1) is either below or to

b1b1b1

b2b2b2

l1l1l1

Fig. 12. An example of alternative constraints (l1, b1)+©(b2, l1)

the right of R(b1) and R(b2). Therefore, either (l1, b1) or
(b2, l1) should exist in Gn. These constraint is represented
by (l1, b1)+©(b2, l1).

There exists an alternative constraint (l, bi)+©(bj , l) if
(bj

Vbi
∨ bj

Sbi) ∧ biSl ∧
bj Sl, where bi, bj ∈ B (i < j) and

l ∈ L. Similarly, alternative constraints for two left nets
and a bottom net are defined.

Assume that there is an alternative constraint
(l, bi)+©(bj, l). If Gn becomes cyclic when (l, bi) is added
in Gn, (bj , l) should be selected. But if Gn does not be-
come cyclic for either edge, then it is not easy to decide
which is to be selected. When there are some alternative
constraints, an orthogonal netlist is not monotonic if Gn

are cyclic for all combinations of alternative constrains.
This constraints should be analyzed thoroughly in our fu-
ture work since the number of combinations is exponential
for the number of alternative constraints.

B. An Orthogonal Routing Method

An initial order graph is constructed by necessary con-
ditions without alternative constraints. If decision is pos-
sible for an alternative constraint, the corresponding edge
is added. The order of nets is determined by Gn by remov-
ing the source one by one. The order graph is updated
if removal of the source forces an alternative constraint
and the decision is possible for it. In this method, the
updated order graph might become cyclic depending on
the selection of source.

According to the obtained order, fingers are connected
to balls by monotonic routes one by one from the lower
left. Formally, routing of a bottom net is defined as fol-
lows: A ball is said to be connected if its route is com-
pleted. Otherwise, a ball is said to be unconnected. Let
b be a bottom net. R(b) passes as the left as possible on
condition that R(b) passes to the right of the unconnected
left net balls in the lower-left region of b and connected
balls. For example, consider R(b3) in Fig. 13. R(l3) and
R(l4) become non-monotonic if R(b3) passes to the left of
them. Therefore, R(b3) needs to avoid balls of nets l3 and
l4 as shown in Fig. 13(b). Similarly, routes of left nets
can be decided.

V. Experiments and Results

We implemented our method for orthogonal netlists
with C++ language and applied it to monotonic orthogo-
nal netlists since it is not guaranteed that our method
completes routing. Monotonic orthogonal netlists are
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generated by relaxing the sufficient condition in section
IV.A.1.

In this experiment, we used the order graph G, where
E(G) = Eb

f ∪ El
f ∪ Eh ∪ Ev ∪ Eb

1 ∪ El
1. We applied it to

problems of 56 size from 5 × 5 to 60 × 60. 100 patterns
were generated in each size. Two instances in 44×44, 45×
45 could not be completed, since G became cyclic due
to the alternative edges added in routing process. The
others were completed, and monotonic routing patterns
were generated. The graph between the number of nets
and average execution time are shown in Fig. 14 , and
an example of output is shown in Fig. 15. The algorithm
generates a monotonic routing pattern within 1 second
even for 3000 nets problem. The practical algorithm will
be obtained if the density is taken into account in order
selecting.

VI. Conclusion

We gave the necessary and sufficient condition for par-
allel netlist being monotonic, and proposed a routing
method for monotonic parallel netlists based on this con-
dition. Moreover we gave a necessary condition and a suf-
ficient condition for orthogonal netlists being monotonic,
and proposed a routing method for monotonic orthogonal
netlists based on the necessary condition.

As our future work, we need to investigate alternative
constraints and whether there are constraints between
four or more nets. Routing methods that take routing
density into consideration should be proposed. More-

Fig. 15. An example of output (100 nets)

over, the method taking non-monotonic routes into ac-
count should be proposed. In the method, the monotonic
routes obtained by our proposed method is used as an
initial solution and is improved iteratively to satisfy the
design rule.

References

[1] E. S. Kuh, T. Kashiwabara, and T. Fujisawa, “On
Optimum Single-Row Routing,” IEEE Transactions

on Circuits and Systems, vol. CAS-26, no. 6, pp. 361–
368, 1979.

[2] S. Tsukiyama and E. S. Kuh, “Double-Row Planar
Routing and Permutation Layout,” networks, vol. 12,
no. 3, pp. 287–316, 1982.

[3] M.-F. Yu and W. W.-M. Dai, “Single-Layer Fanout
Routing and Routability Analysis for Ball Grid Ar-
rays,” in Proceedings of International Conference

Computer-Aided Design, pp. 581–586, 1995.

[4] S. Shibata, K. Ukai, N. Togawa, M. Sato, and T. Oht-
suki, “A BGA Package Routing Algorithm on Sketch
Layout System,” The journal of Japan Institute for

Interconnecting and Packaging Electronic Circuits,
vol. 12, no. 4, pp. 241–246, 1997. (In Japanese).

[5] Y. Kubo and A. Takahashi, “A Global Routing
Method for 2-Layer Ball Grid Array Packages,” in
Proceedings of ACM International Symposium on

Physical Design, pp. 36–43, April 3-6 2005.

[6] C.-C. Tsai, C.-M. Wang, and S.-J. Chen, “NEWS:
A Net-Even-Wiring System for the Routing on a
Multilayer PGA Package,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and

Systems, vol. 17, no. 2, pp. 182–189, 1998.

[7] S.-S. Chen, J.-J. Chen, C.-C. Tsai, and S.-J. Chen,
“An Even Wiring Approach to the Ball Grid Ar-
ray Package Routing,” in Proceedings of International

Conference on Computer Design, pp. 303–306, 1999.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /PTB <>
    /DAN <>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <>
    /NOR <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


