6A-5

Power Driven Placement with Layout Aware Supply Voltage
Assignment for Voltage Island Generation in Dual-Vdd Designs

Bin Liu, Yici Cai, Qiang Zhou, Xianlong Hong
EDA Lab, Department of Computer Science and Technology, Tsinghua University, Beijing, China

Abstract— In this paper we propose a method for
standard cell placement with support for dual sup-
ply voltages, aiming to reduce total power under tim-
ing constraints and to implement voltage islands with
minimal overheads. The method begins with timing
and power driven coarse placement, followed by a few
iterations between voltage assignment and placement
refinement to generate voltage islands. Several tech-
niques, including timing and power driven net weight-
ing, seed growth based voltage assignment, and soft
clustering strategy for placement refinements are em-
ployed in our implementation. Experimental results
on a set of MCNC benchmarks show that our ap-
proach is able to produce feasible placement for dual-
Vdd designs and significantly reduce total power with
a wirelength increase within 14% compared to a power
and timing driven placer without voltage islands.

I. INTRODUCTION

Due to rapidly increasing on-chip power density with
technology evolution and the growing market for battery
powered devices, power dissipation has become one of
the most critical concerns in modern chip designs. Re-
searchers have proposed many low power design styles in
recent years, among which multiple supply voltage (MSV)
is a promising scheme to achieve significant reduction on
both dynamic and static power while maintaining perfor-
mance [1-4]. It is reported in [4] that dynamic power
can be reduce by about 30% on average if an additional
supply voltage is available. MSV can be combined with
other low power techniques [5] and has been successfully
implemented in some commercial chips [6,7]. The design
of MSV circuits can work at either macro module level
during design planning [8] or cell level after logic synthe-
sis [1,2,7]. In this paper, we focus on cell based designs
with two supply voltages.

The basic idea behind MSV is to trade timing slacks for
power reduction by using high voltage on cells with neg-
ative (or little) slack to maintain performance and using
low voltage on others to save power. Previous works have
demonstrated that the number of gates on critical paths
accounts for only a small portion of total gates, while the
majority of other gates have relatively large slacks, leaving
much room for potential power reduction using MSV [2].

0-7803-9451-8/06/$20.00 ©2006 IEEE.

Despite its effectiveness and flexibility, MSV introduces
some particular electrical and physical constraints. Level
converters are needed whenever the supply voltage of a
driver cell is lower than that of the receiver [9]. Moreover,
cells under different voltages should be carefully placed so
as to facilitate power network design and to reduce chip
complexity. To save power while minimizing overheads in-
duced by these effects, efforts must be made in two major
operations in MSV design, voltage assignment and place-
ment.

Most published algorithms for voltage assignment be-
gin by setting all cells to VddH, and try to lower the sup-
ply voltages for some cells based on static timing analysis.
Clustered voltage scaling (CVS) tries to reduce the supply
voltages of cells from primary outputs to primary inputs
in reverse topological order and does not allow voltage
converters in the middle of a path [1]. A more flexible ap-
proach allowing level converters is called enhanced clus-
tered voltage scaling (ECVS) [2], which proves to pro-
vide appreciably larger power reduction compared with
CVS [4] . Other techniques for timing and power opti-
mization, including gate sizing, multiple threshold volt-
ages, can be combined with MSV for better timing-power
tradeoff [5].

Cell placement is a critical step for MSV designs in
that it greatly influences power grid complexity, as well
as path delay, which can challenge timing closure espe-
cially when most slacks are traded for power saving after
voltage assignment. There are two kinds of placement
schemes for MSV designs: one is row based [10], where
there are interleaving rows or half-rows for VddH cells
and VddL cells; the other is region based, where the cells
in each region (called voltage island) operate under the
same supply voltage. Recently voltage island approach
has been widely recognized as the state of the art in MSV
design for its structural flexibility [3,8,11]. To gener-
ate voltage islands, cells with the same supply voltage
must be physically clustered during placement, which is
a new requirement for the placer. Although there are in-
dustrial efforts on tool development supporting MSV lay-
out [7,12,13], detailed algorithms focusing on the physi-
cal implementation of fine-grained voltage islands are not
seen in open literature.

As we examine the methodology for voltage island de-
sign, it is interesting to notice that voltage assignment is

582

often performed prior to layout (e.g., during design plan-
ning or logic synthesis). Known voltage assignment al-
gorithms tend to work without specific physical informa-
tion [2,4, 5], which may result in at least the following
problems.

1. Interconnect delay, which dominates total path de-
lay in deep submicron technology, can hardly be esti-
mated accurately before placement. Thus, there can
be either too many VddL cells, causing trouble to
timing closure, or too few VddL cells, wasting slack
that can be otherwise traded for power saving.

2. With final locations of cells unknown, the predefined
assignment of voltages is likely to cause large wire-
length and delay penalty even if flexible clustering
strategies are employed in the placer.

The penalties caused by pre-placement voltage assign-
ment give rise to the idea of layout aware voltage assign-
ment. A concept of voltage assignment exploiting both
logical and physical adjacency is mentioned in [7], but no
detailed algorithm is described. Another work attempt-
ing to combine voltage assignment with placement is now
in progress [14].

The purpose of this work is to develop a practical
method for fine-grained voltage island generation in dual-
Vdd designs. Specifically, we focus on two major as-
pects in design and implementation of chips with voltage
islands: reducing total power under timing constraints,
and reducing electrical and physical overheads. We pro-
pose a practical design flow for voltage island genera-
tion(outlined in Fig. 1). Our method begins with tim-
ing and power driven coarse placement, followed by a few
iterations between layout aware voltage assignment and
placement refinement. This flow is general enough to em-
brace many practical techniques and considerations. Pre-
liminary algorithms are developed to support the flow.
Experimental results on a set of MCNC benchmarks have
demonstrated the effectiveness of our approach.

II. BACKGROUND

A. Timing and Power Analysis

In order to support flexible voltage assignment in dual-
Vdd designs, at least some cells in the library should be
designed to work with both supply voltages, possibly with
different implementations. Gate level dual-Vdd design
style allows replacing VddH cells with VddL cells along
uncritical paths. Thus, exhaustive static timing analysis
is a prerequisite to voltage assignment [1,2,4,5].

In static timing analysis, the combinatorial part of a
circuit is modelled as a weighted directed acyclic graph
(DAG) called timing graph, where every node represents
a signal pin in the netlist, and the weight of every directed
edge represents either gate delay or wire delay between

6A-5

Power and Timing Driven
Coarse Placement

]

Layout Aware Voltage
Assignment

Timing J,

(Constraints

Netlist

Library

oo}

Placement Refinement with
Soft Clustering

Activity
Profile

Placement of Voltage
Islands

Fig. 1. Flow for voltage island generation.

two pins. Usually delay constraints are imposed by spec-
ifying the maximum delay between primary inputs and
primary outputs. After a graph traversal in topological
order (forward pass) and another in reverse topological or-
der (backward pass), the arrival time, required time and
slack at every node can be calculated. This process takes
O(|N| + |E]) time, where N is the set of nodes and F is
the set of edges.

In this work, we use table-based models for gate delay,
as well as leakage and short-circuit power for every cell.
We use a Elmore-star model to computer wire delays [15].
Switching power is calculated with the Eqn. 1.

Psw = O4.]('ﬁ‘/(12(;lc(load (1)

Where « is the activity factor, indicating the probabil-
ity that the signal changes in one clock cycle; f is clock
frequency; Cioaq is load capacitance of the gate, includ-
ing gate capacitance and wire capacitance. Given the
quadratic dependency of switching power on supply volt-
age, the efficacy of lowering supply voltage in power re-
duction is beyond controversy. Eqn. 1 also indicates other
ways to save power by reducing the length of high activ-
ity wires, or using VddL cells to drive these nets, both of
which are considered in our approach.

B. Cut-based Placement Paradigm

In this subsection, we review the framework of cut-
based placement algorithms, and focus on the outline of
Capo [16], which forms the base for our placement al-
gorithm. A min-cut placement instance contains: 1) a
rectangular region (referred to as bin) where cells are to
be placed; 2) a hypergraph, with each node represent-
ing a cell and each hyperedge representing a signal net
connecting two or more cells. A min-cut placer recur-
sively partitions each bin and its associated hypergraph at
current level, and assigns the subhypergraphs to subbins,

583

6A-5

minimizing total (weighted) net cuts for total (weighted)
wirelength reduction. The cut direction usually alternates
between horizontal and vertical cuts. For wirelength es-
timation during the placement process, the nodes in each
bin can be considered as being placed at the geometric
center of the bin.

Capo is an elegant cut-based placer, with several tech-
niques to improve total wirelength including placement
feedback, weighted terminal propagation, etc. The idea
of feedback in placement [17], i.e., merging adjacent bins
and perform repartition under the guidance of informa-
tion from last iteration is an inspiration of our idea on
placement refinement.

III. VOLTAGE ISLAND GENERATION METHODOLOGY

As illustrated in Fig. 1, our voltage island design
methodology does not require pre-layout voltage assign-
ment. Instead, layout aware voltage assignment is per-
formed after a coarse placement result is available, so that
delay due to interconnect effects can be more accurately
captured in timing analysis, and physical adjacency in-
formation is available to guide the assignment of supply
voltages.

It is natural to cluster cells with the same supply volt-
age in a region to form a voltage island. However, aggres-
sively clustering cells is likely to result in wirelength in-
crease and timing violation, especially when the region is
relatively large and the number of VddH cells and VddL
cells are close. We hereby further exploit the flexibility
of voltage island generation by iteratively updating the
voltage assignment and the layout. The placement of cells
can be adjusted by merging adjacent bins and repartition-
ing the netlist, aiming to physically cluster cells with the
same voltage. In our implementation, we do not require
that the island be generated after adjusting placement.
Instead, repartition is done after with some additional
hyperedges on cells to be clustered(this is called soft clus-
tering). After repartition, the assignment of voltages is
also adjusted to fit changes in layout. Convergence of the
iterations can be guaranteed with increasing weights of
additional hyperedges and a decreasing threshold param-
eter used in incremental voltage assignment.

IV. COARSE PLACEMENT WITH TIMING AND POWER
DRIVEN NET WEIGHTING

Coarse placement is like the first several passes of a tim-
ing and power driven global placement with all cells oper-
ating under VddH. While the final objective of this work
is to minimize power, it is helpful to optimize timing, in-
stead of merely meeting timing constraints or optimizing
path delay on a few critical paths during coarse place-
ment, because additional slacks can provide more oppor-
tunities to use VddL cells. It is particularly advantageous
that even the most critical path has some slack, which

makes the exploitation of physical adjacency possible for
cells along critical paths.

Net weighting is a popular technique for large scale
placement due to its flexibility and efficiency. There have
been extensive works on net weighting strategies for tim-
ing optimization in placement [18,19]; a few other works
employ switching activity based net weighting to mini-
mize total switching power [20]. Different from strategies
that focus either timing or power, we seek a weighting
scheme that improves both. The empirical formula in
Eqn. 2 is used for net weighting taking account of both
slack and switching power.

|
(2)

Here « is the switching probability; slack is the minimum
slack at the input of downstream cells; Tj is typically
several times larger than the gate delay; N and c are
constant parameters. Other net weighting methods can
also be used in coarse placement. It should be emphasized
that coarse placement not only try to reduce delay along
a few most critical paths, but also attempt to create more
slacks along even moderately critical paths, because slacks
can probably be traded for power saving afterward.

Net weights are incrementally updated in the feedback
procedure at every partition level. The weight of an edge
is updated considering both its previous value and new
value.

(1+CXO{)X(1+W), SlaCkZO

(I+exa)x(1+N), else

W = BWhew + (1 = B)Worig (3)

Our experience shows that 3 should be kept below 0.3 to
maintain consistency and avoid oscillation of path delays.

V. INITIAL VOLTAGE ASSIGNMENT

Initial voltage assignment largely defines the final pat-
tern of voltage islands. The proposed algorithm for ini-
tial assignment works in a seed-growth manner, exploiting
both physical adjacency and logical adjacency [7]. The al-
gorithm flow is described in Algorithm 1.

We associate a tendency value to every VddH cell. Sim-
ilar to [4], the tendency is defined as follows.
(GSC’f+Xi?fy)XSla0k, slack > Adelay
0, else

tendency = {
(4)

Here Ggey is the power reduction due to the use of VddL;
Grc is the reduction of needed level converters; slack
is the minimum slack at the output pins; Adelay is the
increase of gate delay (measured with the maximum in-
crease on pin-to-pin delay).

Note that the tendency of a cell depends on the status
of its logical neighbors as well as its slack, both of which
can change dynamically in the assignment process. Thus,
incremental updates on the timing graph and cell ten-
dencies are required. For efficiency consideration, these

584

updates are performed lazily, and only the tendencies of
relevant unprocessed cells are updated.

The seed growth process begins by selecting seed bins.
We calculate a priority value for every bin by investigating
the tendencies of cells in it. Bins with priority larger than
a threshold are selected as seed bins. Priority of a bin is
defined as the average tendency of cells in the bin, as
shown in Eqn. 5, where N is the number of cells in the
bin.

N

priority = % ; tendency(cell;) (5)

After seed bins are selected, the algorithm enters a pro-
cedure of selecting cells to work under VddL. This is done
in two phases. The first phase tries to assign VddL to
every cell in seed bins if timing constraints are not vi-
olated, while the second phase tries to assign VddL to
more cells across the chip. The purpose of the first phase
is to generate some physical clusters of VddL cells with no
wirelength penalty, which form the bases of VddL islands.
The second phase can be viewed as a logical expansion of
VddL cells according to on existing VddL cells, aiming to
reduce power dissipation without adding level converters.

Algorithm 1 Initial Voltage Assignment
Require: threshold
sort bins and cells according to priority and tendency;
while there are unprocessed bins do
currentBin <« the unprocessed bin with highest pri-
ority;
if currentBin.priority < threshold then
break;
else
try to use VddL for every cell in current Bin with-
out timing violation;
end if
update priorities of unprocessed bins;
end while
while there are unprocessed cells do
¢ + the unprocessed cell with highest tendency;
try to use VddL for c¢ if timing budgets are met;
end while

VI. ITERATIVE VOLTAGE ASSIGNMENT AND
PLACEMENT REFINEMENT

A. Placement Refinement

Placement refinement is a procedure that locally ad-
justs the locations of cells, so that cells with the same
supply voltage get closer to each other. The refinement
procedure is much the same as the feedback mechanism
used in Capo [17]. After voltage assignment, it is prob-
ably that most bins contain both VddH cells and VddL
cells. In placement refinement stage, neighboring bins
are merged to generate a new larger bin, containing all

6A-5

cells in original bins. The new bin is repartitioned, tak-
ing into account both total wirelength and requirement
for clustering. Instead of modifying the hypergraph par-
titioning algorithm, a simple method is adopted to incor-
porate clustering consideration into the partitioning prob-
lem. Pseudo hyperedges connecting cells with the same
supply voltage are added to the hypergraph to be parti-
tioned. Since min-cut placement minimizes total weighted
wirelength naturally, cells connected with the pseudo hy-
peredges tend to get close to one another and clustering
can be realized. This approach is referred to as soft clus-
tering, because it differs from a strong clustering method
(hard clustering) that combines all cells to be clustered
into a soft macro-module and performs mixed-size place-
ment afterward. Empirically, although hard clustering
can be easily implemented with existing tools, it tends to
increase total wirelength significantly; similar conclusion
has been validated in the research of integrated floorplan-
ning and placement [21]. The weights of pseudo edges
reflect the desire of clustering. In order to reduce wire-
length overheads, the total weights of the added edges
should be kept small, at least in the first a few iterations,
when complete isolation of VddH cells and VddL cells is
not required. In order to accelerate convergence, these
weights are increased iteration by iteration.

B. Incremental Update of Voltage Assignment

In the proposed flow, a voltage island is generated if a
bin contains purely VddH cells or VddL cells. However,
there can be many bins containing both kinds of cells even
after placement refinement due to the inadequacy of soft
clustering in some regions. Intuitively, if most part of
a region is filled with VddH cells, it is desired that the
supply voltages for all VddL cells in the region are raised
to VddH. If only a small portion of cells are powered by
VddH in a region, it is probable that the supply voltages
of VddH cells in this region can be lowered after replacing
some some VddL cells with VddH cells in some other bins.
By increasing and decreasing the supply voltages region
by region, timing slacks can be concentrated into some
regions to form VddL islands, and other regions that can
not work at VddL without timing violations eventually
become VddH islands. This is done incrementally with
the iterations.

The algorithm is illustrated in Algorithm 2. A queue
containing all bins with both VddH cells and VddL cells
is constructed, and the portion of VddH cells in every bin
is monitored. At each iteration, the algorithm tries to
boost existing dominance of VddH or VddL cells in some
bins. For every bin with with the portion of VddH cells
larger than a threshold, all other VddL cells in the bin are
replaced with VddH cells, and the bin is removed from the
queue. Then every other bin in the queue is examined in
reverse order of VddH portion to see if all cells in it can
be powered by VddL while meeting the constraints.

585

6A-5

TABLE 1
EXPERIMENTAL RESULTS OF THREE ALGORITHMS.

name period Capo 9.2 Capo 9.2+net weighting Proposed algorithm
(ns) power slack time HPWL | power slack time HPWL | power slack time HPWL
c880 2.4 0.022 -0.2 2.06 1.15E6 0.022 -0.12 5.74 1.23E6 0.019 -0.134 7.46 1.26E6
cl355 3.05 0.022 0.06 3.95 1.33E6 0.021 0.19 7.36 1.32E6 0.016 0.080 11.38 1.31E6
c1908 4.0 0.024 -0.24 8.71 2.08E6 0.025 0.02 14.78 2.26E6 0.018 0.108 22.30 2.29E6
c2670 4.0 0.046 -1.02 14.14 4.62E6 0.049 -0.64 33.89 5.02E6 0.038 -0.398 57.56 4.97E6
c3540 5.5 0.039 -0.39 15.12 5.29E6 0.040 0.19 26.13 5.41E6 0.021 -0.213 41.62 5.25E6
c5315 4.8 0.067 -1.001 28.70 7.58E6 0.072 0.25 53.54 8.59E6 0.045 -0.064 367.22 8.80E6
c6288 9.5 0.028 -2.31 23.76 5.21E6 0.029 -2.16 34.47 5.39E6 0.027 -1.965 86.25 5.30E6
c7552 5.0 0.090 -0.21 46.31 10.61E6 | 0.097 -0.07 91.95 11.21E6 | 0.065 -0.046 165.93 11.60E6
51488 3.9 0.022 -0.05 5.51 1.84E6 0.022 0.15 7.46 1.84E6 0.015 0.125 14.83 1.93E6
s15850 8.6 0.123 -3.88 167.25 24.94E6 | 0.143 -1.78 325.18 32.03E6 | 0.097 -1.270 591.04 32.49E6
535932 20.6 0.107 0.44 291.23 48.74E6 | 0.114 0.613 514.27 54.98E6 | 0.066 0.388 824.02 62.11E6
s38417 5.6 0.433 -3.30 402.51 55.49E6 | 0.471 -1.46 72220 64.36E6 | 0.250 -0.942 1041.88 63.98E6
s38584 10.5 0.259 -1.40 376.92 68.15E6 | 0.267 0.743 666.47 71.23E6 | 0.174 0.796 975.89 72.53E6

period: clock period(ns); slack: worst slack(ns); time:running time(s).

Algorithm 2 Incremental Voltage Reassignment
Require: threshold
construct a queue @, containing all bins with both
VddH cells and VddL cells, order by the portion of
VddH cells;
while @ is nonempty do
currentBin < the bin with highest portion of VddH
cells;
if the portion of VddH cells is lower than threshold
then
return;
end if
assign VddH to all cells in currentBin;
update timing graph;
remove currentBin from Q);
for all bin in @ in reverse order do
try to use VddL for currentBin;
end for
end while

The threshold parameter is initially close to 1, and de-
creases toward 0 with iterations between placement refine-
ment and incremental voltage assignment, which guaran-
tees the convergence of the voltage island generation al-
gorithm.

VII. EXPERIMENTAL RESULTS

The proposed algorithms have been implemented with
C++ based on Capo 9.2. We create our dual-Vdd library
based on a industrial 0.18um library with VddH=1.8V.
We add a VddL(1.2V) alternative for every cell in the
original library and compute its delay based on alpha-
power law model.

Experiments are performed on a set of ISCAS85 and IS-
CAS89 benchmarks with specified timing constraints and
activity profiles. In order to evaluate the effectiveness of
the proposed method, we examine the results of three

algorithms: 1) original Capo(version 9.2), which aims
at minimizing total half perimeter wirelength; 2) Capo
with the net weighting strategy described in Section IV
(referred to as CapoW), aiming at improving delay and
power by minimizing the weighted total wirelength; 3)
the proposed algorithm with support for dual-Vdd designs
(referred to as CapoV). We measure total power, maxi-
mum slack, total half perimeter wirelength and running
time for all the three algorithms (Table I).

When comparing CapoW with Capo, it can be noticed
that timing is consistently improved in all the bench-
marks, and the increase of total wirelength is within 12%
except C5H315, C6288, C15850 and C38417, which all have
tight timing constraints. While it is evident that our net
weighting strategy is effective in promoting timing clo-
sure, the total power is not remarkably reduced; actually
it is increased in many designs (mostly by within 10%).
This is probably because the timing constraints in many
benchmarks are rather tight and the values of net weight-
ing parameters in our implementation are tuned mainly
for timing optimization. A lot of slacks are created on
both critical paths and some uncritical paths, thus en-
larging the room for power optimization in voltage as-
signment.

As expected, the results by CapoV show significant
power saving with the use of dual-supply voltage, which
corroborates previous works. What we are especially
concerned is the implementation penalty on wirelength.
Since CapoV and CapoW are based on the same coarse
placement algorithm with the same net weighting param-
eters, and CapoV works with some additional clustering
constraints while no further constraints are imposed on
CapoW, the total wirelength produced by CapoW can be
viewed as an “upper bound” for that by CapoV. (Our
experiments show that for some benchmarks CapoV pro-
duces slightly shorter wirelength than CapoW, which is
probably because the additional merge-and-repartition it-
erations are helpful to optimize wirelength (as well as tim-

586

Fig. 2. Typical placement results with voltage islands. Left is
s15850, and right is s38417. VddH areas are marked with dark
purple and VddL areas with light yellow.

ing) at the cost of more running time.) Table I shows
that CapoV produces results with wirelength increase of
-2.96% to 13.7% compared with CapoW. We think it is
not fair to compared CapoV and original Capo on wire-
length, because CapoV works with net weights due to
timing and power considerations, which inherently is in-
consistent with wirelength optimization.

Fig. 2 illustrates the placement results of two bench-
marks with voltage islands. Power grid design and ver-
ification for these designs will not be much complicated
because the number of voltage islands are not large.

VIII. CONCLUSION

In this paper we present an effective methodology to-
gether with algorithms to reduce power dissipation under
timing constraints in placement and to provide physical-
level support for voltage island designs. The proposed
layout aware voltage assignment and iterative adjustment
on placement and voltage assignment have shown great ef-
fectiveness in the implementation of voltage islands with
minimal wirelength penalty. Our results probably indi-
cate that it is necessary to perform voltage assignment, or
at least adjustment on voltage assignment, during place-
ment in order to reduce physical overhead. In the current
implementation, level converters are not dynamically in-
serted and deleted during voltage assignment. ECO place-
ment should be performed afterward taking level convert-
ers into account. Future works can make efforts to acceler-
ate design convergence and better consider level converter
issues.

ACKNOWLEDGEMENT

The authors would like to thank Prof. Igor Markov,
Prof. Patrick Madden and Prof. David Pan for their
kind help. This work is supported by the Hi-Tech Re-
search & Development (863) Program of China (No.
2005AA171230) and the National Natural Science Foun-
dation of China (NSFC) (No. 60476014).

587

(1]
2]

3]

(4]

[6]

7]

(10]

(11]

(12]

(13]
14]
(15]

(16]

(17]

(18]

(19]

20]

(21]

6A-5

REFERENCES

K. Usami and M. Horowitz, “Clustered voltage scaling tech-
nique for low-power design, ” in Proc. ISLPED’95, pp. 3-8.

C. Chen, A. Srivastava and M. Sarrafzadeh, “On gate level
power optimization using dual-supply voltages,” IEEE Trans.
on VLSI Syst., vol. 9, pp. 616-629, Oct. 2001.

D.E. Lackey, P.S. Zuchowski, T.R. Bednar, D.W. Stout, S.W.
Gould, and J.M. Cohn, “Managing power and performance for
system-on-chip designs using voltage islands,” in ICCAD’02,
pp-195-202, Nov. 2002.

S.H. Kulkarni, A.N. Srivastava, and D. Sylvester, “A new algo-
rithm for improved VDD assignment in low power dual VDD
systems,” in Proc. ISLPED’04, pp.200-205.

A. Srivastava, D. Sylvester and D. Blaauw, “Power minimiza-
tion using simultaneous gate sizing, dual-Vdd and dual-Vth
assignment,” in Proc. DAC’04, pp.783-787.

S.K. Mathew, M.A. Anders, B. Bloechel, T. Nguyen, R.K. Kr-
ishnamurthy and S. Borkar, “A 4-GHz 300-mW 64-bit integer
execution ALU with dual supply voltages in 90-nm CMOS,”
IEEE J. Solid-State Circuits, vol. 40, pp.44-51, Jan. 2005.

R. Puri, L. Stok, J. Cohn, D. Kung, D. Pan, D. Sylvester, A.
Srivastava and S. Kulkarni “Pushing ASIC performance in a
power envelope,” in Proc. DAC’03, pp.788-793.

J. Hu, Y. Shin, N. Dhanwada and Radu Marculescu, “Ar-
chitecting voltage islands in core-based system-on-a-chip de-
signs,” in Proc. ISLPED’0/4, pp.180-185.

F. Ishihara, F. Sheikh and B. Nikolic, “Level conversion
for dual-supply systems,” IEEE Trans. VLSI Syst., vol. 12,
pp.-185-195, Feb. 2004.

C. Yeh, Y. Kang, S. Shieh and J. Wang, “Layout techniques
supporting the use of dual supply voltages for cell-based de-
signs,” in Proc. DAC’99, pp.62-67.

R. Puri, L. Stok, S. Bhattacharya, “Keeping hot chips cool,”
in Proc. DAC’05, pp.285-288.

Synopsys inc., Galaxy design platform multi-voltage Design,
available online, http://www.synopsys.com/products/power/
multivoltage_bkgrd.pdf.

Cadence inc., Cadence/TSMC Reference Flow 6.0.
P.H. Madden, private communication.

A.B. Kahng, S. Mantik and I.L. Markov, “Min-max placement
for large-scale timing optimization,” in Proc. ISPD’02, pp.143-
148.

A.E. Caldwell, A.B. Kahng, and I.L. Markov, “Can recur-
sive bisection alone produce routable placements?,” in Proc.
DAC’00, pp.A77-482.

A.B. Kahng and S. Reda, “Placement feedback: a concept
and method for better min-cut placements,” in Proc. DAC’04,
pp.357-362.

T. Kong, “A novel net weighting algorithm for timing-driven
placement,” in Proc. ICCAD’02, pp.172-176.

A.B. Kahng and Q. Wang, “Implementation and extensibility
of an analytic placer,” IEEE Trans. Computer-Aided Design,
vol. 24, pp.734-747, May 2005.

Y. Cheon, P.H. Ho, A.B. Kahng, S. Reda and Q. Wang,
“Power aware placement,” in Proc. DAC’05, pp.795-800.

J.A. Roy, S.N. Adya, D.A. Papa and I.L. Markov, “Min-cut
floorplacement,”, IEEE Trans. on Computer-Aided Design, to
appear.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

