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ABSTRACT
Partial dynamic reconfiguration, often called RTR (run-time recon-
figuration) is a key feature in modern reconfigurable platforms.
While partial RTR enables additional application performance, it
imposes physical constraints necessitating simultaneous schedul-
ing and placement while mapping application task graphs onto such
architectures. In this paper we present PARLGRAN, an approach
that maximizes performance of application task chains by selecting
a suitable granularity of data-parallelism for individual data paral-
lel tasks. Our approach focusses on reconfiguration delay overhead
and placement-related issues (such as fragmentation) while select-
ing individual data-parallelism granularity as an integral part of si-
multaneous scheduling and placement. We demonstrate that our
heuristic generates high-quality schedules on an extensive set of
over a 1000 synthetic experiments by comparing the results with
an approach that tries to statically maximize data-parallelism, i.e.,
does not consider the overheads and constraints associated with
partial RTR. A detailed case-study on JPEG encoding addition-
ally confirms that blindly maximizing data-parallelism can result
in schedules even worse than that generated by a simple (but RTR-
aware) approach oblivious to data-parallelism.
Keywords: Partial dynamic reconfiguration, data-parallelism, gran-
ularity selection, linear placement, scheduling

1. INTRODUCTION
Reconfigurable architectures are popular for applications with

intensive computation such as image processing, since a limited
amount of logic can be customized to set up deep pipelines, and/or
exploit more coarse-grain parallelism, etc. Partial dynamic recon-
figuration, or, run-time reconfiguration (RTR) allows additional cus-
tomization during application execution, making it possible to ob-
tain increased performance [11]. Our overall goal is to maximize
performance of applications represented as precedence-constrained
task DAGs (directed acyclic graphs) on single-context architectures
with partial RTR (Xilinx Virtex-II is a commercial instance of such
architectures). Some key issues in mapping applications onto such
devices are the significant reconfiguration delay overhead, physical
(placement) constraints, etc.

In this paper, we focus on precedence-constrained task chains,
common in image-processing applications [7], [4]. In such ap-
plications, area-execution time characteristics of key tasks such as
IDCT, Quantize, etc, are predictable because of complete pipelin-
ing. Additionally, key tasks such as DCT are completely data-
parallel, i.e., results of task execution on a block of data are com-
pletely independent of results when the same task is executed on
a disjoint block of data. On an architecture with partial RTR, it
is possible to improve application execution time by dynamically
adjusting the parallelism granularity of such tasks, i.e., reconfig-
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Figure 1: Granularity of individual data-parallel tasks

uring the architecture to instantiate multiple copies of such tasks
during application execution – each copy (instance) uses an iden-
tical amount of HW resources, but processes only part of the data.
Due to complete pipelining, execution time of such tasks is directly
proportional to the volume of data processed, and thus, reducing
the data volume proportionately improves (reduces) the application
execution time. Note that on architectures with no partial RTR,
the scope of exploiting such data-parallelism is much more limited
– partial RTR enables resource reuse, significantly expanding the
potential of exploiting data-parallelism.

As an example, we consider a simple chain with two tasks, as
shown in Figure 1. Assuming that there are enough resources to si-
multaneously execute 3 copies of task T1 or 2 copies of task T2, (b)
and (c) show some possible task graph configurations after such a
transformation. However, such a transformation can be quite costly
on architectures with partial RTR– each new task instance (copy)
adds a significant reconfiguration overhead. Therefore the trans-
formations need to be guided by selecting the right granularity of
parallelism that masks the reconfiguration overhead and maximizes
performance. One important issue is that because of the reconfigu-
ration penalty, multiple copies of a task may not be able to start at
the same time– therefore, individual execution time (workloads) of
the multiple copies may vary.

We propose an approach, PARLGRAN, that attempts to max-
imize application performance on architectures with partial RTR
by choosing the right parallelism granularity for each individual
data-parallel task. By granularity we mean both the number of in-
stances (copies) of that task, and, the workload (execution time)
of each copy. Our approach considers physical (placement) con-
straints, and utilizes configuration prefetch [10] to reduce the la-
tency. The key constraints of such architectures necessitate joint
scheduling and placement [8], [1]. Our approach therefore, in-
corporates granularity selection as an integral part of simultaneous
scheduling and placement. To the best of our knowledge, ours is
the first effort to solve this problem.

We validate the quality of our proposed approach against an ap-
proach that tries to statically maximize performance gain from data
parallelism without considering the constraints and overheads due
to partial RTR. A large set of over a thousand synthetic experiments
demonstrates that the average improvement in schedule length by
using our approach is over 15%. A detailed case study of JPEG en-
coding additionally confirms that the static parallelization approach



Figure 2: Target dynamic architecture

can end up generating schedules much worse than a simple (but
RTR-aware) approach oblivious to data-parallelism.

2. RELATED WORK
There exists a large body of work for mapping task chains typical

in image processing to reconfigurable architectures. A significant
amount of the work such as [7] does not consider partial run-time
reconfiguration (RTR). Recent work that does consider partial RTR
such as [4], often focuses on multicontext architectures [9], where
the reconfiguration overhead is negligible- unfortunately there is
a very significant area overhead in such architectures. Other re-
cent work such as [2] focusses on the key problem of task reuse as
another technique for reducing the reconfiguration overhead, an as-
pect we do not address in this work. Our work focuses on reducing
reconfiguration overhead by considering configuration prefetch as
an integral aspect of joint scheduling and placement.

While there is a growing body of work in joint scheduling and
placement on such architectures [3], [8], they typically ignore key
architectural constraints such as the resource contention due to a
single reconfiguration controller, prefetch to reduce the latency, etc.
Ignoring these key issues makes the problem closer to the rectangle
packing problem [13] and does not realistically exploit RTR.

Of course, there is a vast body of knowledge in the compiler do-
main about extracting parallelism from programs at different lev-
els of granularity [14]. However, detailed consideration of place-
ment and other architectural aspects related to partial RTR make
our work significantly different.

3. PROBLEM OVERVIEW
Target architecture: Our target dynamically reconfigurable device
as shown in Figure 2 consists of a set of configurable logic blocks
(CLB) arranged in a two-dimensional matrix. The basic unit of
configuration for such a device is a frame spanning the height of
the device. A column of resources consists of multiple frames. A
task occupies a contiguous set of columns. The reconfiguration
time of a task is directly proportional to the number of columns
(frames) occupied by the task implementation. One key constraint
is that only one task reconfiguration can be active at any time in-
stant. An example of our target device is the Xilinx Virtex-II series
where constraints such as dynamic tasks occupying a contiguous
set of columns are critical for realization of partial run-time recon-
figuration.
Application specification: A task Ti executing on such a system
can be represented as a 3-tuple (ci, ti, ri) where ci is the number of
resource columns occupied by the task, ti and ri are the execution
time and reconfiguration overhead respectively. Each task needs
to be reconfigured before its execution is scheduled. The physi-
cal constraints on such a device necessitates joint scheduling and
placement [8], [1].

In image processing applications, we often find chains (linear
sequences) of such tasks. For a chain of n tasks, (T1..Tn), each
task in the chain has exactly one predecessor and one successor.
Of course, the first task, T1, has no predecessor, and the last task,
Tn, has no successor. A predecessor task utilizes a shared memory
mechanism to communicate necessary data to its successor– this
shared memory can be physically mapped to local on-chip memory
and/or off-chip memory depending upon memory requirements of
the application.

Our overall goal is to maximize performance (minimize sched-
ule length) under physical and architectural constraints, given a re-
source constraint of C columns available for the application, C <

∑n
i=1(ci). An additional goal is that our approach should have a

low computational overhead.

4. MOTIVATION
Ideally, the degree of parallelism for a data-parallel task is lim-

ited only by the availability of HW resources. Let us consider a
chain with only a single task T1 that executes in time t1 using c1
columns. Given a resource constraint of C columns, performance
is maximized when this task is instantiated �C/c1� times, as shown
in Figure 3. In this figure, the X-axis represents the columnar area
constraint, C, and, the Y -axis represents the schedule length. For
sequential tasks (0 degree of data-parallelism), the execution of task
Ti is represented as Ei and the reconfiguration of task Ti is repre-
sented as Ri, as in Figure 3 (a). For data-parallel tasks, we addi-
tionally denote the execution of j-th instance (copy) of the task as
E j

i and the reconfiguration for this instance (copy) as R j
i , as shown

in Figure 3 (b). For uniform treatment, we assume that the com-
pilation cost includes reconfiguration overhead for the first task in
the chain, T1– the schedule length is always computed from begin-
ning of execution of T1. However, this ideal performance gain is
typically not achievable while considering realistic issues on such
architectures, as discussed next.
Reconfiguration overhead: For modern single-context architec-
tures that support partial RTR, the large reconfiguration delay is a
key bottleneck in achieving ideal parallelism. To illustrate this, we
consider Figure 4. We assume that the reconfiguration controller is
available at the beginning of the execution of the first copy of the
task. Next we instantiate two copies of this task with the intention
of equally distributing the workload (execution time). However,
execution of the second copy E2

1 can start only after the reconfig-
uration overhead, r1. Thus, instead of the ideal workload of t1/2,
the workload of the second task is only: (t1 − r1)/2,
leading to less performance improvement than expected.

For a single task, a simple equation suffices to compute the best
performance improvement, leading to the following lemma:

LEMMA 1. For parallelizing a task into j instances, and given
that the reconfiguration controller is available at the beginning of
execution of the first instance, the best performance (least execution
time) is obtained when the workload (execution time) of the j-th
instance is: ((t1 − r1 ∗ ( j ∗ ( j−1)/2))/ j.

Due to lack of space, detailed proof is in [16]. However, it is
important to note the following key ideas, evident from Figure 4.
• Even if sufficient HW resources are available, the large recon-
figuration delay may prevent further performance improvement if
more than a few copies of a task are instantiated. In Figure 4, the
4’th copy does not improve performance (shorten schedule length).
• Maximizing performance involves unequal workload (execution
time) distribution between multiple copies of a task, to compensate
for the reconfiguration overhead.

Next, we consider the additional complications introduced by
precedence constraints.
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Figure 5: Precedence constraints- choices

Precedence constraints: For precedence-constrained tasks, simple
equations such as Lemma 1 do not work any longer – we now need
to consider the interaction of the resource demands of the tasks, as
shown in Figure 5 for a simple chain with two tasks T1 and T2. The
HW resource constraint allows three copies (instances) of T1, or,
two copies of T2 to be executing simultaneously. We show some of
the possible schedules and their transformed task graphs in Figure 5
(b) and (c). Note that in our execution model, all copies of a parent
task must finish execution before any copy of a child task starts
execution. Also, Figure 5 (b) shows how the high reconfiguration
delay necessitates configuration prefetch to improve the latency.

We can now formulate our problem as:
For a precedence-constrained chain with some data-parallel tasks,
we want to compute both the number of copies for each data-
parallel task, and, the workload (execution time), t j

i , of each ( j-th)

copy of such tasks, ∑ j(t
j
i ) = ti. Our goal is to maximize perfor-

mance (minimize schedule length) given that only a fixed number
of contiguous columns are available for mapping the task chain. In
this work, we make an additional assumption that sufficient com-
munication bandwidth is available for satisfying the data require-
ments of the multiple copies of a task.

5. PROPOSED APPROACH
In this section, we first present MFF, a heuristic for scheduling

simple task chains. While MFF is oblivious to data-parallelism, it
provides the core concepts underlying PARLGRAN, our proposed
approach for chains with data-parallel tasks.
5.1 MFF (modified first fit)

For architectures with partial RTR, the physical (placement) con-
straints and, the architectural constraint of the single reconfigu-
ration mechanism, make it difficult to achieve the ideal schedule
length Lideal = ∑n

i=1(ti). In fact, this simple problem of minimiz-
ing schedule length for a chain, under constraints related to par-
tial RTR, is actually NP-complete, as proved in [15]. MFF, our
proposed heuristic to solve this problem, essentially tries to satisfy
task resource constraints, and, attempts simple local optimizations
to reduce fragmentation, and, hence, the schedule length.
—————————————————————
Approach: MFF (modified first-fit)
Place task T1 starting from leftmost column
for each task (Ti, i > 1)

FS
i = earliest time-slot enough space is available (last-fit)

FR
i = earliest time-slot reconfiguration controller is available

Rstart
i = MAX (FS

i , FR
i )

Estart
i = MAX (Rstart

i + ri, Eend
i−1)

if (Ti aligned with rightmost column)
local optimization: Adjust immediate ancestor placement
(and start time) if possible to improve start time of Ti

endfor
—————————————————————
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Figure 6: Simple chain- right placement of task 2

MFF is based on a first-fit approach. To get an idea why a first-
fit approach works well in practical scenarios, we take a look at
Figure 6 (a). The tasks are essentially laid out in the form of diago-
nals running from the top-right of the placed schedule towards the
bottom-left. As long as a task does not ”fall off” the diagonal, it is
possible to overlap at least part of the reconfiguration overhead with
the execution of its immediate ancestor. Once a task ”falls off” the
diagonal and is placed at the rightmost column C, it is essentially
trying to reuse the area of ancestor tasks higher up in the chain.
Given that for tasks in a chain the execution components have to be
in sequence, a more distant ancestor is guaranteed to finish earlier
than a closer ancestor. This increases significantly the possibility of
being able to overlap reconfiguration of this task with the execution
of ancestors that are closer to it in the chain. Effectively the chain
property causes a ”window” of tasks: tasks within a window affect
each other much more strongly than tasks outside the window.
Simple fragmentation reduction: One minor modification for re-
ducing fragmention in MFF compared to pure first-fit is shown in
Figure 6. Our observations indicate that in tightly-constrained sce-
narios (few columns available for task mapping), placing the sec-
ond task T2 adjacent to task T1, as in Figure 6 (b), often leads to
immediate fragmentation– though enough area is available to re-
configure task T3 in parallel with execution of task T2, this area is
not contiguous, and thus task T3 gets delayed. MFF takes care of
this by placing T2 at the right-hand corner. Of course, this simple
modification is not applicable to all scenarios.
Local optimization: Exploiting slack in reconfiguration con-
troller: A more interesting local optimization to reduce fragmenta-
tion is shown in Figure 7 (a). While scheduling task T4, we notice
that it is possible to exploit slack in the reconfiguration mechanism
to postpone the reconfiguration R3 of task T3 without delaying the
actual execution E3 of task T3. We can thus make better use of
the available area (HW resources) to reschedule (and change place-
ment of) task T3 – as a result, reconfiguration R4 of task T4 can
now execute in parallel with E3, leading to a reduction in schedule
length, as shown in Figure 7 (b).

Before proceeding to PARLGRAN, it is important to understand
that the fragmentation problems we try to address in MFF (and
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PARLGRAN) are because we are trying to jointly schedule and
place while satisfying a host of other constraints– thus, other free
space coalescing techniques for partially reconfigurable architec-
tures, such as [6], are not directly applicable.

5.2 PARLGRAN

We use the insights obtained from the chain-scheduling prob-
lem as the basis for our granularity selection approach. Detailed
analysis of chain-scheduling shows that applying local optimiza-
tions can improve the performance. We additionally want to design
an approach such that the algorithm execution time is comparable
to the execution time of the tasks. So, our proposed algorithm is
simple and greedy, but, uses specific problem properties to try and
improve the solution quality.

Our approach consists of two steps:
• Static pruning
• Dynamic granularity selection

5.2.1 Static pruning

First, we utilize some simple facts to statically prune regions of
the search space. As an example of pruning, consider Figure 8.
If we schedule exactly one copy each for tasks T1 and T2, then
task T2 can start as soon as T1 ends, i.e., at t1, as in Figure 8 (a).
If we schedule another copy of task T1, the execution time of T1
improves. However, now the reconfiguration controller becomes
the bottleneck, as shown in Figure 8 (b). Now, task T2 can start
only at (r1 + r2), which is greater than t1. In general, the number
of copies of a task is limited by the impact of its reconfiguration
overhead on its successors.

5.2.2 Dynamic granularity selection

We next consider work distribution (load balancing) issues for
the multiple task copies.
Uneven finish times: From our initial discussion on data-parallelism
(as shown earlier in Figure 4), it seems that it is a good idea to al-
ways generate as many copies as possible subject to performance
improvement and get them to finish at the same time instant. How-
ever, with the introduction of task dependencies, it is possible to
modify this approach in certain cases to improve performance, as

(b)   (a) 

delayed start

T
im

e
WidthWidth

T
im

e

  E 1  E

1
1  E

1
2  R

2
1  R

2
1

1

2

2  R

  E1
2

  E1
2

1
1  E

2
1  R

Figure 9: Uneven finish times

1

    (a) (b) 

 Latency reduction

Less FragmentationMore Fragmentation

Width

T
im

e

Width

T
im

e

����������
����������
����������
����������

����������
����������
����������
����������

����������
����������
����������
����������

����������
����������
����������
����������

����������
����������
����������
����������

2

  R

2
1  E

2
1  R

1
2  E

1
1  E1

1  E
1

  E

2
2  R 1

2  E

1
2  R1

2  R 2
1  E

2

Figure 10: Left placement for copies of first task

shown in Figure 9. In Figure 9 (a) let FT 1
1 denote the time instant

the earlier copy of task T1, that is E1
1 ends. Task T2 can start at:

ST 1
2 = FT 1

1 + r2. However, if both copies of T1 end at the same
time instant as shown in Figure 9 (b), this time-instant is given by:

FT equal
1 = FT 1

1 + r2/2
As a result, reconfiguration R2 for task T2 gets delayed and execu-
tion E2 for task T2 can only start at

FT equal
1 + r2 = FT 1

1 +3∗ r2/2
Of course, if the area of task T2 is greater than the area of task T1,
letting both copies of T1 end at the same time instant would lead to
a shorter schedule.

One other minor observation to improve MFF specifically for
parallelism granularity selection is shown in Figure 10. Placing
multiple copies of a task adjacent to each other intuitively helps
reduce fragmentation.

PARLGRAN is an adaptation of MFF that essentially tries to
greedily add multiple copies of data parallel tasks as long as it esti-
mates that adding a new copy is beneficial for performance (shorter
schedule length). The concepts of dynamically adjusting the work-
load combined with local optimizations makes it effective. We
summarize our PARLGRAN approach below.
—————————————————————
Approach: PARLGRAN (Parallelism Granularity Selection)
Place first copy of task T1 starting from leftmost column
for each task (Ti, i > 1)

Compute earliest execution start of task (space search by last-fit)
if (parent task is data-parallel)

while (no degradation in start time of Ti)
add new copy of parent (assign start time, physical location)
adjust workload of existing scheduled copies of parent

Schedule (and place) Ti
apply local optimizations from MFF for improving schedule

endfor
—————————————————————

While this approach appears to be simplistic, experimental re-
sults in the following section show it typically does better than stat-
ically deciding to parallelize each task to its maximum degree. For
applications like JPEG encoding, blind parallelization can lead to
significantly inferior results, even worse than RTR-aware first-fit,



because of the reconfiguration overhead and the physical (place-
ment) constraints.

6. EXPERIMENTS
We conducted a large set of experiments with over a 1000 data-

points to demonstrate the quality of schedules generated by our
heuristics. In this section we present the key results from our exper-
iments. It is important to remember that our goal is to maximize the
performance (minimize schedule length) of a chain of tasks given a
hard constraint on the available area. Therefore, while it is possible
to fit our applications onto suitably sized target devices, we assume
for experimental purposes that the resource constraint is less than
the aggregate size of all tasks. This makes our approach suitable for
a scenario where multiple processes are executing simultaneously
on the reconfigurable device and the area available for mapping the
task graph is not known beforehand.
Experimental setup

We assumed a target device organized as a CLB matrix of 56
rows, 48 columns, similar to Xilinx XC2V2000. From the XC2V2000
data sheet, we estimate that the reconfiguration overhead for the
smallest task occupying one column on our architecture is 0.19 ms
at the maximum suggested reconfiguration frequency of 66 MHz.
We obtained area and timing data for tasks like Huffman, DCT,
etc., by synthesizing tasks under columnar placement and routing
constraints on the XC2V2000, similar to the Xilinx methodology
suggested for ”reconfigurable modules”.

We explored a large set of possible scenarios by generating task
chains which varied the following parameters: (1) varying chain
length, in the range of 4 to 20 tasks in the chain. (2) varying task
parameters for each task in a chain of given length (3) varying area
constraints.
That is, for each chain length in the given range (4 to 20), we had a
set of testcases where the tasks had different parameters. For each
such testcase, we varied the area constraint across a wide range to
represent loose as well as tight constraints, thus generating data for
over a thousand individual experiments.

The task parameters (execution time, reconfiguration delay, num-
ber of columns) were randomly selected from our database of syn-
thesized tasks. The database consisted of information correspond-
ing to images of various sizes- since each task is completely pipelined,
the reconfiguration delay and number of columns occupied by the
task is independent of the image size, but, the execution time is
directly proportional to the image size.

We measure schedule quality of our proposed heuristic by com-
paring against two approaches: FF (first-fit) and MAXPARL (max-
imum parallelization). MAXPARL attempts to maximize paral-
lelization by statically generating the maximum number of copies
possible for each task subject to resource constraints only, and as-
signs equal workload to each copy. In subsequent discussions, the
following notation denotes schedule lengths generated by the vari-
ous approaches on an individual experiment:
L f f : corresponds to first-fit approach
Lmax: corresponds to MAXPARL ( maximum parallelization) ap-
proach
Lm f f : corresponds to our proposed MFF approach
Lgran: corresponds to our proposed PARLGRAN (parallelism gran-
ularity selection) approach
Schedule quality of MFF

Our first set of experiments consisted of comparing schedule
lengths generated by MFF with that of first-fit, on the set of ex-
periments as described above.

The experimental data confirmed that schedules generated by
MFF were almost always equal to or better than first-fit. The sched-

Chain PARLGRAN Vs FF PARLGRAN Vs MAXPARL
length Avg Avg Best Worst
4-7 46.3% 9.8% 142.5% -49.6%
8-11 51.7% 15.8% 109.6% -30.9%
12-15 55.0% 18.5% 82.3% -15.5%
16-20 58.3% 33.8% 151% -17.5%
Avg gain >50% > 15%

Table 1: Reduction in schedule length for completely data par-
allel chains with PARLGRAN

ule lengths generated by MFF were better in 243 out of 1140 tests,
i.e., approximately 20% of the tests, worse in 5 out of 1140 tests.
In 113 tests, around 10% of the total, MFF was better by at least
3%. In the worst experiment for MFF, first-fit generated a schedule
longer by 0.44%. Overall, on longer chains (more tasks) and looser
constraints (more columns), both algorithms were almost equally
able to hide the reconfiguration overhead. However, on more con-
strained problems with shorter chains and tighter area constraints,
MFF tends to generate better schedules.
Schedule quality of PRLGRAN

Next, in Table 1, we present a summary of results conducted
on our PARLGRAN (parallelism granularity selection) approach.
The data in each row of the table corresponds to experiments on
chains of corresponding length– as an example, data in row 2 (chain
length 8-11) was obtained from experiments on chains with at least
8 tasks and at most 11 tasks. Note that this set of experiments is
identical to that we used to validate MFF– the difference is that
we now assume each task in the chain is completely data-parallel.
For comparison with MAXPARL and FF, our quality measure is
simply the percentage increase in schedule length generated by the
other approach compared to PARLGRAN.. As an example, for
comparison with MAXPARL, the quality measure is simply:

((Lmax −Lgran)/Lgran)∗100
The first column in Table 1 represents the Average percentage

improvement of PARLGRAN as compared to FF. Each entry in
the first column is an average of a large number of experiments
conducted on chains of corresponding length. The second, third
and fourth columns respectively represent the Average, the Best and
the Worst performance of our approach compared to MAXPARL.
As an example, the data in row 2, column 3, states that on a large
number of chains with chain length between 8 and 11 tasks, the
best result generated by our approach corresponds to an experiment
where MAXPARL generated a schedule 109% longer.

The table clearly shows that our ’granularity selection’ heuris-
tic, PARLGRAN, generates increasingly better results compared to
MAXPARL when more space is available. Intuitively, with more
space, it is possible to make more instances of the data-parallel
tasks. However, with each additional instance, the workload (ex-
ecution time) decreases per instance, making the execution time
comparable to the reconfiguration overhead – PARLGRAN is much
better capable of deciding when to stop instantiating multiple copies,
as opposed to MAXPARL. The local optimizations in PARLGRAN
play an active role in such circumstances to help improve the sched-
ule length. One key experimental aspect we would like to mention
is that for smaller chains, our presented results cover a very large
range of varying area constraints– for the longer chains, the pre-
sented results cover the scenarios where the available HW area is
at most around 40% of the aggregate HW area of the tasks. More
detailed results in [16] confirm that the benefit of our approach over
MAXPARL increases significantly as chain length gets longer and
available area increases.



Case C Lm f f Lmax Lgran
(ms) (ms) (ms)

256X256 JPG 5 12.71 12.73 12.36
6 11.24 12.52 10.81
7 11.24 11.38 10.05
8 11.24 12.11 9.08
9 10.10 12.79 9.08

512X512 JPG 5 42.86 40.68 40.30
6 41.34 35.32 35.13
7 41.34 34.18 34.37
8 41.34 29.08 28.60
9 40.20 28.38 27.71

Table 2: Case study of JPEG encoding: Schedule Length with
different image size and area constraints

Case study of JPEG encoding
After conducting a wide range of experiments on synthetic graphs,

we conducted a case study on the JPEG encoding algorithm, repre-
sented as a chain of four key tasks: RGB2YCbCr, DCT, Quantize,
Huffman. Table 2 presents the consolidated results from the case
study. Entries in the first column, CASE, denote the image size
– 256X256 denotes experiments on a 256X256 colour image. For
each case, we varied the number of columns and observed the re-
sulting schedule lengths. The second column C represents the area
constraint in columns. The third, fourth and fifth columns corre-
spond to schedule lengths (in ms) generated by MFF, MAXPARL,
and PARLGRAN respectively.

For the 256X256 image, the reconfiguration overheads are com-
parable to the task execution times. Our approach frequently does
much better than statically parallelizing everything, as in MAXPARL–
the results confirm that such blind parallelization can often lead to
results worse than a simple sequential scheduling approach. For an
area constraint of 8 columns, schedule length of FF is longer than
PARLGRAN by (11.24-9.08)/9.08 = 23.5%. Blind (static) paral-
lelization leads to significantly worse schedule longer by (12.11-
9.08)/9.08 = 33.3%. This is in spite of the fact that the effective
transformed graph from MAXPARL consisted of 9 tasks with ap-
parently more parallelism, while the transformed graph from PARL-
GRAN consisted of 7 tasks only.

For the 512X512 image, each task execution time is significantly
greater than the reconfiguration overhead. In such a scenario, where,
additionally, the chain length is short, MAXPARL generates good
results – of course, PARLGRAN typically does somewhat better.
But, both parallelizing approaches result in significant speedups.
Estimated run-time: Preliminary estimates indicate that the run-
time of our approach on a PowerPC processor at 400 MHz (avail-
able on the Virtex-II Pro platform from Xilinx) is around 3-4 ms for
a reasonably large experiment with 12 tasks and 20 columns. Con-
sidering the fact that the run-time of the DCT task for 512X512
colour image is around 11 ms on the target architecture, our ap-
proach is suitable for semi-online scenarios where the task prece-
dence relations, and the task area-timing characteristics are avail-
able at compile-time, while the available HW area for for mapping
a DAG is known only at run-time. Task management under such
dynamic resource availability is a key issue in modern operating
systems for reconfigurable architectures [5].

Our wide range of experiments and case studies confirm that
PARLGRAN generates high-quality schedule in all situations– tightly
constrained problems with shorter chains, fewer columns, as well
as problems with more degrees of freedom, i.e., longer chains, more
available columns. Additionally, the estimated run-time of our ap-
proach on a typical embedded processor is comparable to the HW
task execution times.

7. CONCLUSION
In this paper, we proposed PARLGRAN, an approach that selects

granularity of data-parallelism to maximize performance of appli-
cation task chains executing on an architecture with partial RTR
(run-time reconfiguration). Our approach selects both the number
of instances of a data-parallel task, and, the execution time of each
such instance – it is integrated in a joint scheduling and placement
formulation, necessitated by the underlying physical and architec-
tural constraints imposed by partial RTR. Experimental results on a
significantly large space of over a 1000 synthetic experiments con-
firm that our approach generates schedules that are on an average
better by 15% over an approach that tries to statically maximize
data-parallelism. A detailed case study on JPEG encoding con-
firms that in realistic scenarios, an approach that simply tries to
maximize data parallelism without accounting for the underlying
constraints can end up generating schedules much worse than even
a data-parallelism-oblivious (but RTR-aware) approach. Initial es-
timates indicate PARLGRAN is fast enough to be suitable for inte-
gration in a semi-online scheduling methodology where the goal is
to maximize performance of an application given an area constraint
known only at run-time.

While our approach demonstrates the potential for significant
performance improvement, there are some key aspects that we want
to address in our future work. First, we have assumed in this work
that we are not constrained by memory/communication bandwidth.
As we increase the task granularity (make more instances to exploit
more data-parallelism), the data transfer to and from memory, both
on-chip, and, off-chip, has the potential to become a bottleneck and
will be considered in future work. We also plan to study the per-
formance versus energy characteristics of such implementations on
reconfigurable architectures with partial RTR.
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