
Co-Synthesis of a Configurable SoC Platform  
based on a Network on Chip Architecture 

Abstract - The constant increase of gate capacity and 
performance of configurable hardware chips made it possible 
to implement systems-on-chip (SoC) able to tackle the 
demanding requirements of many embedded systems. In this 
paper, we propose an approach to the design space exploration 
of a configurable SoC (CSoC) platform based on a network on 
chip (NoC) architecture for the execution of dataflow 
dominated embedded systems. The approach has been 
validated with the design of a color image compression 
algorithm in an FPGA. 

I Introduction 

Configurable hardware is constantly being upgraded with 
higher working frequencies and gate capacity that allow the 
implementation of faster complex systems in a single chip, 
making it a competitive solution for embedded systems. This 
gate capacity leads to a complexity challenge needing new 
architectures and design methodologies to increase design 
productivity. An approach to the design of such complex 
systems is to reuse hardware and software blocks resulting in 
a number of interconnected IP cores. Gajski et.al. [1] have 
proposed an IP-centric embedded system design 
methodology and Vahid et al. [2] have proposed a platform 
based methodology which not only allows reuse of 
components but also of system architectures and topologies. 

Many architectural templates have been proposed for 
hardware platforms for future SoCs with a general emphasis 
on providing efficient and standardized communication 
infrastructures for connecting multiple resources on the chip, 
like the Network-on-Chip (NoC) [3], [4]. The NoC has been 
introduced as a new interconnection paradigm able to 
integrate a many cores while keeping a high communication 
bandwidth. The increased computational power and internal 
communication bandwidth of NoC can provide better timing 
performances to the embedded applications than the shared 
medium in current SoC architectures.  

Some works have contributed with concepts in the area of 
networks on chip, like [5]. Among the few implementations 
of NoC, we are mainly interested on the configurable 
hardware implementations of [6] and [7]. Marescaux [6] have 
implemented a bidirectional torus in a Virtex/VirtexII FPGA. 
The network uses 16 bits data packets, the XY routing 
algorithm, virtual output buffers and supports up to 

320Mbits/s at 40MHz with two virtual channels time 
multiplexed for QoS support. HERMES [7] is a NoC mesh 
topology implemented in a VirtexII FPGA. The network 
supports up to 500 Mbits/s at 25MHz without QoS. 

Many co-synthesis tools will be required to develop NoC 
based architectures. Tools to choose the best platform 
configuration and to map applications to the target NoC 
architecture will be essential. There has been a lot of research 
on co-synthesis for bus-based architectures [8], [9], [10]. 
NoC researchers can adapt many of the techniques and ideas 
from these approaches for NoC tool development. 

Since NoC is a novel research area only a few mapping and 
scheduling approaches have been developed. Lei et al. [11] 
use a genetic algorithm (GA) for task mapping and 
list-scheduling (LS) for task scheduling. The communication 
is neither mapped nor scheduled and delay is estimated as the 
average distance between processors. Shin et al. [12] 
proposed a methodology with network assignment and link 
speed allocation for reducing communication energy. They 
use GA for mapping and network assignment and LS for task 
scheduling and link assignment. To our knowledge, there is 
not a methodology for the development of NoC based SoC 
considering all aspects of the co-synthesis process.  

In this paper, we propose a co-synthesis methodology with 
the integration of allocation, mapping and scheduling steps 
for the development of SoC based on a parameterizable NoC 
for the execution of dataflow-dominated applications, like 
multimedia. The platform supports hardware/software 
multitasking and includes hardware support for the operating 
system. Increased productivity is achieved through 
orthogonalization of communication and computation and 
design reuse. A real multimedia example has been simulated 
and implemented on a Virtex II XC2V6000 FPGA. 

II. CSoC Architecture

Our CSoC platform consists of an array of tiles 
interconnected with a NoC. The NoC consists of an array of 
routers (R), where a router is connected to at most four 
neighbor routers and to a local IP core. Among the many 
interconnection topologies, we use a 2D mesh topology 
because it fits naturally in a 2-dimensional chip (see example 
in figure 1). 
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Fig. 1.  SoC architecture 

A tile consists of an IP core, local memory and a network 
interface (NI). An IP core is a piece of configurable hardware 
or a processor. Each core has direct access to local memory 
and uses the NoC to exchange data with other cores. The link 
between a router and a core is established with a NI. The 
platform connects to the environment using IP cores that 
implement a particular type of interface.  

A NoC can be described by its topology and by the 
strategies used for routing, flow control, switching, 
arbitration and buffering. Routing determines how a message 
chooses a path in this graph, while flow control deals with the 
allocation of channels and buffers to a message as it traverses 
this path. Switching is the mechanism that removes data from 
an input channel of a router and places it on an output 
channel, while arbitration is responsible for scheduling the 
access to channels and buffers. Buffering defines the 
approach used to temporarily store messages. 

The communication behavior follows a layered approach 
similar to the OSI communication architecture (see figure 2). 
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Fig. 2.  Communication architecture of the SoC platform 

The application layer includes all tasks implemented by a 
core that consume/produce data. The session layer includes 
OS services, namely, memory management and task 
scheduling. The transport layer manages the identification of 
task ports for the correct end-to-end delivery of data between 
tasks on different IP cores and the segmentation of data 
output into packets and reassembly of packets into input data. 
The network layer includes services for packet routing. The 
data-link layer includes protocols for reliable data 
communication between two routers and between a router 
and an IP core. Finally, the physical layer models the physical 
links for transmission of bits. 

A. Parameterization 

The NoC infrastructure has a set of configurable 
parameters, including: 
1) The size of the 2D mesh topology.  
2) The type of IP core of each tile. 
3) The data width of point-to-point channels between routers. 

Supported values are 8, 16 and 32 bits. 

III. Router Design

A router forwards packets between IP cores. For each 
packet received, the router reads the destination address and 
forwards it to the correct output port. Our router consists of a 
set of input and output ports with buffering and a set of 
control blocks for routing, flow control, switching and 
arbitration (see figure 3). 
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Fig. 3. Architecture of a NoC router 

Router ports are used to exchange packets with neighbor 
routers and with the local IP. A port guarantees the 
communication reliability through a two-way handshake 
point-to-point flow control.  

The arbitration mechanism uses a round-robin scheme to 
arbitrate requests from different input ports and grants the 
output buffer to an input request port. Among the deadlock 
free routing algorithms for mesh topologies, we implemented 
the XY algorithm. The XY algorithm routes packets first 
along the X direction, then along the Y direction until 
reaching the target. The switching mechanism is based on the 
store and forward process. 

IV. Network Interface Design

The NI consists of an input and an output controller, shared 
memory ports to connect to the core, a port to connect to the 
router and an OS memory (see figure 4). 
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Fig. 4. – Architecture of the network interface 

The interface between the NI and the router is identical to 
the interface between two routers. The interface between the 
IP core and the NI is implemented with shared memory. The 
memory may be dual-port RAM or FIFO, depending on the 
type of the core. For a processor core, the shared memory is 
always implemented with dual-port RAM. For a hardware 
core, it may be any of the two kinds of memory. The NI also 
performs data split and data merge to transmit packets with a 
data size different than the link size. 

The input controller receives data from the router and 
sends it to the shared memory to an address defined by the 
port number of the packet. For data transmitted in multiple 
packets, the controller stores each packet in sequential 
memory positions until the complete data port is available. 
When all data of the input ports of a task are available and the 
corresponding output port is free, the input controller sends a 
token to the core indicating the task can be executed.  

The output controller reads data from the shared memory 
and sends it in one or more packets. It also implements an 
end-to-end dataflow control, that is, when the input buffers of 
a task are available, the output controller sends a token to the 
producers indicating that they can send more data. 

V. Packet Structure 

Data to be transmitted is encapsulated in packets at the 
transmitter and deencapsulated at the receiver. Besides data 
packets, our NoC implementation uses configuration and 
token packets. Configuration packets are used to configure 
the NI and token packets are used for end-to-end flow control.  

The highest level of the packet structure is at the 
application layer where data is produced. If data is too large 
to fit into one packet it will be divided into several packets. 
Each packet is encapsulated with its type at the session layer. 
Next, the transport layer adds the destination port and the 
network layer adds the destination address. 

VI. CSoC Performance Evaluation 

We have conducted a simulation of a prototype of the NoC 
to characterize the following set of parameters (see table 1): 

Link latency (LL) - the delay for a packet to move from 
the output of a router to the output of a neighbor router; 

Resource generation latency (RGL) – the delay for a NI 
to generate a packet; 

Resource reception latency (RCL) – the delay for a NI to 
consume a packet; 

Resource to resource latency (R2RL) – the delay for 
moving a packet from one IP core to a neighbor IP core; 

Resource to resource bandwidth (R2RB) - the 
transmission throughput between IP cores. 

TABLE I 
NoC Characterization 

LL RGL RCL R2RB 

1 cycle 4 cycles 5 cycles 5
)( frequencyf

Packets/s 

From these parameters, we calculate the communication 
delay of a packet between two tiles. In a NoC, the 
communication delay depends on the distance between tiles, 
the size of transmission data and the network traffic. In the 
execution of an application, it is possible to have many 
concurrent transmissions, which conflicts in the use of the 
communication resources. If tasks have variable execution 
times, the network traffic is non-deterministic, which makes 
the analysis more difficult. To simplify, we assume that at any 
time a link is dedicated to a single data transfer. Hence, the 
transmission delay of a packet between two tiles separated by 
NR routers, EdgeDelay, is given by: 

EdgeDelay = 
frequency)working(f

NRLLRCLRGL ×++      (1) 

Since the packets are buffered at the routers, the 
transmission of data requiring more than one packet can be 
pipelined. In this case, the transmission delay, EdgeDelaypipe,
of NP packets is given by: 

EdgeDelaypipe = ( )NPNR
RBR

+×
2
1      (2) 

Besides performance, we have also determined the 
maximum area occupied by a router and a NI after the 
synthesis and placement of the components on the target 
FPGA with the Xilinx ISE 6.2i software (see table 2). 

TABLE II 
Slice Areas of the Interconnection Components 

Block Size (slices) BRAM % XC2V6000 
Router (8bits) 189 0 0,56 
NI 121 1 0,36 

A router can forward five packets per clock cycle at 
150MHz. Therefore, a router can forward at most 6Gbps. 



VII. CSoC Co-Synthesis 

To configure our CSoC architecture for a specific 
application, we have developed a platform-based 
co-synthesis methodology. It finds a hardware/software 
architecture that runs the application with optimized 
performance and meets the design constraints (see figure 5). 
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Fig. 5. Co-synthesis flow 

It starts with an architecture instance, maps the application 
onto the architecture and uses the analysis step to determine the 
quality of the architecture based on cost and performance 
metrics. The analysis yields quality values that together with 
design constraints over cost and performance guide the 
allocation to improve the architecture. 

A. Application Model 

The applications are modeled with an iterative dataflow 
graph (IDFG) that can represent iterative behaviors. This 
model is a directed cyclic graph G = (V, E), where each vertex 
v ∈ V represents a task (atomic computation) and each edge e 
∈ E represents intra or inter data dependencies between tasks.  

A task vertex has associated its worst and/or average case 
execution time, data, and program memory size or hardware 
area in each of the available cores. An edge has an associated 
vector (v,d), where v is the data size to be transferred and d is 
the inter delay between two connected tasks.  

B. Allocation 

The allocation step determines the most appropriate SoC 
architecture from the generic CSoC platform for the execution 
of the application. It determines the size of the NoC topology 
and the type of core associated with each tile. This is a hard 
problem. Therefore, we have used an heuristic (see figure 6). 

From the generic CSoC platform, the algorithm instantiates 
an initial set of IP cores. From this set, it generates an initial 
architecture. To generate an architecture from a set of cores, 
the algorithm reads sequentially the set of tiles with its IP core 
association (including the NI) and fills the FPGA (including 
the routers) until it is full or all tiles are associated.  
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Fig. 6. Allocation algorithm 

Next, it maps the application and finds the quality of the 
architecture with the analysis tool. If the quality is considered 
acceptable, the algorithm stops. Otherwise, it changes the IP 
core of a tile and restarts the evaluation flow. The iterative 
process of the algorithm is controlled with a simulated 
annealing (SA) algorithm [13] as follows: 
Move generation function: generates a new architecture 
instance from the previous by changing the IP core of a tile. 
Cooling schedule: the cooling schedule includes the initial 
temperature, t0, the decrement rule for the temperature, the 
stop criterion and the length of the Markov chain. t0 is obtained 
by incrementing the temperature until the percentage of 
accepted transitions is higher then 70%. The decrement rule is 
given by tk = t0  × 0.95k. The algorithm stops when three 
consecutive Markov chains end with the same value. The 
length of the Markov chain is equal to the size of the 
neighborhood. 
Cost function: obtained with the mapping and analysis steps. 

C. Mapping 

Mapping consists on assigning each application object 
(task, data transfer and variable) onto an architectural element 
(IP core, link and memory, respectively) in order to maximize 
the quality of the architecture while satisfying design 
constraints. Even for small instances, the mapping problem 
has exponential complexity so that heuristics must be used. 

Our mapping approach uses SA to improve an initial 
solution found with LS while exploring the advantages of 
both pipelining and unrolling to increase the throughput. 
Pipelining allows tasks belonging to different iterations to be 
executed at the same time and unrolling increases the number 
of tasks within an iteration to explore more parallelism. The 
NoC structure can easily implement pipelining since the 
output of a task is buffered and the flow of data is easily 
controlled by the end-to-end flow control of the NI.  

The algorithm starts with the IDFG of the application and a 
NoC architecture and iteratively runs a mapping design space 
exploration step with different unrolling values (U) (see 
figure 7). 
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The iterative process is controlled with SA using the same 
cooling schedule of the allocation process. Each mapping 
solution is evaluated with the analysis tool. 

D. Analysis 

The analysis finds the quality of an architecture based on 
its performance, cost and memory requirements. 

For performance evaluation, it uses LS to order the 
execution of tasks assigned to a single core to optimize the 
throughput of the graph, Cthroughput. To schedule tasks on 
software processors, the algorithm assumes the processor 
executes one task at a time and the program code of the task is 
in local memory before starting its execution.  

The memory requirements of a CSoC architecture depends 
on the local memory requirements of each IP core. The local 
memory of a core is used to store the program instructions of 
tasks (for a software core), the OS data of the NI and the tasks 
data. We assume the local memory is implemented with 
BRAM and the instruction, the OS and data memories use 
independent BRAM. 

To calculate the memory utilization of a core, the analysis 
uses a table with the instruction memory size of each task on 
each software core and the size of input and output ports of 
each task. The analysis process determines the number of 
local BRAMs, BR, necessary to implement core k as follows: 

BR(k) = 
{ } { }{ } 1

),(2)(
+

×
+ ∈ ∈∈

BRAMSize

jiportSize

BRAMSize

iinstrMem
coreTasksi taskPortsjcoreTasksi

 (3) 
where instrMem(i) is the code memory size of task i,

portSize(i, j) is the data size of port j of task i. The total 
number of BRAM used, Cmemory, is given by: 

Cmemory = 
∈ }{

)(
setofcoresi

iBR            (4) 

The final quality of the architecture is given by Ct + Cm

where 
( )

( ) constraint   w/ ,
int

int

constraint   w/o,

×

×
=

straCmetricCon
Constra - CmetricCmetric(P)

Ka

Cmetric

PCmetric
K

Cx

(5)

where K and Ka are weighting factors specified by the user 

with typical values of 0.5 and 100, respectively. Cmetric(P) is 
the metric value (throughput or memory) of a solution P and 
CmetricConstraint is a metric (throughput or memory) constraint. 
For a non-constrained metric, we use the average value 
( Cmetric) calculated from the values of the metric in some 
(<20) previous solutions.  

VIII. Design Evaluation 

This section describes the design of a JPEG encoder with 
the proposed CSoC environment. A simulation has been 
executed and a prototype is under development based on the 
Xilinx VirtexII XC2V6000. 

A. JPEG Encoder 

The standard JPEG compression with a block size of 8×8 
pixels for color images was implemented. The compression 
method used is based on the DCT (see IDFG of the JPEG 
encoder in figure 8). 
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Fig. 8. IDFG of the JPEG encoder 

The tasks of the JPEG where characterized considering a 
hardware implementation (see table 3). 

TABLE III 
JPEG Hardware Task Characterization 

Task Size (slices) BRAM Latency 
RGB2YCbCr 204 0 64 
2D-DCT 1612 1 168 
Quantizer 312 1 64 
Huffman 176 1 192 

For this application, the co-synthesis tool took less than 5 
minutes to found a hardware only solution that can process 
two blocks of [8×8]×24 bits in 3.8 µs (cores frequency = 
100MHz, NoC frequency = 150MHz with 16 bit packets), 
which is equivalent to a processing capacity of 800 Mbps. 
With this throughput, we can process color images at the 
processing times of table 4. 



TABLE IV 
Execution Time of Hardware Solutions 

Image size HW solution (NoC) 
seconds (fps) 

Pentium 4 at 
1.7 GHz 

HW solution 
(bus) seconds 

640×480 0.009 (108) 0.046 0,055 
800×600 0.015 (67) 0.071 0,086 
1024×768 0.024 (42) 0.110 0,14 

The JPEG solution was placed & routed and simulated on 
the FPGA with the Xilinx ISE 6.2i software (see figure 9). 

Fig. 9. FPGA implementation of the JPEG case study 

In the figure, we have outlined all resources used in the 
implementation (13877 out of 33792 slices, 45%). We can 
see the co-synthesis tool have unrolled the graph one time, 
almost doubling the processing rate. The design was easily 
routed because of its regularity and the mapping constraints 
over the IP cores, the routers and block RAM. 

From this and other results, we conclude the following: 
- Designs can be quickly and easily designed without bus 

design complications. The same design with a single bus 
could not achieve the same throughput. 

- For certain cores (Huffman), a router uses more slices. This 
area overhead may become a serious bottleneck for NoC 
architectures. Other NoC topologies with shared routers and 
local memory are being considered.  

- Many NoC parameters can and should be explored with the 
cosynthesis tool, including buffer size, switching capacity, 
routing algorithm and arbitration policy. Adjusting these 
parameters to specific applications means smaller size 
routers and consequently less overhead. 

IX. Summary and Conclusions 

The well-structured design of the CSoC platform and the 
acceptable computation times of the co-synthesis tool allow 
the rapid development of SoC architectures. 

Our approach has been used to design a JPEG application 
with a throughput of 800 Mbps. The results are very 

promising since we where capable of easily integrate several 
IP cores in a single chip and obtain high quality solutions. 

Future research includes developing a more flexible CSoC 
with different network topologies and including a generic 
parameterizable router as part of the design space exploration 
in order to improve the area, performance and energy 
dissipation of the final SoC architecture. 
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