
Co-Synthesis of a Configurable SoC Platform
based on a Network on Chip Architecture

Abstract - The constant increase of gate capacity and
performance of configurable hardware chips made it possible
to implement systems-on-chip (SoC) able to tackle the
demanding requirements of many embedded systems. In this
paper, we propose an approach to the design space exploration
of a configurable SoC (CSoC) platform based on a network on
chip (NoC) architecture for the execution of dataflow
dominated embedded systems. The approach has been
validated with the design of a color image compression
algorithm in an FPGA.

I Introduction

Configurable hardware is constantly being upgraded with
higher working frequencies and gate capacity that allow the
implementation of faster complex systems in a single chip,
making it a competitive solution for embedded systems. This
gate capacity leads to a complexity challenge needing new
architectures and design methodologies to increase design
productivity. An approach to the design of such complex
systems is to reuse hardware and software blocks resulting in
a number of interconnected IP cores. Gajski et.al. [1] have
proposed an IP-centric embedded system design
methodology and Vahid et al. [2] have proposed a platform
based methodology which not only allows reuse of
components but also of system architectures and topologies.

Many architectural templates have been proposed for
hardware platforms for future SoCs with a general emphasis
on providing efficient and standardized communication
infrastructures for connecting multiple resources on the chip,
like the Network-on-Chip (NoC) [3], [4]. The NoC has been
introduced as a new interconnection paradigm able to
integrate a many cores while keeping a high communication
bandwidth. The increased computational power and internal
communication bandwidth of NoC can provide better timing
performances to the embedded applications than the shared
medium in current SoC architectures.

Some works have contributed with concepts in the area of
networks on chip, like [5]. Among the few implementations
of NoC, we are mainly interested on the configurable
hardware implementations of [6] and [7]. Marescaux [6] have
implemented a bidirectional torus in a Virtex/VirtexII FPGA.
The network uses 16 bits data packets, the XY routing
algorithm, virtual output buffers and supports up to

320Mbits/s at 40MHz with two virtual channels time
multiplexed for QoS support. HERMES [7] is a NoC mesh
topology implemented in a VirtexII FPGA. The network
supports up to 500 Mbits/s at 25MHz without QoS.

Many co-synthesis tools will be required to develop NoC
based architectures. Tools to choose the best platform
configuration and to map applications to the target NoC
architecture will be essential. There has been a lot of research
on co-synthesis for bus-based architectures [8], [9], [10].
NoC researchers can adapt many of the techniques and ideas
from these approaches for NoC tool development.

Since NoC is a novel research area only a few mapping and
scheduling approaches have been developed. Lei et al. [11]
use a genetic algorithm (GA) for task mapping and
list-scheduling (LS) for task scheduling. The communication
is neither mapped nor scheduled and delay is estimated as the
average distance between processors. Shin et al. [12]
proposed a methodology with network assignment and link
speed allocation for reducing communication energy. They
use GA for mapping and network assignment and LS for task
scheduling and link assignment. To our knowledge, there is
not a methodology for the development of NoC based SoC
considering all aspects of the co-synthesis process.

In this paper, we propose a co-synthesis methodology with
the integration of allocation, mapping and scheduling steps
for the development of SoC based on a parameterizable NoC
for the execution of dataflow-dominated applications, like
multimedia. The platform supports hardware/software
multitasking and includes hardware support for the operating
system. Increased productivity is achieved through
orthogonalization of communication and computation and
design reuse. A real multimedia example has been simulated
and implemented on a Virtex II XC2V6000 FPGA.

II. CSoC Architecture

Our CSoC platform consists of an array of tiles
interconnected with a NoC. The NoC consists of an array of
routers (R), where a router is connected to at most four
neighbor routers and to a local IP core. Among the many
interconnection topologies, we use a 2D mesh topology
because it fits naturally in a 2-dimensional chip (see example
in figure 1).

Mário P. Véstias
mpv@fidelio.inesc-id.pt

INESC-ID, Lisboa
Portugal

Horácio C. Neto
hcn@inesc-id.pt

INESC-ID, Lisboa
Portugal

R

IP
Core

Mem NI
IP

Core

Mem

R

NI

R

IP
Core

Mem NI

R

IP
Core

Mem NI
IP

Core

Mem

R

NI

R

IP
Core

Mem NI

R

IP
Core

Mem NI
IP

Core

Mem

R

NI

R

IP
Core

Mem NI

Fig. 1. SoC architecture

A tile consists of an IP core, local memory and a network
interface (NI). An IP core is a piece of configurable hardware
or a processor. Each core has direct access to local memory
and uses the NoC to exchange data with other cores. The link
between a router and a core is established with a NI. The
platform connects to the environment using IP cores that
implement a particular type of interface.

A NoC can be described by its topology and by the
strategies used for routing, flow control, switching,
arbitration and buffering. Routing determines how a message
chooses a path in this graph, while flow control deals with the
allocation of channels and buffers to a message as it traverses
this path. Switching is the mechanism that removes data from
an input channel of a router and places it on an output
channel, while arbitration is responsible for scheduling the
access to channels and buffers. Buffering defines the
approach used to temporarily store messages.

The communication behavior follows a layered approach
similar to the OSI communication architecture (see figure 2).

Application

Layered
Architecture

Transport
Network

Data-Link
Physical

Platform
Components

IP cores
Network

Interfaces
Network
Routers

Session

Physical links

Fig. 2. Communication architecture of the SoC platform

The application layer includes all tasks implemented by a
core that consume/produce data. The session layer includes
OS services, namely, memory management and task
scheduling. The transport layer manages the identification of
task ports for the correct end-to-end delivery of data between
tasks on different IP cores and the segmentation of data
output into packets and reassembly of packets into input data.
The network layer includes services for packet routing. The
data-link layer includes protocols for reliable data
communication between two routers and between a router
and an IP core. Finally, the physical layer models the physical
links for transmission of bits.

A. Parameterization

The NoC infrastructure has a set of configurable
parameters, including:
1) The size of the 2D mesh topology.
2) The type of IP core of each tile.
3) The data width of point-to-point channels between routers.

Supported values are 8, 16 and 32 bits.

III. Router Design

A router forwards packets between IP cores. For each
packet received, the router reads the destination address and
forwards it to the correct output port. Our router consists of a
set of input and output ports with buffering and a set of
control blocks for routing, flow control, switching and
arbitration (see figure 3).

Switch
Matrix

Arbitration

Buffer

Buffer

B
uf

fe
r

B
uffer

Packet In

Packet Out

Rqst Rcv
Ack Rcv

Rqst Trm
Ack Trm

B
uf

fe
r

Packet In

Packet Out

Rqst Rcv
Ack Rcv

Rqst Trm
Ack Trm

P
ac

ke
t O

ut

R
qs

t T
rm

Ac
k

Tr
m

Pa
ck

et
 In

R
qs

t R
cv

A
ck

 R
cv

P
ac

ke
t O

ut

R
qs

t T
rm

Ac
k

Tr
m

P
ac

ke
t I

n
R

qs
t R

cv

A
ck

 R
cv

Packet Out

Rqst Trm
Ack Trm

P
ac

ke
t I

n
R

qs
t R

cv

A
ck

 R
cv

WEST

LOCAL

EAST

SO
U
TH

N
O
R
TH

Routing

Flow control

Fig. 3. Architecture of a NoC router

Router ports are used to exchange packets with neighbor
routers and with the local IP. A port guarantees the
communication reliability through a two-way handshake
point-to-point flow control.

The arbitration mechanism uses a round-robin scheme to
arbitrate requests from different input ports and grants the
output buffer to an input request port. Among the deadlock
free routing algorithms for mesh topologies, we implemented
the XY algorithm. The XY algorithm routes packets first
along the X direction, then along the Y direction until
reaching the target. The switching mechanism is based on the
store and forward process.

IV. Network Interface Design

The NI consists of an input and an output controller, shared
memory ports to connect to the core, a port to connect to the
router and an OS memory (see figure 4).

Buffer

Pa
ck

et
 O

ut

R
qs

t T
rm

A
ck

 T
rm

Pa
ck

et
 In

R
qs

t R
cv

A
ck

 R
cv LOCAL

Input
Control

Output
Control

IP Core

Memory

O
S

M
em

or
y

Task Scheduling

Reassembly

SegmentationMemory
Management

Encapsulation

End-to-end
Flow control

Router

NI

Fig. 4. – Architecture of the network interface

The interface between the NI and the router is identical to
the interface between two routers. The interface between the
IP core and the NI is implemented with shared memory. The
memory may be dual-port RAM or FIFO, depending on the
type of the core. For a processor core, the shared memory is
always implemented with dual-port RAM. For a hardware
core, it may be any of the two kinds of memory. The NI also
performs data split and data merge to transmit packets with a
data size different than the link size.

The input controller receives data from the router and
sends it to the shared memory to an address defined by the
port number of the packet. For data transmitted in multiple
packets, the controller stores each packet in sequential
memory positions until the complete data port is available.
When all data of the input ports of a task are available and the
corresponding output port is free, the input controller sends a
token to the core indicating the task can be executed.

The output controller reads data from the shared memory
and sends it in one or more packets. It also implements an
end-to-end dataflow control, that is, when the input buffers of
a task are available, the output controller sends a token to the
producers indicating that they can send more data.

V. Packet Structure

Data to be transmitted is encapsulated in packets at the
transmitter and deencapsulated at the receiver. Besides data
packets, our NoC implementation uses configuration and
token packets. Configuration packets are used to configure
the NI and token packets are used for end-to-end flow control.

The highest level of the packet structure is at the
application layer where data is produced. If data is too large
to fit into one packet it will be divided into several packets.
Each packet is encapsulated with its type at the session layer.
Next, the transport layer adds the destination port and the
network layer adds the destination address.

VI. CSoC Performance Evaluation

We have conducted a simulation of a prototype of the NoC
to characterize the following set of parameters (see table 1):

Link latency (LL) - the delay for a packet to move from
the output of a router to the output of a neighbor router;

Resource generation latency (RGL) – the delay for a NI
to generate a packet;

Resource reception latency (RCL) – the delay for a NI to
consume a packet;

Resource to resource latency (R2RL) – the delay for
moving a packet from one IP core to a neighbor IP core;

Resource to resource bandwidth (R2RB) - the
transmission throughput between IP cores.

TABLE I
NoC Characterization

LL RGL RCL R2RB

1 cycle 4 cycles 5 cycles 5
)(frequencyf

Packets/s

From these parameters, we calculate the communication
delay of a packet between two tiles. In a NoC, the
communication delay depends on the distance between tiles,
the size of transmission data and the network traffic. In the
execution of an application, it is possible to have many
concurrent transmissions, which conflicts in the use of the
communication resources. If tasks have variable execution
times, the network traffic is non-deterministic, which makes
the analysis more difficult. To simplify, we assume that at any
time a link is dedicated to a single data transfer. Hence, the
transmission delay of a packet between two tiles separated by
NR routers, EdgeDelay, is given by:

EdgeDelay =
frequency)working(f

NRLLRCLRGL ×++ (1)

Since the packets are buffered at the routers, the
transmission of data requiring more than one packet can be
pipelined. In this case, the transmission delay, EdgeDelaypipe,
of NP packets is given by:

EdgeDelaypipe = ()NPNR
RBR

+×
2
1 (2)

Besides performance, we have also determined the
maximum area occupied by a router and a NI after the
synthesis and placement of the components on the target
FPGA with the Xilinx ISE 6.2i software (see table 2).

TABLE II
Slice Areas of the Interconnection Components

Block Size (slices) BRAM % XC2V6000
Router (8bits) 189 0 0,56
NI 121 1 0,36

A router can forward five packets per clock cycle at
150MHz. Therefore, a router can forward at most 6Gbps.

VII. CSoC Co-Synthesis

To configure our CSoC architecture for a specific
application, we have developed a platform-based
co-synthesis methodology. It finds a hardware/software
architecture that runs the application with optimized
performance and meets the design constraints (see figure 5).

ApplicationsArchitecture
instance Quality

Mapping

Analysis

Allocation

Quality

Design Constraints

Design Constraints

Design Constraints

Generic NoC
Platform

Fig. 5. Co-synthesis flow

It starts with an architecture instance, maps the application
onto the architecture and uses the analysis step to determine the
quality of the architecture based on cost and performance
metrics. The analysis yields quality values that together with
design constraints over cost and performance guide the
allocation to improve the architecture.

A. Application Model

The applications are modeled with an iterative dataflow
graph (IDFG) that can represent iterative behaviors. This
model is a directed cyclic graph G = (V, E), where each vertex
v ∈ V represents a task (atomic computation) and each edge e
∈ E represents intra or inter data dependencies between tasks.

A task vertex has associated its worst and/or average case
execution time, data, and program memory size or hardware
area in each of the available cores. An edge has an associated
vector (v,d), where v is the data size to be transferred and d is
the inter delay between two connected tasks.

B. Allocation

The allocation step determines the most appropriate SoC
architecture from the generic CSoC platform for the execution
of the application. It determines the size of the NoC topology
and the type of core associated with each tile. This is a hard
problem. Therefore, we have used an heuristic (see figure 6).

From the generic CSoC platform, the algorithm instantiates
an initial set of IP cores. From this set, it generates an initial
architecture. To generate an architecture from a set of cores,
the algorithm reads sequentially the set of tiles with its IP core
association (including the NI) and fills the FPGA (including
the routers) until it is full or all tiles are associated.

Mapping & Analysis

Generate NoC
Architecture

Instanciate Initial
Set of IP Cores

Initial Set of map
Tile <-> IP Core

no

yes
Good?

Generic
NoC platform

Final
NoC

Change
Tile <-> IP Core

Fig. 6. Allocation algorithm

Next, it maps the application and finds the quality of the
architecture with the analysis tool. If the quality is considered
acceptable, the algorithm stops. Otherwise, it changes the IP
core of a tile and restarts the evaluation flow. The iterative
process of the algorithm is controlled with a simulated
annealing (SA) algorithm [13] as follows:
Move generation function: generates a new architecture
instance from the previous by changing the IP core of a tile.
Cooling schedule: the cooling schedule includes the initial
temperature, t0, the decrement rule for the temperature, the
stop criterion and the length of the Markov chain. t0 is obtained
by incrementing the temperature until the percentage of
accepted transitions is higher then 70%. The decrement rule is
given by tk = t0 × 0.95k. The algorithm stops when three
consecutive Markov chains end with the same value. The
length of the Markov chain is equal to the size of the
neighborhood.
Cost function: obtained with the mapping and analysis steps.

C. Mapping

Mapping consists on assigning each application object
(task, data transfer and variable) onto an architectural element
(IP core, link and memory, respectively) in order to maximize
the quality of the architecture while satisfying design
constraints. Even for small instances, the mapping problem
has exponential complexity so that heuristics must be used.

Our mapping approach uses SA to improve an initial
solution found with LS while exploring the advantages of
both pipelining and unrolling to increase the throughput.
Pipelining allows tasks belonging to different iterations to be
executed at the same time and unrolling increases the number
of tasks within an iteration to explore more parallelism. The
NoC structure can easily implement pipelining since the
output of a task is buffered and the flow of data is easily
controlled by the end-to-end flow control of the NI.

The algorithm starts with the IDFG of the application and a
NoC architecture and iteratively runs a mapping design space
exploration step with different unrolling values (U) (see
figure 7).

IHDFG

Unroll <- Unroll + 1

Map Analysis

Improved?

Unroll?

Unrolled Graph

Save
Solution

End

no

no

yes

yes

NoC
Architecture

Fig. 7. Mapping algorithm

The iterative process is controlled with SA using the same
cooling schedule of the allocation process. Each mapping
solution is evaluated with the analysis tool.

D. Analysis

The analysis finds the quality of an architecture based on
its performance, cost and memory requirements.

For performance evaluation, it uses LS to order the
execution of tasks assigned to a single core to optimize the
throughput of the graph, Cthroughput. To schedule tasks on
software processors, the algorithm assumes the processor
executes one task at a time and the program code of the task is
in local memory before starting its execution.

The memory requirements of a CSoC architecture depends
on the local memory requirements of each IP core. The local
memory of a core is used to store the program instructions of
tasks (for a software core), the OS data of the NI and the tasks
data. We assume the local memory is implemented with
BRAM and the instruction, the OS and data memories use
independent BRAM.

To calculate the memory utilization of a core, the analysis
uses a table with the instruction memory size of each task on
each software core and the size of input and output ports of
each task. The analysis process determines the number of
local BRAMs, BR, necessary to implement core k as follows:

BR(k) =
{ } { }{ } 1

),(2)(
+

×
+ ∈ ∈∈

BRAMSize

jiportSize

BRAMSize

iinstrMem
coreTasksi taskPortsjcoreTasksi

 (3)
where instrMem(i) is the code memory size of task i,

portSize(i, j) is the data size of port j of task i. The total
number of BRAM used, Cmemory, is given by:

Cmemory =
∈ }{

)(
setofcoresi

iBR (4)

The final quality of the architecture is given by Ct + Cm

where
()

() constraint w/ ,
int

int

constraint w/o,

×

×
=

straCmetricCon
Constra - CmetricCmetric(P)

Ka

Cmetric

PCmetric
K

Cx

(5)

where K and Ka are weighting factors specified by the user

with typical values of 0.5 and 100, respectively. Cmetric(P) is
the metric value (throughput or memory) of a solution P and
CmetricConstraint is a metric (throughput or memory) constraint.
For a non-constrained metric, we use the average value
(Cmetric) calculated from the values of the metric in some
(<20) previous solutions.

VIII. Design Evaluation

This section describes the design of a JPEG encoder with
the proposed CSoC environment. A simulation has been
executed and a prototype is under development based on the
Xilinx VirtexII XC2V6000.

A. JPEG Encoder

The standard JPEG compression with a block size of 8×8
pixels for color images was implemented. The compression
method used is based on the DCT (see IDFG of the JPEG
encoder in figure 8).

RGB2YCbCr

2D-DCT 2D-DCT 2D-DCT

Quantizer
& Zigzag

Quantizer
& Zigzag

Quantizer
& Zigzag

Huffman
Encoder

Image.bmp

Image.jpg

[8x8] [8x8] [8x8]

[8x8] [8x8] [8x8]

[8x8] [8x8] [8x8]

Fig. 8. IDFG of the JPEG encoder

The tasks of the JPEG where characterized considering a
hardware implementation (see table 3).

TABLE III
JPEG Hardware Task Characterization

Task Size (slices) BRAM Latency
RGB2YCbCr 204 0 64
2D-DCT 1612 1 168
Quantizer 312 1 64
Huffman 176 1 192

For this application, the co-synthesis tool took less than 5
minutes to found a hardware only solution that can process
two blocks of [8×8]×24 bits in 3.8 µs (cores frequency =
100MHz, NoC frequency = 150MHz with 16 bit packets),
which is equivalent to a processing capacity of 800 Mbps.
With this throughput, we can process color images at the
processing times of table 4.

TABLE IV
Execution Time of Hardware Solutions

Image size HW solution (NoC)
seconds (fps)

Pentium 4 at
1.7 GHz

HW solution
(bus) seconds

640×480 0.009 (108) 0.046 0,055
800×600 0.015 (67) 0.071 0,086
1024×768 0.024 (42) 0.110 0,14

The JPEG solution was placed & routed and simulated on
the FPGA with the Xilinx ISE 6.2i software (see figure 9).

Fig. 9. FPGA implementation of the JPEG case study

In the figure, we have outlined all resources used in the
implementation (13877 out of 33792 slices, 45%). We can
see the co-synthesis tool have unrolled the graph one time,
almost doubling the processing rate. The design was easily
routed because of its regularity and the mapping constraints
over the IP cores, the routers and block RAM.

From this and other results, we conclude the following:
- Designs can be quickly and easily designed without bus

design complications. The same design with a single bus
could not achieve the same throughput.

- For certain cores (Huffman), a router uses more slices. This
area overhead may become a serious bottleneck for NoC
architectures. Other NoC topologies with shared routers and
local memory are being considered.

- Many NoC parameters can and should be explored with the
cosynthesis tool, including buffer size, switching capacity,
routing algorithm and arbitration policy. Adjusting these
parameters to specific applications means smaller size
routers and consequently less overhead.

IX. Summary and Conclusions

The well-structured design of the CSoC platform and the
acceptable computation times of the co-synthesis tool allow
the rapid development of SoC architectures.

Our approach has been used to design a JPEG application
with a throughput of 800 Mbps. The results are very

promising since we where capable of easily integrate several
IP cores in a single chip and obtain high quality solutions.

Future research includes developing a more flexible CSoC
with different network topologies and including a generic
parameterizable router as part of the design space exploration
in order to improve the area, performance and energy
dissipation of the final SoC architecture.

Acknowledgments

The authors thank the support granted by INESC-ID.

References

[1] D. Gajski, R. Dömer and J. Zhu, “IP-Centric
Methodology and Design with the SpecC Language”, in
System Level Design, Nato Science Series 357, 1999.
[2] F. Vahid and T. Givargis, “Platform Tuning for
Embedded Systems Design”, in IEEE Computer, 34, 3.
[3] W. Dally and B. Towles, “Route Packets, Not Wires:
On-Chip Interconnection Networks”, in Proc. of DAC, 2001.
[4] A. Hemani, A. Jantsch, S. Kumar, A. Postula, J. Oberg,
M. Millberg and D. Lindqvist, “Network on Chip: An
Architecture for Billion Transistor Era”, in Proceedings of
the IEEE NorChip Conference, Nov. 2000.
[5] L. Benini and G. de Micheli, “Networks on Chips: a
New SoC Paradigm”, in Computer, v.35(1), Jan. 2002,
pp.70-78.
[6] T. Marescaux, A. Bartic, D. Verkest, S. Vernalde, R.
Lauwereins, “Interconnection Networks Enable Fine-Grain
Dyanmic Multi-Tasking on FPGAs”, in Field-Programmable
Logic and Applications, 2002, pp. 795-805.
[7] F. Moraes, N. Calazans, A. Mello, L. Möller, L. Ost
“HERMES: an Infrastructure for Low Area Overhead
Packet-Switching Networks on Chip”, in Integration, the
VLSI Journal 38, 2004, pp. 69-93.
[8] R. Dick and N. Jha, “CORDS: Hardware-Software
Co-Synthesis of Reconfigurable Real-Time Distributed
Embedded Systems”, in Proc. of ICCAD, pp. 62-68, 1998.
[9] R. Szymanek and K. Kuchcinski, “Design Space
Exploration in System Level Synthesis under Memory
Constraints”, in Proceedings EuroMicro, pp. 8-10, 1999.
[10] U. Shenoy, et al., “A System-Level Algorithm with
Guaranteed Solution Quality”, in Proceedings of DATE, pp.
417-422, 2000.
[11] T. Lei and S. Kumar, “Algorithms and Tools for NoC
Based System Design”, in Proceedings of SBCCI, 2003.
[12] D. Shin and J. Kim, “Power-Aware Communication
Optimization for Networks-on-Chips with a Voltage Scalable
links”, in Proceedings of CODES+ISSS, pp. 170-175, 2004.
[13] S. Kirkpatrick, C. Gelatt, and M. Vecchi, “Optimization
by Simulated Annealing”, in Science, 220(4598): pp.
671-680, May 1983.

Router0 Router1 Router2 Router3

Router4 Router5 Router6

Router7 Router8 Router9

Router10 Router11 Router12

Router13

RGB2YCbCr

DCT DCT DCT

DCT DCT DCT

Quantizer Quantizer Quantizer

Quantizer Quantizer Quantizer

Huffman

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

