
POSIX modeling in SystemC

Abstract - Early estimation of the execution time of
Real-Time embedded SW is an essential task in complex,
HW/SW embedded system design. Application SW execution
time estimation requires taking into account the impact of the
underlying RTOS. As a consequence, RTOS modeling is
becoming an active research area. SystemC provides a
framework for multiprocessing, HW/SW co-simulation at
several abstraction levels. In this paper, a SystemC library for
POSIX modeling and simulation is presented. By using the
library, the SystemC specification using POSIX functions is
converted automatically into a timed simulation estimating the
execution time of the application SW running on the POSIX
platform. The library works directly on the source code.
Therefore, it provides an early and fast estimation of the
performance of the system as a consequence of the
architectural mapping decisions. Although accuracy is lower
than when using lower-level techniques, it supports high-level
design-space exploration as simulation time is significantly less
than RT (ISS) simulation1.

I. Introduction

Cost of design has been identified as the greatest threat to
the continuation of microelectronic technology improvement
towards larger integration scales. Among the different costs,
embedded software development represents the major part
of the SoC development cost [1]. In this context, there is a
clear need for new methodologies supporting efficient
design of Real-Time, Embedded (RT/E) systems on complex
platforms [2].

Performance analysis is an increasingly important and
challenging task in embedded system design since
performance parameters (time, size, consumption, cost, etc.)
can be as important as functional requirements [3]. Complex,
HW/SW embedded systems demand accurate estimation of
their timing characteristics before implementation. Such
system timing analysis requires system modeling taking into
account the close interaction between the application SW
and hardware-dependent SW running on the different
processors and the application-specific HW through the
platform communication resources [2-3].

Time execution estimation has been a traditional problem
in real-time embedded SW engineering [4]. Execution time
figures are necessary to develop timed SW simulation
models [5].

1This work has been partially supported by the ITEA IP 03002
Medea project and the TIC-2002-00660 project.

Accurate SW simulation requires taking into account the
effect of the RTOS [6-12]. In order to be efficient and,
therefore, applicable to complex systems, the SW code can
be directly executed using an abstract model of the RTOS.
System specification languages like SpecC [6-7] or SystemC
[10][12-13] have proven to provide a useful HW/SW
co-simulation platform.

SystemC can be used to effectively create accurate
models of complex, HW/SW embedded systems. SystemC
allows the hardware and software design team to develop an
executable specification of the system which can be used to
quickly simulate and explore various algorithms, and
validate and optimize the design [14]. SystemC supports
efficient generation of the embedded software including
interface drivers and the RTOS [15]. Nevertheless, certain
RTOS characteristics such as priority-based preemption are
very difficult to be adequately modeled in SystemC.

In this paper, a high-level, POSIX simulation library in
SystemC is presented. The library allows the designer a fast,
sufficiently accurate, timed simulation of the application SW
running on top of POSIX [16]. As most current RTOSs
support this standard, the library is portable to different
development frameworks. Moreover, SystemC provides a
flexible infrastructure for multiprocessing, HW/SW
co-simulation at different abstraction levels. As a
consequence, the POSIX simulation library can be used in
any SystemC HW/SW co-simulation environment.

The structure of the paper is the following. In the next
section, the contribution of the paper is described in the
context of related work. In Section 3, the POSIX modeling
and simulation methodology is presented. Experimental
results are provided in Section 4. Finally, the main
conclusions of the work are presented.

II. Related work

Traditionally, simulation capability has not been a main
criterion in selecting a RTOS [17]. Nevertheless, most RTOS
vendors provide a simulator of their OS to help software
designers to develop and emulate application code on the host
before having developed the actual hardware prototypes [18].
These simulators usually take the application code, compile it
with a native compiler, link it with the OS Kernel libraries
and produce a host executable. The simulator is completed
with the libraries of the additional RTOS modules (TCP/IP
stack, file system, link handler, etc.) in the simulated

Hector Posadas, Jesús Ádamez, Pablo Sánchez, Eugenio Villar
Microelectronics Engineering Group, University of Cantabria, Santander, Spain

www.teisa.unican.es/gim

Francisco Blasco
DS2, Valencia, Spain

environment. Simulation cannot be timing accurate because it
relies upon the host operating system scheduling. Although it
can guarantee the order of the events, the simulation is
untimed. Very few commercial RTOS simulators are timed
simulators [19]. They are based on proprietary languages and
do not support HW/SW co-simulation.

Architectural exploration of complex, HW/SW embedded
systems require accurate profiling of their timing
characteristics. Precise co-simulation at the RT level is
unfeasible for system-level profiling due to its excessive
host execution time. SW simulation using cycle-accurate
Instruction-Set Simulators (ISS) only alleviates the problem.
Moreover, it requires setting up a co-simulation
infrastructure [9]. Faster co-simulation can be achieved by
directly executing the code in a SW-HDL co-simulation
environment [20]. With this approach, the SW execution
time is very difficult to model. A rough approximation of the
SW execution time can be achieved using the native system
clock [11].

Fast, sufficiently accurate, HW/SW co-simulation
requires adequate modeling of the RTOS in a system-level
language like SpecC [6-7] or SystemC [10][12]. The RTOS
model is abstract, based on APIs including the most common
RTOS functions [7], wrappers [8] or an implementation-
specific model of each channel [10]. An advantage of these
techniques, in addition to the improvement in simulation
time, is that they can be applied early in the design process
avoiding costly design iterations. As these techniques use an
abstract RTOS model, they cannot simulate embedded code
using actual functions of any specific RTOS. As a
consequence, the simulation methodology does not support
refinement of the original specification apart from the
inclusion of the RTOS modeling itself [7]. Moreover, the
application code has to be modified with specific RTOS
modeling functions [7-8]. Only by direct modeling of a
standard RTOS it is possible to use the same code for both
simulation and implementation [11-12].

Execution time of both the application code and the RTOS
is taken into account during simulation by introducing ‘wait’
statements [5-12]. More the number of ‘wait’ statements
introduced, higher the accuracy. Nevertheless, the ‘wait’
statements are introduced at certain static, predetermined
points. As a consequence, low-level, dynamic timing
characteristics of the RTOS like time-slicing, preemptive
scheduling, interrupts and exceptions are very difficult to
model.

A SystemC library called PERFidy was developed for
system-level, timed simulation and performance analysis
[10]. The library is able to obtain timing cost estimations
from a set of values that characterize the target platform in
which the embedded systems will be implemented. This is
made possible by redefining all the C++ operators with new
ones with the same functionality but estimating the
corresponding execution time on the chosen platform
resource. This detailed estimation of the SW execution time
allows deciding dynamically the place of the application
code where the task (process or thread) has to be preempted.
As a consequence, the low-level, dynamic characteristics of

the RTOS can be efficiently modeled.
In this paper, an extension of the timed-simulation

methodology used in PERFidy is proposed in order to allow
the timed-simulation of RTOS functions in SystemC.
Although the SystemC 2.0 simulation kernel executes
processes following a non-preemptive scheduling policy
without priorities, the proposed simulation methodology is
able to model preemption as well as different scheduling
policies based on priorities. In order to ensure independence
from any specific RTOS, the simulation methodology
supports POSIX, thus ensuring wide portability. In this way,
the proposed extension, called PERFidiX supports the early
performance analysis of the system specification as well as
the impact of the decisions taken during design refinement.
Using SystemC ensures a flexible, portable framework for
multiprocessing, HW/SW co-simulation.

III. POSIX modeling in SystemC

A. Analysis of the POSIX standard

The POSIX standard covers a wide range of system
facilities. As the scope of this work is embedded systems,
the focus of interest of the paper is the Real-Time extension.
Concurrency is supported both by processes and threads.
Three standard scheduling policies are defined: FiFo (FF),
Round Robin (RR) and Sporadic Server (SS). Furthermore,
other policies can be offered but they are implementation
specific. The standard also defines several mechanisms for
communication and synchronization. Apart from shared
variables, they are mutexes, conditional variables, message
queues, semaphores, sockets, streams, signals, etc. Timing
facilities are based on timers and real-time clocks. Traces are
supported for system analysis and verification. Additionally,
file systems and memory management are also included.

Real-time requirements define functions to support source
portability of applications. The presence of many of these
functions is dependent on support for implementation
options described in the standard. The specific functional
areas included in this section include the following:

• Priority Scheduling
• Semaphores
• Timers
• Real-Time Signal Extension
• Synchronized Input and Output
• Inter-process Communication
• Process Memory Locking
• Memory Mapped Files and Shared Memory Objects

The first six functional areas require an appropriate
modeling in order to ensure a correct timed and functional
simulation of the code. As the simulation runs over one
process of the host OS, the modeling of the last two features
using the host memory is not straightforward. The influence
of these facilities in the execution time will be included in
the simulation, but the development of SystemC functions
that implement this functionality is currently under study.

The model assumes the correct memory access of the code.

B. POSIX simulation library

The correct simulation of all the POSIX functions
described above requires extending the SystemC simulation
kernel with additional functionality not covered by PERFidy.
This modification does not affect the original SystemC
simulation kernel. This means that the standard kernel has
not been modified; the required functionality is emulated
over the original one by using its facilities. This increases
the portability of the library, as it does not require the
installation of a completely new version of SystemC; the
standard one can be used. Moreover, the library is external,
so the use of future SystemC versions will produce no
problems since compatibility with previous versions will be
ensured.

The PERFidiX library including all facilities described
above contains three different parts. The first one contains
the execution support that is provided over the original
SystemC kernel. It implements process and thread
management, including scheduling capabilities, and timing
facilities. The second part implements the POSIX API by
using the facilities provided by the new execution support
kernel. The last part carries out the performance analysis
task by using the timing and traces facilities, and reusing the
technology of the original PERFidy library [10].

C. Concurrency modeling

Parallelism is modeled by using the SC_THREAD
process of SystemC. Therefore, both POSIX processes and
threads are modeled in the same way. Thus, the library
implements the required actions that give each element its
own characteristics. The characteristics of processes and
threads are loaded in a list when they are created and these
parameters can be modified during simulation using the
methods the POSIX standard defines. However, modeling
the capabilities derived by the use of separate memory
spaces in SystemC is not straightforward2.

SystemC does not allow dynamic thread creation. In order
to support dynamic thread creation, a thread-pool is
initialized with the simulation. This pool has a predefined
number of SC_THREADS (the number can be modified in
the source code) starting in a blocked state. Each time a new
thread is declared, a thread in the pool is resumed. This
means that there are a maximum number of dynamic threads
that can be executed at the same time.

D. Modeling the scheduler

The SystemC underlying kernel activates in each δ-cycle
all the threads that are not blocked without any
considerations about priorities. However, the scheduler
model running over the SystemC kernel has to ensure that
only one thread is executed in each processor each time. To

2This feature should be taken into account in embedded processors
with MMU. Certain specific functions are still under study.

solve the problem it is necessary to ensure that all threads
remain blocked, except the one with the greatest priority,
which is awoken. It is also necessary to manage preemption
and priorities. As many schedulers are modeled as
processors are defined, and each process is assigned only to
one scheduler.

Following the POSIX standard, there is one thread list for
each priority. A runnable thread is placed on the thread list
for that thread’s priority when it is ready to execute. When a
thread reaches a blocking point or its time slot is consumed,
it releases the processor, and in the second case, it is added
to the corresponding list. Then, the first thread of the first
non-empty list is deleted from there and resumed.

However this approach does not model preemption as a
SC_THREAD is executed until a wait statement is reached.
POSIX defines that a thread must be preempted when a
thread with a higher priority is awoken. In order to model
preemption adequately, a new list is instantiated. This list is
similar to the previous one, but it does not contain the
threads ready to execute, but the threads that are under
execution. As a consequence, the execution state has two
parts. The first one is the functional execution, and the
second one is the temporal execution. That is, the code is
executed in zero time (in the simulation) and then the thread
is slept to take up the corresponding time in the processor.
This placement in time is produced before a data exchange is
made. If during the time the thread is slept, another thread
with higher priority is awoken, it is executed, and it indicates
to the other thread the time it has been preempted. After
checking if preemption has taken place, and it is slept again
during this time. As a result, when the data exchange is
made, the execution state is correctly placed in time. This
implementation needs another list including the processes in
the execution state, because preemptions can be chained.
Considering that global variables and signals are generated
only in the same processor where they are delivered, it is
possible to support preemption and delivering of signals just
by placing in time the thread execution.

As commented above, only software timers, channel
accesses (e.g. a mutex unlock) or signals could resume
threads. Moreover, only a thread, a timer or an external
interruption can generate a signal. Then, the time when the
events will be produced is known except for external
interruptions or channel accesses. The events generated by
the software are known in advance. Thus, the way to model
preemption is to place in time not only channel accesses but
also these temporal points, and then resume the adequate
thread. This means that all accesses to global variables can
be done in the right order and no errors are made.

Correct timed simulation of the SW code including the
RTOS requires stopping the running thread each tick-time
interval. In this way, any expected or external event can be
taken into account. In Figure 1, an example is used to show
the result when using the proposed solution. The system is
composed of three threads:

Thread 1 presents the lowest priority and a Round Robin
policy with a time limit of 20µs. The thread is ready in T=0.

Thread 2 has a medium priority and a FIFO policy. The

thread is blocked with a timeout that expires at T=30µs.
Thread 3 has the highest priority and FIFO scheduling

policy. It is blocked awaiting a hardware interruption (a
POSIX signal).

Although PERFidiX takes into account the execution time
of the OS, it will not be considered here for the sake of
simplicity. At T=0 only thread 1 is ready and it is moved to
execution state. Two time events have to be considered, the
time limit (T=20µs) and the timeout expiration (T=30µs).
Thus, the thread can be executed for 20µs (or until another
event is detected such as a channel access, a new timer, etc.).
Then, the thread code is executed until PERFidiX estimates
that the executed code will take 20µs in the target platform.
This is done in zero time in the SystemC simulation. To
make the simulation take into account the estimated
execution time, the thread is slept until T=20µs and then the
process is moved to the ready state and the scheduler is
awoken. In this way, the actual behavior of the processor is
closely modeled.

Figure 1: Preemption modeling in PERFidiX.

At T=20µs only thread 1 is ready so it is executed.
However, this time it can be executed during 10µs because
at T=30µs the timeout expires. Then the same procedure
described previously is followed. At T=30µs, thread 1 has
used 10µs of the time interval and another 10µs remains.
However, thread 2 is ready and has a higher priority, so
thread 1 has to be preempted, and thread 2 resumed. Thread
2 execution takes 20µs until it is slept (no events are
expected) at T=50µs. At that time, thread 1 is resumed and it
finishes the 10 µs of the time limit. At T=60µs it is moved to
the ready state and the scheduler is awoken. However, as
there are no other threads in this state, it is resumed with a
new time limit, until T=80µs. Nevertheless, at T=70µs a
hardware interruption is produced and thread 3 is ready with
highest priority, so thread 1 should be preempted. Thread 1
has scheduled its finishing event at T=80µs while, as a
consequence of the execution of thread 3, its actual finishing
time is T=90µs. To correctly model this behavior, thread 3 is

executed at T=80µs with a finishing event scheduled at
T=90µs and then, thread 1 variable where preemption is
indicated, is incremented in 10µs. As a consequence, at
T=80µs, thread 1 is slept again during the time the
preemption variable indicates and it is set to 0. Results (as
well as the implementation) are deterministic if no global
variables are used from T=70µs to T=90µs in both thread 1
and thread 3. As explained above, threads that are awoken
by unexpected signals should not make use of global
variables without including additional synchronization
mechanisms.

As explained before, this entire model does not modify
the SystemC kernel. It is based on the use of “wait()” and
“notify” SystemC primitives. The scheduler also provides
the functions to model the blocks produced by
communication and synchronization POSIX facilities.

F. Modeling Signals

Once the scheduler is implemented, signals can be
modeled as defined by the POSIX standard. The signal
manager can access the scheduler to allow all blocking
communications to implement signals that mean that a
thread can be stopped or unblocked independently of the
cause that produced this blockage. There is a SystemC
thread used only by the signal manager that will execute the
actions related to signals that have to be delivered, since no
other process can execute them.

G. Clocks and timers

The POSIX real-time standard requires the
implementation of clocks for each process and thread, and
for the whole simulation. Timers, sleep facilities and alarms
are defined by using these clocks. The values of the clocks
are updated and the execution time estimated by PERFidiX
for each code segment. The actions of the elements declared
over them, are executed by adding the time each event will
take to the events list of the scheduler.

The elements that depend on the real-time clock of the
system have been implemented in a different way. With this
purpose, a SC_THREAD has been defined that is slept until
the next event of that clock is required.

H. POSIX Interface modelingPOSIX services are provided
in three different ways. Some of them use the underlying
host functions, others are completely new, and those that
depend strongly on the hardware platform have to be
adapted to model correctly its platform-dependent
functionality.

If the OS of the host computer is POSIX based, such as
UNIX or Linux platforms, some of the host POSIX
functions can be reused. These functions are basically those
that are platform independent. Mathematical functions,
string management, etc., maintain their functionality in
every platform and they do not interfere with the scheduler
or the parallelism capabilities of the system. Thus, they can
be used to model, at least, the platform functionality. To
include the timing cost, these functions will be wrapped into

T= 10

Simulation
time (us)

Process 1
Priority 1
Time limit 20

Process 2
Priority 2
Time limit 40

Process 3
Priority 3
Time limit 40

T= 0

T=20

T=30

T=40

T=50

T=10

T= 0

T= 20

T= 0

T= 20

Simulation Estimation

T= 10
T= 10

Time limit
consumed

Preemption

Expected
events

Timeout
expiration
T=30

indication

T=70

T=80

T=60

T=90

T= 0

T= 20

T= 10

T= 10

T= 20

Unexpected
events

Hardware
interrupt
T=70

Unexpected
preemption

Execution State: Code execution Time annotation

Indication not possible:
code already under
execution

T= 20

T= 10

T= 10

new functions that will take into account the time the
function will take in the final processor.

The second group of the API functions is composed of
those facilities that allow the designer to interact with the
elements that have been implemented in the software
execution support described below. Parallelism, scheduling,
communication, synchronization and timing features are
completely platform dependent, so new implementations are
required. They have been developed in two different ways.
Some of them provide access to the software support but
they have no functionality implemented inside. These are the
functions used to indicate to the kernel the characteristics of
threads and processes, to activate the timers, to obtain data
from the system clocks, to indicate to the signal manager the
generation of a new signal, etc. The other functions
implement their own functionality using the facilities
provided by the simulation kernel. Mutexes, semaphores or
message queues use the kernel facilities to block or resume
threads, generate signals or implement timeouts.

The last group of POSIX API functions is composed of
those functions whose implementation is strongly dependent
on the hardware platform. Thus, a general platform
execution support model is not possible. Some examples are
the I/O functions, which strongly depend on the system
drivers, so the implementation cannot be reusable on
different platforms. Therefore, PERFidiX cannot provide
accurate implementations that model all platform
implementations. Instead of that, models that allow the
designer to simulate the functionality are provided. In some
cases, the host equivalent functions can be used to simulate
it by adding some parameters that model their timing
characteristics. In other cases new functions have to be
developed because the host versions can interfere with the
parallelism and scheduling capabilities of the platform
model. In this context, files and sockets are in the same
situation.

I. Traces

The original PERFidy library implements a set of
functions to allow the designer to indicate and get the data
required in order to obtain an adequate performance analysis.
Now this set has to be extended to implement the
functionality described in the POSIX standard to achieve
this goal. First, the events are traced in POSIX standard to
two classes: User trace events that are generated by the
application of instrumentation functions and system trace
events, which are generated by the operating system. Each
trace event of the latter group may be an
implementation-defined action such as a context switch, or
an application-programmed action such as a call to a specific
operating system service (for example, fork()) or a call to
posix_trace_event().

IV. Experimental results

PERFidiX has been evaluated in a sufficiently complex
case study, the EN 301 245 vocoder for GSM applications

standard of ETSI [21]. The original, sequential, standard
golden model was structured in 13.500 lines of SystemC
code. The SystemC specification was refined into a POSIX
version, closer to the final implementation.

Experimental results are shown in Table I. The first
column shows the estimated execution times for each thread
and the RTOS obtained with PERFidy from the system-level,
SystemC specification (SCS). The second column shows the
corresponding estimated execution times obtained by
PERFidiX from the POSIX code (PP). The third column
shows the actual execution times obtained from the
implementation of the code on an OpenRisk 1500 platform
[22]. Execution times have been obtained directly from the
prototype board inserting counters for each thread directly in
the RTOS (eCos) code.

TABLE I
Estimated and actual execution times of the experiment

Thread SCS (ms) PP (ms) IP (ms)
pre_filtering 1,085.10 1,035.60 1,061.16

homing_frame_test 84.72 73.76 73.12

frame_lsp_func 12,774.98 11,955.65 11,901.95

frame_int_tol_fun 12,308.99 11,646.93 11,246.62

subframe_coder_fun 40,004.07 37,585.17 37,498.38

serializer_fun 158.24 184.44 173.41

vad_comp_fun 10.89 11.82 11.44

CN_encoder_fun 54.74 61.85 58.72

sid_encoding_fun 223.32 249.53 269.15

RTOS 7,021.70 7,721.35 7,581.67

The corresponding error percentages are shown in Table
II. As expected, the error obtained on the refined, POSIX
code is smaller than the error at the original SystemC code.
This indicates the accuracy of the technique in estimating
the time slicing and the context changes. In any case, the
error is kept smaller than 8%.

TABLE II
Estimation accuracy

Thread SCS (%) PP (%)
pre_filtering 3.45 2.41

homing_frame_test 13.67 0.88
frame_lsp_func 4.51 0.45

frame_int_tol_fun 0.17 3.56
subframe_coder_fun 3.04 0.23

serializer_fun 6.72 6.36
vad_comp_fun 9.36 3.34

CN_encoder_fun 7.45 5.33
sid_encoding_fun 12.18 7.29

RTOS 3.94 1.84
As shown in Table III, the increase in simulation time

implied by PERFidiX is negligible with respect to PERFidy.
In any case, the gain with respect to a cycle accurate ISS is
large (77 times faster).

TABLE III
Simulation times

 SCS (ms) PP (ms) ISS (ms)
Simulation time 1,070 1,560 124,000

V. Conclusions

Like other recent contributions in the field, the paper
shows that a high-level modeling and timed simulation of
application SW is possible at the source code level including
the chosen RTOS. The main advantage of the proposed
underlying technology over other similar techniques is that it
avoids the complex, three-step process of estimating the
execution times, annotating them in the appropriate points of
the code and simulating. This technology was proven
effective in PERFidy, a SystemC performance analysis
library. In the paper, this technology is applied to the
modeling and simulation of POSIX. The new library models
the concurrency, communication and synchronization
functionality required by the standard without modifying the
original SystemC simulation kernel. This ensures full
portability.

The new library, called PERFidiX, supports refinement of
the original SystemC specification by optimizing the code
including POSIX functions. Reusability is also improved as
now it is possible to include legacy code and COST
components making use of POSIX functions.

SystemC has been shown to be a flexible framework for
system specification, refinement and simulation at different
abstraction layers.

Experimental results assess the execution time estimation
capability of the library. Although some error is unavoidable,
accuracy is enough to allow the designer a fast and early
performance estimation of the system taking into account the
architectural mapping decisions, but avoiding the need for
HW/SW synthesis.

References

[1] ITRS. International Technology Roadmap for
Semiconductors: 2003 Edition. http://public.itrs.net.
[2] A.A. Jerraya, S. Yoo, D. Verkest and N. When:
“Embedded Software for SoC”, Springer, 2003.
[3] A. Sangiovanni-Vincentelli and G. Martin:
“Platform-based design and software design methodology for
embedded systems”, IEEE Design and Test of Computers.
November-December, 2001, 23-33.
[4] P. Puschner and C. Koza: “Calculating the maximum
execution time of real-time programs”, The Journal of
Real-Time Systems, 1, 1989, 159-176.

[5] S. Yoo, I. Bacivarov, A. Bouchima, Y. Paviot and A.
Jerraya: “Building fast and accurate SW simulation models
based on hardware abstraction layer and simulation
environment abstraction layer”, in Proceedings of the Design,
Automation and Test Conference, IEEE, 2003, 550-555.
[6] H. Tomiyama, Y. Cao and K. Murakami: “Modeling
fixed-priority preemptive multi-task systems in SpecC”,
Proceedings of the 10th Workshop on System And System
Integration of Mixed Technologies (SASIMI’01), IEEE, 2001.
[7] A. Gerstlauer, H. Yu and D. Gajski: “RTOS modeling
for system-level design”, in Embedded Software for SoC,
A.A. Jerraya, S. Yoo, D. Verkest and N. When (Eds.),
Springer, 2003.
[8] S. Yoo, G. Nicolescu, L. Gauthier and A. Jerraya:
“Automatic generation of fast timed simulation models for
operating systems in SoC design”, in Proceedings of the
Design, Automation and Test Conference, IEEE, 2002,
620-625.
[9] Y. Yi, D. Kim and S. Ha: “Fast and time-accurate
cosimulation with OS scheduler modeling”, Design
Automation of Embedded Systems, 8, 2003, 211-228.
[10] H. Posadas, F. Herrera, P. Sánchez, E. Villar and F.
Blasco: “System-level performance analysis in SystemC”, in
Proceedings of the Design, Automation and Test Conference,
IEEE, 2004, 378-383.
[11] S. Honda, T. Wakabayashi, H. Tomiyama and H.
Takada: “RTOS-centric HW/SW cosimulator for embedded
system design”, Proceedings of CoDes-ISSS’04, ACM, 2004.
[12] M.A. Hassan, K. Sakanushi, Y. Takeuchi and M. Imai:
“RTK-Spec TRON: A simulation model of an ITRON based
RTOS kernel in SystemC”, Proceedings of the Design,
Automation and Test Conference, IEEE, 2005.
[13] L. Benini, D. Bertozzi, D. Bruni, N. Drago, F. Fummi
and M. Ponzino: “SystemC cosimulation and emulation of
multiprocessor SoC design”, IEEE Computer, April, 2003.
[14] W. Müller, W. Rosenstiel and J. Ruf: “SystemC:
Methodologies and Applications”, Springer, 2003.
[15] F. Herrera, V. Fernández, P. Sánchez and E. Villar:
“Embedded software generation from SystemC for
platform-based design”, in SystemC: Methodologies and
Applications, W. Müller, W. Rosenstiel and J. Ruf (Eds.),
Springer, 2003.
[16] IEEE: “Information technology-Portable Operating
System Interface”, IEEE Std 1003.1, 2004.
[17] G. Hawley: “Selecting a RTOS”, Embedded Systems
Programming Europe, May, 1999.
[18] ENEA: “OSE Soft Kernel Environment”, available in
http://www.ose.com/products.
[19] AXLOG, information available in http://www.axlog.fr.
[20] C. Liem, F. Naçabal, C. Valderrama, P. Paulin and A.
Jerraya: “System-on-a-Chip cosimulation and compilation”,
IEEE Design & Test of Computers, April-June 1997.
[21] EN 301.245, ETSI, December, 1997.
[22] M. Bolado, H. Posadas, J. Castillo, P. Huerta, P.,
Sánchez, C. Sánchez, H. Fouren. and F. Blasco: “Platform
based on Open-Source Cores for industrial applications”, in
Proceedings of the Design, Automation and Test Conference,
IEEE, 2004, 1014-1019.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

