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Abstract— As the complexity of SoCs is increasing, 
hardware/software co-verification becomes an important part 
of system verification. C-level cycle-based simulation could be 
an efficient methodology for system verification because of its 
fast simulation speed. The cycle-based simulation has a 
limitation in using asynchronous clocks that causes inherent 
cycle errors. In order to reuse the output of a C-level 
cycle-based simulation for the verification of a lower level model, 
the C-level model should be cycle-accurate with respect to the 
lower level model. In this paper a cycle error correction 
technique is presented for two asynchronous clock models. An 
example design is devised to show the effectiveness of the 
proposed method. Our experimental results show that the fast 
speed of cycle-based simulation can be fully exploited without 
sacrificing the cycle accuracy. 

I. Introduction
Ever increasing complexity of systems-on-a-chip (SoCs) 

makes the verification harder and harder [1]. 
Co-simulation/verification of hardware and software is now 
widely recognized as an important and viable verification 
approach [1]. 

Traditional event-driven simulator has limitations on 
run-time performance [1]. Cycle-based simulation can be an 
alternative solution for system level co-verification because 
of its fast simulation speed. System-level simulation usually 
does not require detail signal transition information but 
requires fast simulation speed due to huge amount of 
simulation data. A cycle-based simulator evaluates signal 
values once at an active clock edge instead of evaluating 
whenever a signal transition occurs, which can significantly 
accelerate the simulation speed.  

One of the challenging problems in cycle-based 
simulation is to handle multiple asynchronous clocks [7] 
because the simulation is synchronized by a single clock. To 
our knowledge, all of cycle based simulation researches 
including [2][3][4] constrain their applications to 
synchronous circuits. Modern SoCs, however, often have 
multiple asynchronous clocks. In order to support multiple 
asynchronous clocks in cycle-based simulation, 
asynchronous clocks can be approximated as synchronous 
clocks , two approximations, namely early- and late-edge 
models, are introduced in Section III. In this case, inherent 
clock cycle errors compared to RTL simulation are inevitable. 

More details are discussed in Section III 
The accuracy of asynchronous clock modeling is 

especially important in verification vector reuse between 
C-level and register transfer level (RTL) as shown in Fig.  1. 
Note that C-level modeling usually sacrifices timing accuracy 
in some degree to achieve the faster simulation speed. Murali 
[5] proposed a verification framework by using a C simulator 
that drives stimulus for an RTL circuit. Whereas Murali deals 
with the signal conversion from C-level to RTL, we are 
focusing on the clock cycle accuracy of the C-level model 
compared to RTL model. It is difficult to automate the 
verification reuse if the C-level model is not cycle-accurate. 
Kirk [6] suggested a technique to reuse C simulation outputs 
as a testbench for RTL verification. To overcome the cycle 
errors between C-level and RTL, both C and RTL models 
need to have extra handshaking signals that, of course, cause 
area and pin count overhead. If the model executed on the C 
simulator is developed as a cycle-accurate level model, the 
output of the simulator can be directly used without any 
modification. 

A circuit with single clock can be easily modeled cycle 
accurately in C-level. On the contrary, a circuit with multiple 
(asynchronous) clocks needs to be modeled carefully to 
prevent cycle errors at the point of clock domain crossing 
even though each block is modeled cycle accurately. Cycle 
errors between C-level and RTL circuit models come from 
either the inaccurate clock models or simulation mechanisms. 
In this paper, we address the conditions that cycle errors 
occur, and propose a technique to correct the cycle errors. 
Note that synchronizers are assumed to be at the signal paths 
of clock domain crossing, which is very reasonable and 
practical assumption. When a signal is transferred across 
clock domains, there exists a metastability problem [8]. To 
overcome the metastability, the synchronizers are widely 
used [11]. 

Fig.  1 Using a C level model as testbench of RTL 
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We first introduce basic concepts of cycle based simulation 
and clock in Section II. Then, we anayze the conditions that 
cycle errors occur and propose a correction method in Section 
III. In Section IV, the cycle errors due to simulation 
mechanisms are discussed. Experimental results are shown in 
Section V and we conclude the paper in Section VI  

II. Preliminary 
In cycle-based simulation all signals are evaluated only at 

an active edge of a reference clock that is called a simulation 
clock. Note that the simulation clock is the only built-in clock 
in cycle-based simulation. In order to simulate concurrency of 
hardware, the signal evaluation at an active clock edge is 
divided into a few phases. For cycle-based simulation, mainly 
two simulation mechanisms are used. 

First, there is a message-passing mechanism [9] where an 
evaluation is achieved through 3 phases: a phase to 
communicate messages as scheduled (P1), a phase to update 
the signal values of resources according to the messages 
received at P1 (P2), and a phase to communicate messages 
generated at P2 (P3). Next, there is a communication and 
update mechanism [10] where an evaluation is achieved 
through 2 phases: communicate phase and update phase. 
Comparing to the message-passing mechanism, the 
communicate phase corresponds to P1 and the update phase
corresponds to P2. 

Consider the C-level circuit model CC that models the RTL 
circuit CRTL. Assume that signal (or net) SRTL in CRTL

corresponds to signal SC in CC. When SRTL is triggered by a 
clock CKRTL, SC is triggered by a clock CKC modeling CKRTL.
Let CKRTL(n) denote the n-th active edge of the CKRTL and 
CKC(m) denote the m-th active edge of CKC. When CKC(m)
corresponds to CKRTL(n), the relationship between m and n is 
determined by the clock model as described in Section III. 

We take an RTL circuit model as a reference for 
calculating the cycle error of its C-level model because the 
physical behavior of a signal crossing clock domains may 
have non-deterministic cases like metastability [8]. As 
addressed before, in order to reuse a C-level testbench for 
RTL verification without any modification, the C-level model 
should have the same behavior of its corresponding RTL 
model and should have no cycle error. In order to exploit the 
fast simulation speed of cycle-based simulation methods, it is 
desirable to abstract the description in C-level model as much 
as possible. 

Because the only built-in clock in cycle-based simulation is 
the simulation clock CKC

Sim, a clock generator is needed to 
generate various clocks using the simulation clock. For 
example, consider a clock CKC

k that is n times slower than 
CKC

Sim. Then, a clock generator counts the number of active 
edges of CKC

Sim, and generates an active edge of CKC
k at 

every k active edges of CKC
Sim. An asynchronous clock whose 

period is not a multiple of the period of the simulation clock 
cannot be modeled such a simple way. In the next Section, we 

explain how to model an asynchronous clock for cycle-based 
simulation and the inevitable cycle errors due to the clock 
models. We also propose a technique to correct the cycle 
errors.

III. Cycle Error due to Asynchronous Clock Models 
Asynchronous clocks can be modeled in various ways. 

Among them, three simplest models are considered here: 
greatest common divisor (GCD) model, early edge model, 
and late edge model, see Fig. 2. The number n in the right 
hand side of an active edge means that the edge is n-th active 
edge. In the GCD (clock) model, the period of the simulation 
clock (CKC

SimGCD) becomes the GCD of periods of all clocks 
in a system. The GCD model is accurate and easy to 
implement but impedes the simulation speed. Let us assume 
that there are three clocks CKRTL

125, CKRTL
1024, and CKRTL

20000

with periods of 125ns, 1024ns, and 20ms. Then the GCD of 
the 3 clocks is 1(ns) and thus the period of the simulation 
clock CKC

SimGCD becomes 1ns. Now, CKRTL
125(n) = 

CKC
SimGCD(125n), CKRTL

1024(n) = CKC
SimGCD(1024n), and 

CKRTL
20000(n) = CKC

SimGCD(20000n). To generate CKRTL
125, the 

clock generator makes an active clock edge at every 125 
edges of CKC

SimGCD. That is, 124 cycles are used just for 
counting to know the period of the 125ns clock not for 
proceeding simulation. Similarly, for CKRTL

1024, and 
CKRTL

20000, 1023 and 19999 cycles are wasted in vain. 
The overhead caused by the wasted cycles is imposed only 

on the clock generator. Although the portion of the clock 
generator in a circuit system is small, the performance 
degradation due to the GCD model is not because the clock 
generator is computed at every active edge of the simulation 
clock. In the example above, even the fastest clock of 125ns 
period in the system uses only 1/125 of the simulation clock 
edges. More than 99% cycles are wasted. Furthermore, in real 
system, the periods of clocks are often not an integer in 
nanosecond unit. As a result, the period of the simulation 
clock could be scaled down to the pico second unit if the 
GCD model is used. This time precision is nearly the same 
time resolution of the event-driven simulation. Therefore, we 
cannot exploit the fast simulation speed of cycle-based 
simulation. 

To overcome inefficiency of the GCD model, early edge 
and late edge models can be used. In the early (late) edge 
model, the fastest clock in the system becomes the simulation  

Fig.  2 Candidate asynchronous clock models  
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clock denoted by CKC
Early (CKC

Late). Other clocks are 
synchronized with the simulation clock by forcefully moving 
their edges to the preceding (following) edges of the 
simulation clock. The early and the late edge models are 
illustrated in Fig. 2. Consider the active edge CKRTL

Async(0) of 
an asynchronous clock between CKRTL

Fastest(0) and 
CKRTL

Fastest(1) of the fastest clock. If the early (late) edge 
model is used, CKRTL

Async(0) is moved to CKRTL
Fastest(0)

( CKRTL
Fastest(1) ). The early and late edge models can 

maximize the simulation performance because they have less 
idle cycles than the GCD model. In the previous example of 
CKRTL

125, CKRTL
1024, and CKRTL

20000, the period of the 
simulation clock becomes 125ns when early or late edge 
model is used. Then CKRTL

125 has an active edge every 
simulation clock cycle. For CKRTL

1024, an active cycle is made 
every 8 or 9 simulation clock cycle thus only 7 or 8 cycles are 
wasted. Similarly, to generate CKRTL

20000, an active edge is 
made at every 160 simulation clock cycle, thus only 159 
cycles are wasted. The number of wasted cycles is drastically 
reduced. Note that there exists one-to-one correspondence 
between an RTL clock edge and a C-level clock edge in early 
and late edge models. 

It is favorable to use either the early edge or the late edge 
model for clocks in order to maximize the simulation 
performance. But using those models causes inherent cycle 
errors at the point of clock domain crossing. Cycle errors 
caused by those asynchronous clock models occur regardless 
of the simulation mechanism.  

The cycle error of CKC compared to CKRTL which is 
denoted by CE(CKC) is  if the behavior of an RTL signal 
SRTL at the edge of CKRTL(m) corresponds to that of a C-level 
signal SC at CKC(m± ). The definition of cycle error can be 
extended for the GCD model. But the extension is not 
necessary because there is no cycle error when the GCD 
model is used. 
RTL event-driven simulation traces and their corresponding 
C-level cycle-based simulation traces with the late edge clock 
model are depicted in Figures 3,4 and 5. The C-level late edge 
model of the RTL asynchronous clock CKRTL

Async is CKC
Async.

In Fig.  3, a signal is transferred from the domain of the 
simulation clock CKRTL

Sim to the domain of CKRTL
Async. The 

signal is received at CKRTL
Async(1) in RTL, and at CKC

Async(1)
in C-level. Thus, there is no cycle error. Since CKRTL

Async(n)
will be mapped to CKC

Async(n) that will be always behind the 
sending clock edge by the late edge model, the cycle error 
CE(CKC

Async)  is always zero. When a signal is transferred 
from the domain of CKC

Async to the domain of the simulation 
clock as shown in Fig.  4, the signal is received at CKRTL

Sim(4)
in RTL and at CKC

Sim(5) in C-level. Thus the cycle error 
CE(CKC

Sim) is one. But if the sending edge of CKRTL
Async is 

synchronized with an edge CKRTL
Sim(n) of the simulation 

clock, the receiving edge will be CKRTL
Sim(n + 1) in both RTL 

and C-level. In this case, CE(CKC
Sim) is zero. Thus, 

CE(CKC
Sim) can be one or zero. Fig.  5 depicts the case that a

Fig.  3 The late edge model: simulation to asynchronous 

Fig.  4 The late edge model: asynchronous to simulation 

Fig.  5 The late edge model: between asynchronous 

signal is transferred between asynchronous clocks when the 
late edge model is applied. In this case CE(CKC

AsyncB) is one at 
most.  

Similarly, the cycle errors due to the early edge model for 
various conditions can be computed. Note that the cycle 
errors can be formulated by the clock models and the clock 
domains that send and receive the signals. This is summarized 
in TABLE I. The cycle error is advent when the edges of the 
simulation and the asynchronous clocks become identical – 
that is, they happen at the same time – in C-level but their 
corresponding RTL edges are not. Now, a cycle error 
correction method for the late edge clock model is presented. 
Although only the late edge clock model is considered in this 
paper, it is easy to extend this discussion for the early edge 
clock model. As mentioned before, every active clock edge in 
RTL has corresponding active clock edge in C-level. To 
correct the cycle errors, the principle is to make signals be 
transferred at the corresponding edge as illustrated in Fig. 6. 
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TABLE  I. The cycle errors due to clock models 

Clock domain Clock
model From To 

Cycle error Illustrated
in

Sim Async CE(CKC
Async) = zero Fig.  3

Async Sim CE(CKC
Sim) = one or zero Fig.  4

Late
edge

model Async 
A

Async 
B CE(CKC

AsyncB) = one or zero Fig.  5

Sim Async CE(CKC
Async) = one or zero 

Async Sim CE(CKC
Sim) = zero 

Early 
edge

model Async 
A

Async 
B CE(CKC

AsyncB) = one or zero 

Fig.  6 Basic idea of cycle correction 

We assume that synchronizers are inserted in every path 
crossing clock domains to prevent the malfunction of a circuit 
due to metastability [8]. Generally synchronizers consisting 
of two D-type flip-flops (DFFs) are used as shown in Fig.  7. 
Two DFFs cause two cycle delay at the receiving clock 
domain. The cycle error can be corrected if the synchronizer 
is operated as it has only one DFF when an one-cycle error 
occurs. To do so, a synchronizer like Fig.  8 is needed. The 
select signal should be zero when the cycle error occurs. The 
select signal should be provided by a controller. A way to 
generate the select signal is described in Section IV. 

IV. Cycle Error in Communicate & Update Mechanism 
The communicate and update mechanism is 

computationally more efficient than the message-passing 
mechanism because it utilizes less number of update and 
communication operations for a signal evaluation. Thus it is 
desirable to use the communicate and update mechanism to 
achieve the faster simulation speed in cycle-based simulation. 
However, unlike the message-passing mechanism, a cycle 
error may occur unless the modeled circuit has a single clock 
domain. In this section cycle errors by using the communicate 
and update mechanism and a correction technique of them are 
presented.

When the communicate and update mechanism is used for 
a cycle-based simulation, the communicate phase of all 
components   is   executed   first   to   exchange signals among 
components. Then the update phase is executed to update 
shared resources. A clock CKC

Gen is called a generated clock 
of a clock CKC

Sim if CKC
Gen is created by a logic circuit 

including a set of flipflops activiated by   CKC
Sim.   CKC

Sim   is  

Fig.  7 A normal synchronizer 

Fig.  8 Synchronizer model for correcting cycle error 

called the source clock of CKC
Gen. The active edge of CKC

Gen

is synchronized with either the rising or the falling edge of 
CKC

Sim. Fig.  9 shows a usual logic design that implements 
CKC

Gen, a generated clock of CKC
Sim by the factor of two. Fig.  

9 illustrates an example that a signal is transferred from the 
simulation clock CKC

Sim to CKC
Gen. D0, D1 and D2 are DFFs. 

0 and 1 are inputs and 0 and 1 are outputs of D0 and 
D1, respectively. 2 is the input of another component 
receiving sig_c. 

Assume that 0 is changing from 0 to 1 at CKC
Sim(0) during 

the communicate phase. A general event-driven simulator 
will evaluate 0 to 0 due to the delta delay. But a cycle-based 
simulator evaluates signals only at an active edge. This is an 
implementation issue. Regardless of the implementation, the 
cycle errors occur when the communicate and update 
mechanism is used. 

The values are transferred to 0 and 1 during the 
communication phase of CKC

Sim (0). Now, 0 and 1 become 
1 and 0, respectively. During the update phase of CKC

Sim (0), 
0 and 1 are updated to  1  and  0,   respectively.   In   the  

Fig.  9 Communicate and update example 
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communication phase of CKC
Sim (1), 0 and 1 become 1 and 

1, respectively. Then, in the update phase of CKC
Sim (1), only 

0 is updated to 1 because D1 is not active at that time. Note 
that  0  and  1 are   1   and   0,   respectively.   During   the 
communication phase of CKC

Sim(2), 0, 1, and 2 become 1, 
1, and 0, respectively. In the update phase, both 0 and 1
are updated to 1. Note that 2 will remain as 0 although 2 is 
supposed to be 1 unless the output value 1 of D1 is transferred 
to 2 by a communication phase. This errorneous value of 2
will last till the next active edge of CKC

Gen. This is because the 
updated value is transferred to 2 during the communicate 
phase of the next active edge. In the message-passing 
mechanism [9], this error is eliminated by the last 
communication phase after the update phase during an 
evaluation. 

This erroneous behavior due to the communicate and 
update mechanism occurs when signals are transferred 
between asynchronous clocks. If the receiving clock is 
synchronous with the sending clock and they have different 
periods, one extra communicate phase should be enforced 
after the update phase. However, if the receiving clock is 
asynchronous with the sending clock, the method using a 
synchronizer proposed in Section III can be used to correct 
the cycle errors. 

Fig.  10 shows a flowchart of the function GenFlag which 
generates the enable flags, Enable_A and Enable_B, for 
asynchronous clocks and the select signal of the mux shown 
in Fig. 8, Select_A,B and Select_B,A, for 
synchronizers. The communicate and the update phases will 
be executed only when the enable flag is set. This function is 
included in the clock generator and called every edge of the 
simulation clock. 

When GenFlag function is called, it first calculates the next 
active edge time NextActiveEdge_Clk of every clock in 
the system except for the simulation clock. Each clock Clk
has its own active edge counter CntEdge_Clk. For 
example, CKRTL

Clk(CntEdge_clk ) denotes the 
CntEdge_clk-th active edge of Clk.
NextActiveEdge_Clk is the time of the next active edge 
of Clk relative to the simulation clock. Reference of 
NextActiveEdge_Clk is the period of the simulation 
clock. If the ceiling of the next active edge time equals to that 
of the simulation clock, the enable flag Enable_Clk is set. 
If we use the flooring instead of the ceiling, we can 
implement the early edge model instead of the late edge 
model. For every pair of clock A and clock B there are two 
select signals of the mux shown in Fig. 8. Select_A,B is 
for the synchronizers from clock A domain to clock B domain. 
Select_B,A is for those from clock B domain to clock A
domain. Fig.  11 shows an example illustrating function 
GenFlag.

Start

For every pair of clock A and clock B in the system

Which edge is
the earlier?

Select_A,B = 0
Select_B,A = 1

Select_A,B = 1
Select_B,A = 0

A B

Select_A,B = 1
Select_B,A = 1

equal

end

Enable_A==1 and
Enable_B==1

Y N

Select_A,B = 0
Select_B,A = 0

For every clock Clk in the system
except for the simulation clock

NextActiveEdge_Clk = CntEdge_Clk * 
period of Clk / period of the simulation clock

CntEdge_Sim ==
Ceiling of 

NextActiveEdge_Clk

Enable_Clk = 0
Increase CntEdge_Clk by one
Enable_Clk = 1

Y

N

Increase CntEdge_Sim by one

Start

For every pair of clock A and clock B in the system

Which edge is
the earlier?

Select_A,B = 0
Select_B,A = 1

Select_A,B = 1
Select_B,A = 0

A B

Select_A,B = 1
Select_B,A = 1

equal

end

Enable_A==1 and
Enable_B==1

Y N

Select_A,B = 0
Select_B,A = 0

For every clock Clk in the system
except for the simulation clock

NextActiveEdge_Clk = CntEdge_Clk * 
period of Clk / period of the simulation clock

CntEdge_Sim ==
Ceiling of 

NextActiveEdge_Clk

Enable_Clk = 0
Increase CntEdge_Clk by one
Enable_Clk = 1

Y

N

Increase CntEdge_Sim by one

Fig.  10 Flowchart of the GenFlag

CntEdge_Sim
CntEdge_AsyncA

NextActiveEdge_AsyncA
Ceiling of 

NextActiveEdge_AsyncA

CntEdge_Sim
CntEdge_AsyncA

NextActiveEdge_AsyncA
Ceiling of 

NextActiveEdge_AsyncA

Fig.  11 An example of implementing the late edge model 

After the next edge time is caculated, then it generates 
select signals. For every pair of clocks in the system, GenFlag
determines which edge is earlier if both clock edges are active. 
To determine which edge is the earlier, it uses difference 
between NextActiveEdge_Clk and ceiling of it. The 
larger the difference is, the earlier the edge is. 

V. Experiment 
An example circuit shown in Fig.  12 is implemented to 

demonstrate the effectiveness of the proposed method.  
The example system consists of three clock domains: 

CKC
Sim, CKC

AsyncA, and CKC
AsyncB. Clock CKC

Sim is the fastest 
clock and thus the simulation clock. Clocks CKC

AsyncA and 
CKC

AsyncB are asynchronous clocks. Each clock domain 
receives signals from other clock domains through a two-DFF 
synchronizer. Signals to be transferred to other clock domains 
are stable for at least one period of the receiving clock so that 
it is assured that the signal is transferred to the other clock 
domain. 
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Fig.  12 An example system 

When a request from CKC
AsyncA domain goes to the CKC

Sim

domain, the CKC
Sim domain returns a data to the CKC

AsyncA

domain with a certain delay. Then the received data is passed 
to the CKC

AsyncB domain. The CKC
AsyncB domain accumulates 

the received data and passed it to the CKC
AsyncA domain with a 

certain delay. That operation is executed 1000 times in this 
example. The periods of CKC

Sim, CKC
AsyncA, and CKC

AsyncB are 
40ns, 110ns, and 250ns, respectively. 

We simulated the sample circuit on a cycle-based simulator 
MaxSim [10]. In MaxSim the communicate phase and the 
update phase are implemented as function calls. Each 
component implements the communicate function and the 
update function and the clock generator calls the 
communicate functions and the update functions of 
components at every active clock edge. To correct cycle 
errors the clock generator generates select signals to let 
synchronizers know whether they should operate as one DFF 
or two DFFs. 

We performed experiments to verify the cycle error 
correction technique and measure the accuracy and the 
performance.   TABLE  II   shows   the   cycle   accuracy   of 
various models: RTL, the GCD model,  the  late  edge  model 

TABLE  II Cycle accuracy of each model 
Total clock cycle 

used for the 
complete simulation 

Cycle 
difference
from RTL 

Cycle 
accurac

y
RTL 93654   
GCD 93654 0 100.0 %
Late edge model 
with correction 93654 0 100.0 %

Late edge model 
without correction 105669 12015 87.2 %

TABLE  III Simulation speed of each model 
 Cycle/sec Ratio 
GCD 410702 100.0 % 
Late edge model with 
correction 588638 143.3 % 

Late edge model 
without correction 688227 167.6 % 

with cycle error correction, and the late edge model without 
cycle error correction. The accuracy of the late edge model 
with cycle error correction is 100% while the one without 
cycle error correction shows only 87.2% accuracy. 

TABLE  III shows the simulation speed of each model on a 
PC with a 2.53 GHz Pentium 4 processor with 512 MB 
memories. As can be seen, the late edge model can be 
implemented 1.4 times faster then the GCD model without 
sacrificing the cycle accuracy. Although the late edge model 
without cycle error correction can be 1.6 times faster than 
GCD, it has drawback due to the cycle inaccuracy. 

VI. Conclusion
A cycle error correction technique for a cycle-based 

simulation with asynchronous clocks is proposed. A 
two-flipflop synchronizer is assumed to be inserted on every 
clock domain crossing path. Three clock models for 
cycle-based simulation are introduced: greatest common 
divisor (GCD), early edge, and late edge models. Although 
the early and the late edge clock models are more efficient for 
faster simulation speed, they pose inherent cycle errors with 
respect to register-transfer level. It is demonstrated that a 
100% cycle accurate cycle-based simulation is possible with 
the early and late edge clock models by using the proposed 
technique. 
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