
1

Abstract— As the complexity of SoCs is increasing,
hardware/software co-verification becomes an important part
of system verification. C-level cycle-based simulation could be
an efficient methodology for system verification because of its
fast simulation speed. The cycle-based simulation has a
limitation in using asynchronous clocks that causes inherent
cycle errors. In order to reuse the output of a C-level
cycle-based simulation for the verification of a lower level model,
the C-level model should be cycle-accurate with respect to the
lower level model. In this paper a cycle error correction
technique is presented for two asynchronous clock models. An
example design is devised to show the effectiveness of the
proposed method. Our experimental results show that the fast
speed of cycle-based simulation can be fully exploited without
sacrificing the cycle accuracy.

I. Introduction
Ever increasing complexity of systems-on-a-chip (SoCs)

makes the verification harder and harder [1].
Co-simulation/verification of hardware and software is now
widely recognized as an important and viable verification
approach [1].

Traditional event-driven simulator has limitations on
run-time performance [1]. Cycle-based simulation can be an
alternative solution for system level co-verification because
of its fast simulation speed. System-level simulation usually
does not require detail signal transition information but
requires fast simulation speed due to huge amount of
simulation data. A cycle-based simulator evaluates signal
values once at an active clock edge instead of evaluating
whenever a signal transition occurs, which can significantly
accelerate the simulation speed.

One of the challenging problems in cycle-based
simulation is to handle multiple asynchronous clocks [7]
because the simulation is synchronized by a single clock. To
our knowledge, all of cycle based simulation researches
including [2][3][4] constrain their applications to
synchronous circuits. Modern SoCs, however, often have
multiple asynchronous clocks. In order to support multiple
asynchronous clocks in cycle-based simulation,
asynchronous clocks can be approximated as synchronous
clocks , two approximations, namely early- and late-edge
models, are introduced in Section III. In this case, inherent
clock cycle errors compared to RTL simulation are inevitable.

More details are discussed in Section III
The accuracy of asynchronous clock modeling is

especially important in verification vector reuse between
C-level and register transfer level (RTL) as shown in Fig. 1.
Note that C-level modeling usually sacrifices timing accuracy
in some degree to achieve the faster simulation speed. Murali
[5] proposed a verification framework by using a C simulator
that drives stimulus for an RTL circuit. Whereas Murali deals
with the signal conversion from C-level to RTL, we are
focusing on the clock cycle accuracy of the C-level model
compared to RTL model. It is difficult to automate the
verification reuse if the C-level model is not cycle-accurate.
Kirk [6] suggested a technique to reuse C simulation outputs
as a testbench for RTL verification. To overcome the cycle
errors between C-level and RTL, both C and RTL models
need to have extra handshaking signals that, of course, cause
area and pin count overhead. If the model executed on the C
simulator is developed as a cycle-accurate level model, the
output of the simulator can be directly used without any
modification.

A circuit with single clock can be easily modeled cycle
accurately in C-level. On the contrary, a circuit with multiple
(asynchronous) clocks needs to be modeled carefully to
prevent cycle errors at the point of clock domain crossing
even though each block is modeled cycle accurately. Cycle
errors between C-level and RTL circuit models come from
either the inaccurate clock models or simulation mechanisms.
In this paper, we address the conditions that cycle errors
occur, and propose a technique to correct the cycle errors.
Note that synchronizers are assumed to be at the signal paths
of clock domain crossing, which is very reasonable and
practical assumption. When a signal is transferred across
clock domains, there exists a metastability problem [8]. To
overcome the metastability, the synchronizers are widely
used [11].

Fig. 1 Using a C level model as testbench of RTL

Junghee Lee and Joonhwan Yi

Telecommunication R&D Center
Samsung Electronics

{junghee77.lee, joonhwan.yi} @ samsung.com

Cycle Error Correction in Asynchronous Clock Modeling for Cycle-Based
Simulation

2

We first introduce basic concepts of cycle based simulation
and clock in Section II. Then, we anayze the conditions that
cycle errors occur and propose a correction method in Section
III. In Section IV, the cycle errors due to simulation
mechanisms are discussed. Experimental results are shown in
Section V and we conclude the paper in Section VI

II. Preliminary
In cycle-based simulation all signals are evaluated only at

an active edge of a reference clock that is called a simulation
clock. Note that the simulation clock is the only built-in clock
in cycle-based simulation. In order to simulate concurrency of
hardware, the signal evaluation at an active clock edge is
divided into a few phases. For cycle-based simulation, mainly
two simulation mechanisms are used.

First, there is a message-passing mechanism [9] where an
evaluation is achieved through 3 phases: a phase to
communicate messages as scheduled (P1), a phase to update
the signal values of resources according to the messages
received at P1 (P2), and a phase to communicate messages
generated at P2 (P3). Next, there is a communication and
update mechanism [10] where an evaluation is achieved
through 2 phases: communicate phase and update phase.
Comparing to the message-passing mechanism, the
communicate phase corresponds to P1 and the update phase
corresponds to P2.

Consider the C-level circuit model CC that models the RTL
circuit CRTL. Assume that signal (or net) SRTL in CRTL

corresponds to signal SC in CC. When SRTL is triggered by a
clock CKRTL, SC is triggered by a clock CKC modeling CKRTL.
Let CKRTL(n) denote the n-th active edge of the CKRTL and
CKC(m) denote the m-th active edge of CKC. When CKC(m)
corresponds to CKRTL(n), the relationship between m and n is
determined by the clock model as described in Section III.

We take an RTL circuit model as a reference for
calculating the cycle error of its C-level model because the
physical behavior of a signal crossing clock domains may
have non-deterministic cases like metastability [8]. As
addressed before, in order to reuse a C-level testbench for
RTL verification without any modification, the C-level model
should have the same behavior of its corresponding RTL
model and should have no cycle error. In order to exploit the
fast simulation speed of cycle-based simulation methods, it is
desirable to abstract the description in C-level model as much
as possible.

Because the only built-in clock in cycle-based simulation is
the simulation clock CKC

Sim, a clock generator is needed to
generate various clocks using the simulation clock. For
example, consider a clock CKC

k that is n times slower than
CKC

Sim. Then, a clock generator counts the number of active
edges of CKC

Sim, and generates an active edge of CKC
k at

every k active edges of CKC
Sim. An asynchronous clock whose

period is not a multiple of the period of the simulation clock
cannot be modeled such a simple way. In the next Section, we

explain how to model an asynchronous clock for cycle-based
simulation and the inevitable cycle errors due to the clock
models. We also propose a technique to correct the cycle
errors.

III. Cycle Error due to Asynchronous Clock Models
Asynchronous clocks can be modeled in various ways.

Among them, three simplest models are considered here:
greatest common divisor (GCD) model, early edge model,
and late edge model, see Fig. 2. The number n in the right
hand side of an active edge means that the edge is n-th active
edge. In the GCD (clock) model, the period of the simulation
clock (CKC

SimGCD) becomes the GCD of periods of all clocks
in a system. The GCD model is accurate and easy to
implement but impedes the simulation speed. Let us assume
that there are three clocks CKRTL

125, CKRTL
1024, and CKRTL

20000

with periods of 125ns, 1024ns, and 20ms. Then the GCD of
the 3 clocks is 1(ns) and thus the period of the simulation
clock CKC

SimGCD becomes 1ns. Now, CKRTL
125(n) =

CKC
SimGCD(125n), CKRTL

1024(n) = CKC
SimGCD(1024n), and

CKRTL
20000(n) = CKC

SimGCD(20000n). To generate CKRTL
125, the

clock generator makes an active clock edge at every 125
edges of CKC

SimGCD. That is, 124 cycles are used just for
counting to know the period of the 125ns clock not for
proceeding simulation. Similarly, for CKRTL

1024, and
CKRTL

20000, 1023 and 19999 cycles are wasted in vain.
The overhead caused by the wasted cycles is imposed only

on the clock generator. Although the portion of the clock
generator in a circuit system is small, the performance
degradation due to the GCD model is not because the clock
generator is computed at every active edge of the simulation
clock. In the example above, even the fastest clock of 125ns
period in the system uses only 1/125 of the simulation clock
edges. More than 99% cycles are wasted. Furthermore, in real
system, the periods of clocks are often not an integer in
nanosecond unit. As a result, the period of the simulation
clock could be scaled down to the pico second unit if the
GCD model is used. This time precision is nearly the same
time resolution of the event-driven simulation. Therefore, we
cannot exploit the fast simulation speed of cycle-based
simulation.

To overcome inefficiency of the GCD model, early edge
and late edge models can be used. In the early (late) edge
model, the fastest clock in the system becomes the simulation

Fig. 2 Candidate asynchronous clock models

3

clock denoted by CKC
Early (CKC

Late). Other clocks are
synchronized with the simulation clock by forcefully moving
their edges to the preceding (following) edges of the
simulation clock. The early and the late edge models are
illustrated in Fig. 2. Consider the active edge CKRTL

Async(0) of
an asynchronous clock between CKRTL

Fastest(0) and
CKRTL

Fastest(1) of the fastest clock. If the early (late) edge
model is used, CKRTL

Async(0) is moved to CKRTL
Fastest(0)

(CKRTL
Fastest(1)). The early and late edge models can

maximize the simulation performance because they have less
idle cycles than the GCD model. In the previous example of
CKRTL

125, CKRTL
1024, and CKRTL

20000, the period of the
simulation clock becomes 125ns when early or late edge
model is used. Then CKRTL

125 has an active edge every
simulation clock cycle. For CKRTL

1024, an active cycle is made
every 8 or 9 simulation clock cycle thus only 7 or 8 cycles are
wasted. Similarly, to generate CKRTL

20000, an active edge is
made at every 160 simulation clock cycle, thus only 159
cycles are wasted. The number of wasted cycles is drastically
reduced. Note that there exists one-to-one correspondence
between an RTL clock edge and a C-level clock edge in early
and late edge models.

It is favorable to use either the early edge or the late edge
model for clocks in order to maximize the simulation
performance. But using those models causes inherent cycle
errors at the point of clock domain crossing. Cycle errors
caused by those asynchronous clock models occur regardless
of the simulation mechanism.

The cycle error of CKC compared to CKRTL which is
denoted by CE(CKC) is if the behavior of an RTL signal
SRTL at the edge of CKRTL(m) corresponds to that of a C-level
signal SC at CKC(m±). The definition of cycle error can be
extended for the GCD model. But the extension is not
necessary because there is no cycle error when the GCD
model is used.
RTL event-driven simulation traces and their corresponding
C-level cycle-based simulation traces with the late edge clock
model are depicted in Figures 3,4 and 5. The C-level late edge
model of the RTL asynchronous clock CKRTL

Async is CKC
Async.

In Fig. 3, a signal is transferred from the domain of the
simulation clock CKRTL

Sim to the domain of CKRTL
Async. The

signal is received at CKRTL
Async(1) in RTL, and at CKC

Async(1)
in C-level. Thus, there is no cycle error. Since CKRTL

Async(n)
will be mapped to CKC

Async(n) that will be always behind the
sending clock edge by the late edge model, the cycle error
CE(CKC

Async) is always zero. When a signal is transferred
from the domain of CKC

Async to the domain of the simulation
clock as shown in Fig. 4, the signal is received at CKRTL

Sim(4)
in RTL and at CKC

Sim(5) in C-level. Thus the cycle error
CE(CKC

Sim) is one. But if the sending edge of CKRTL
Async is

synchronized with an edge CKRTL
Sim(n) of the simulation

clock, the receiving edge will be CKRTL
Sim(n + 1) in both RTL

and C-level. In this case, CE(CKC
Sim) is zero. Thus,

CE(CKC
Sim) can be one or zero. Fig. 5 depicts the case that a

Fig. 3 The late edge model: simulation to asynchronous

Fig. 4 The late edge model: asynchronous to simulation

Fig. 5 The late edge model: between asynchronous

signal is transferred between asynchronous clocks when the
late edge model is applied. In this case CE(CKC

AsyncB) is one at
most.

Similarly, the cycle errors due to the early edge model for
various conditions can be computed. Note that the cycle
errors can be formulated by the clock models and the clock
domains that send and receive the signals. This is summarized
in TABLE I. The cycle error is advent when the edges of the
simulation and the asynchronous clocks become identical –
that is, they happen at the same time – in C-level but their
corresponding RTL edges are not. Now, a cycle error
correction method for the late edge clock model is presented.
Although only the late edge clock model is considered in this
paper, it is easy to extend this discussion for the early edge
clock model. As mentioned before, every active clock edge in
RTL has corresponding active clock edge in C-level. To
correct the cycle errors, the principle is to make signals be
transferred at the corresponding edge as illustrated in Fig. 6.

4

TABLE I. The cycle errors due to clock models

Clock domain Clock
model From To

Cycle error Illustrated
in

Sim Async CE(CKC
Async) = zero Fig. 3

Async Sim CE(CKC
Sim) = one or zero Fig. 4

Late
edge

model Async
A

Async
B CE(CKC

AsyncB) = one or zero Fig. 5

Sim Async CE(CKC
Async) = one or zero

Async Sim CE(CKC
Sim) = zero

Early
edge

model Async
A

Async
B CE(CKC

AsyncB) = one or zero

Fig. 6 Basic idea of cycle correction

We assume that synchronizers are inserted in every path
crossing clock domains to prevent the malfunction of a circuit
due to metastability [8]. Generally synchronizers consisting
of two D-type flip-flops (DFFs) are used as shown in Fig. 7.
Two DFFs cause two cycle delay at the receiving clock
domain. The cycle error can be corrected if the synchronizer
is operated as it has only one DFF when an one-cycle error
occurs. To do so, a synchronizer like Fig. 8 is needed. The
select signal should be zero when the cycle error occurs. The
select signal should be provided by a controller. A way to
generate the select signal is described in Section IV.

IV. Cycle Error in Communicate & Update Mechanism
The communicate and update mechanism is

computationally more efficient than the message-passing
mechanism because it utilizes less number of update and
communication operations for a signal evaluation. Thus it is
desirable to use the communicate and update mechanism to
achieve the faster simulation speed in cycle-based simulation.
However, unlike the message-passing mechanism, a cycle
error may occur unless the modeled circuit has a single clock
domain. In this section cycle errors by using the communicate
and update mechanism and a correction technique of them are
presented.

When the communicate and update mechanism is used for
a cycle-based simulation, the communicate phase of all
components is executed first to exchange signals among
components. Then the update phase is executed to update
shared resources. A clock CKC

Gen is called a generated clock
of a clock CKC

Sim if CKC
Gen is created by a logic circuit

including a set of flipflops activiated by CKC
Sim. CKC

Sim is

Fig. 7 A normal synchronizer

Fig. 8 Synchronizer model for correcting cycle error

called the source clock of CKC
Gen. The active edge of CKC

Gen

is synchronized with either the rising or the falling edge of
CKC

Sim. Fig. 9 shows a usual logic design that implements
CKC

Gen, a generated clock of CKC
Sim by the factor of two. Fig.

9 illustrates an example that a signal is transferred from the
simulation clock CKC

Sim to CKC
Gen. D0, D1 and D2 are DFFs.

0 and 1 are inputs and 0 and 1 are outputs of D0 and
D1, respectively. 2 is the input of another component
receiving sig_c.

Assume that 0 is changing from 0 to 1 at CKC
Sim(0) during

the communicate phase. A general event-driven simulator
will evaluate 0 to 0 due to the delta delay. But a cycle-based
simulator evaluates signals only at an active edge. This is an
implementation issue. Regardless of the implementation, the
cycle errors occur when the communicate and update
mechanism is used.

The values are transferred to 0 and 1 during the
communication phase of CKC

Sim (0). Now, 0 and 1 become
1 and 0, respectively. During the update phase of CKC

Sim (0),
0 and 1 are updated to 1 and 0, respectively. In the

Fig. 9 Communicate and update example

0 10 1 2

0
1
2

0
1

0

10 -

1- 2

5

communication phase of CKC
Sim (1), 0 and 1 become 1 and

1, respectively. Then, in the update phase of CKC
Sim (1), only

0 is updated to 1 because D1 is not active at that time. Note
that 0 and 1 are 1 and 0, respectively. During the
communication phase of CKC

Sim(2), 0, 1, and 2 become 1,
1, and 0, respectively. In the update phase, both 0 and 1
are updated to 1. Note that 2 will remain as 0 although 2 is
supposed to be 1 unless the output value 1 of D1 is transferred
to 2 by a communication phase. This errorneous value of 2
will last till the next active edge of CKC

Gen. This is because the
updated value is transferred to 2 during the communicate
phase of the next active edge. In the message-passing
mechanism [9], this error is eliminated by the last
communication phase after the update phase during an
evaluation.

This erroneous behavior due to the communicate and
update mechanism occurs when signals are transferred
between asynchronous clocks. If the receiving clock is
synchronous with the sending clock and they have different
periods, one extra communicate phase should be enforced
after the update phase. However, if the receiving clock is
asynchronous with the sending clock, the method using a
synchronizer proposed in Section III can be used to correct
the cycle errors.

Fig. 10 shows a flowchart of the function GenFlag which
generates the enable flags, Enable_A and Enable_B, for
asynchronous clocks and the select signal of the mux shown
in Fig. 8, Select_A,B and Select_B,A, for
synchronizers. The communicate and the update phases will
be executed only when the enable flag is set. This function is
included in the clock generator and called every edge of the
simulation clock.

When GenFlag function is called, it first calculates the next
active edge time NextActiveEdge_Clk of every clock in
the system except for the simulation clock. Each clock Clk
has its own active edge counter CntEdge_Clk. For
example, CKRTL

Clk(CntEdge_clk) denotes the
CntEdge_clk-th active edge of Clk.
NextActiveEdge_Clk is the time of the next active edge
of Clk relative to the simulation clock. Reference of
NextActiveEdge_Clk is the period of the simulation
clock. If the ceiling of the next active edge time equals to that
of the simulation clock, the enable flag Enable_Clk is set.
If we use the flooring instead of the ceiling, we can
implement the early edge model instead of the late edge
model. For every pair of clock A and clock B there are two
select signals of the mux shown in Fig. 8. Select_A,B is
for the synchronizers from clock A domain to clock B domain.
Select_B,A is for those from clock B domain to clock A
domain. Fig. 11 shows an example illustrating function
GenFlag.

Start

For every pair of clock A and clock B in the system

Which edge is
the earlier?

Select_A,B = 0
Select_B,A = 1

Select_A,B = 1
Select_B,A = 0

A B

Select_A,B = 1
Select_B,A = 1

equal

end

Enable_A==1 and
Enable_B==1

Y N

Select_A,B = 0
Select_B,A = 0

For every clock Clk in the system
except for the simulation clock

NextActiveEdge_Clk = CntEdge_Clk *
period of Clk / period of the simulation clock

CntEdge_Sim ==
Ceiling of

NextActiveEdge_Clk

Enable_Clk = 0
Increase CntEdge_Clk by one
Enable_Clk = 1

Y

N

Increase CntEdge_Sim by one

Start

For every pair of clock A and clock B in the system

Which edge is
the earlier?

Select_A,B = 0
Select_B,A = 1

Select_A,B = 1
Select_B,A = 0

A B

Select_A,B = 1
Select_B,A = 1

equal

end

Enable_A==1 and
Enable_B==1

Y N

Select_A,B = 0
Select_B,A = 0

For every clock Clk in the system
except for the simulation clock

NextActiveEdge_Clk = CntEdge_Clk *
period of Clk / period of the simulation clock

CntEdge_Sim ==
Ceiling of

NextActiveEdge_Clk

Enable_Clk = 0
Increase CntEdge_Clk by one
Enable_Clk = 1

Y

N

Increase CntEdge_Sim by one

Fig. 10 Flowchart of the GenFlag

CntEdge_Sim
CntEdge_AsyncA

NextActiveEdge_AsyncA
Ceiling of

NextActiveEdge_AsyncA

CntEdge_Sim
CntEdge_AsyncA

NextActiveEdge_AsyncA
Ceiling of

NextActiveEdge_AsyncA

Fig. 11 An example of implementing the late edge model

After the next edge time is caculated, then it generates
select signals. For every pair of clocks in the system, GenFlag
determines which edge is earlier if both clock edges are active.
To determine which edge is the earlier, it uses difference
between NextActiveEdge_Clk and ceiling of it. The
larger the difference is, the earlier the edge is.

V. Experiment
An example circuit shown in Fig. 12 is implemented to

demonstrate the effectiveness of the proposed method.
The example system consists of three clock domains:

CKC
Sim, CKC

AsyncA, and CKC
AsyncB. Clock CKC

Sim is the fastest
clock and thus the simulation clock. Clocks CKC

AsyncA and
CKC

AsyncB are asynchronous clocks. Each clock domain
receives signals from other clock domains through a two-DFF
synchronizer. Signals to be transferred to other clock domains
are stable for at least one period of the receiving clock so that
it is assured that the signal is transferred to the other clock
domain.

6

Fig. 12 An example system

When a request from CKC
AsyncA domain goes to the CKC

Sim

domain, the CKC
Sim domain returns a data to the CKC

AsyncA

domain with a certain delay. Then the received data is passed
to the CKC

AsyncB domain. The CKC
AsyncB domain accumulates

the received data and passed it to the CKC
AsyncA domain with a

certain delay. That operation is executed 1000 times in this
example. The periods of CKC

Sim, CKC
AsyncA, and CKC

AsyncB are
40ns, 110ns, and 250ns, respectively.

We simulated the sample circuit on a cycle-based simulator
MaxSim [10]. In MaxSim the communicate phase and the
update phase are implemented as function calls. Each
component implements the communicate function and the
update function and the clock generator calls the
communicate functions and the update functions of
components at every active clock edge. To correct cycle
errors the clock generator generates select signals to let
synchronizers know whether they should operate as one DFF
or two DFFs.

We performed experiments to verify the cycle error
correction technique and measure the accuracy and the
performance. TABLE II shows the cycle accuracy of
various models: RTL, the GCD model, the late edge model

TABLE II Cycle accuracy of each model
Total clock cycle

used for the
complete simulation

Cycle
difference
from RTL

Cycle
accurac

y
RTL 93654
GCD 93654 0 100.0 %
Late edge model
with correction 93654 0 100.0 %

Late edge model
without correction 105669 12015 87.2 %

TABLE III Simulation speed of each model
 Cycle/sec Ratio
GCD 410702 100.0 %
Late edge model with
correction 588638 143.3 %

Late edge model
without correction 688227 167.6 %

with cycle error correction, and the late edge model without
cycle error correction. The accuracy of the late edge model
with cycle error correction is 100% while the one without
cycle error correction shows only 87.2% accuracy.

TABLE III shows the simulation speed of each model on a
PC with a 2.53 GHz Pentium 4 processor with 512 MB
memories. As can be seen, the late edge model can be
implemented 1.4 times faster then the GCD model without
sacrificing the cycle accuracy. Although the late edge model
without cycle error correction can be 1.6 times faster than
GCD, it has drawback due to the cycle inaccuracy.

VI. Conclusion
A cycle error correction technique for a cycle-based

simulation with asynchronous clocks is proposed. A
two-flipflop synchronizer is assumed to be inserted on every
clock domain crossing path. Three clock models for
cycle-based simulation are introduced: greatest common
divisor (GCD), early edge, and late edge models. Although
the early and the late edge clock models are more efficient for
faster simulation speed, they pose inherent cycle errors with
respect to register-transfer level. It is demonstrated that a
100% cycle accurate cycle-based simulation is possible with
the early and late edge clock models by using the proposed
technique.

References
[1] Lisa Guerra et al., “Cycle and Phase Accurate DSP Modeling and

Integration for HW/SW Co-Verification,” Proc. of Design Automation
Conference, pp.964-969, 1999

[2] G. Cabodi et al., “Exploiting timed transition relations in sequential
cycle-based simulation of embedded systems,” Proc. of Computers and
Digital Techniques, pp.305-312, 2000

[3] B.H. Yaran, B.H., D. Rahmati, and A.S. Zebardast, “Applying
cycle-based simulation technique to VITAL as a VHDL gate level
standard,” Proc. of Canadian Conference on Electrical and Computer
Engineering, pp.1076-1084, 2001

[4] L. Ghasemzadeh and Z. Navabi, “A fast cycle-based approach for
synthesizable RT level VHDL simulation,” Proc. of International
Conference on Microelectronics, pp.281-284, 2000

[5] Murali Kudlugi, Soha Hassoun, Charles Selvidge, and Duaine Pryor,
“A Transaction-Based Unified Simulation/Emulation Architecture for
Functional Verification,” Proc. of Design Automation Conference,
pp.623-628, 2001

[6] Kirk Ober, “Doing Behavioral Design the Right Way Minimizes
Verification,” Proc. of Design and Verification Conference and
Exhibition, 2004

[7] K. Olukotun, M. Heinrich, and D. Ofelt, “Digital system simulation:
methodologies and examples,” Proc. of Design Automation Conference,
pp.658-663, 1998

[8] T.J. Gabara, G.J. Cyr, and C.E. Stroud, “Metastability of CMOS
master/slave flip-flops,” Proc. of Custom Integrated Circuits
Conference, pp.29.4.1-29.4.6, 1991

[9] G. Maturana et al., “Incas: a cycle accurate model of UltraSPARC,”
Proc. of IEEE International Conference on Computer Design: VLSI in
Computers and Processors, pp.103-135, 1995

[10] MaxSim designer’s guide, AXYS design automation, Inc., 2004
[11] J. Walker and A. Cantoni, “A new synchronizer design,” Proc. of IEEE

Transactions on Computers, pp 1308-1311, 1996

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

