
Physical design implementation of segmented buses to reduce communication
energy

Jin Guo1,2, Antonis Papanikolaou1, Pol Marchal1, Francky Catthoor1,2

1IMEC v.z.w., Kapeldreef 75, 3001 Leuven, Belgium
2Katholieke Universiteit Leuven, Kasteelpark Arenberg 10, 3001 Heverlee, Belgium

Abstract— The amount of energy consumed for interconnect-
ing the IP-blocks is increasing significantly due to the subopti-
mal scaling of long wires. To limit this energy penalty, segmented
buses have gained interest in the architectural community. How-
ever, the netlist topology and the physical design stage signifi-
cantly influence the final communication energy cost. We present
in this paper an automated way to implement a netlist consist-
ing of hard macro blocks, which are interconnected with heavily
segmented buses in an energy optimal fashion for communication.
We optimize the network wires energy dissipation in two separate,
but related steps: minimizing the number of segments for active
communication paths at the first step (block ordering), followed
by the activity aware floorplanning step to minimize the physical
length of these segments. Energy gains of up to a factor of 4 are
achieved compared to a standard system implementation using a
shared bus. Especially, the block ordering step contributes signif-
icantly to the network energy optimization process.

I. INTRODUCTION

Energy consumption is becoming one of the major optimiza-
tion targets when designing low-power embedded systems. An
important way to reduce the energy cost is to introduce a dis-
tributed memory hierarchy [15]. However, due to the increas-
ing number of IP blocks (many dozens), more and longer wires
are required to interconnect all of them. The trend toward IP
reuse will also push toward the efficient reuse of more hard
macro-blocks. Hence, the netlist connecting many hard IP
blocks should be efficiently implemented.

The performance and the energy consumption of global
wires cannot follow that of the transistors as technology fea-
ture sizes scale down. The energy dissipation of those wires
is almost not improving anymore, with each new technology
node, while transistor capacitance keeps shrinking [2]. As a
result, the relative energy consumption of the communication
is increasing compared to the computation and the storage sys-
tem components. The results in [6] show that the energy con-
sumed by the communication network is comparable to the en-
ergy consumed by the heavily distributed memories.

At the architectural level a lot of studies exist already for
communication energy minimization. Chen et al. [9] have
demonstrated how to reduce the energy consumption of the
communication by using a segmented bus architecture, which
can shut off the unused path via switches. The energy costs
of driving the switches for a segmented bus are appreciable
lower than the gain obtained from using a segmented bus [16].
The actual wire energy consumption of this architecture, how-
ever, depends on the floorplan of the system. The reason is that
energy is proportional to the product of wirelength multiplied

by the activity of each wire. The activity can be minimized
at higher abstraction levels, but the actual length of each in-
terconnect wire is only decided during physical design. Thus,
support is needed from the physical design phase in order to
achieve minimal communication energy consumption.

Current physical design flows, however, mostly focus on the
optimization of area occupation and total wirelength of the de-
sign. Total wirelength is probably a good metric to represent
wire congestion, but it is not adequate to reflect the energy
consumption since different wires can have very different ac-
tivities.

The use of heavily segmented buses introduces an additional
issue to be solved. The number of segments should indeed in-
crease compared to the industrial bridged or segmented bus
architectures [19] [18], in order to reduce the energy cost.
Then the order in which the blocks are connected to the bus
heavily influences the communication energy. For example,
a netlist with optimal connectivity can assure the very active
paths are always shorter in length than the less active paths
during the physical design, which reduces energy consump-
tion intuitively. Hence, such netlist topology problems together
with the activity aware floorplanning techniques need to be ef-
ficiently coupled to optimize the communication network en-
ergy.

In this paper we show how communication energy optimiza-
tion can be achieved on real application drivers. We couple an
energy-optimal communication architecture, connection order-
ing to an automated energy-aware physical design flow to show
that communication energy can be minimized by up to a fac-
tor of 4 compared to shared buses architecture with a standard
physical design flow. We also stress that the network energy is
very sensitive to the netlist topology in terms of block ordering.

II. RELATED WORK

Reducing the communication power dissipation has increas-
ingly become a key concern in SOC design. Many reported
approaches have focused on the savings at architecture level.
Chen et al. [9] first demonstrated how the segmented buses can
improve communication power and critical path delay. How-
ever, they evaluated the wire energy based on the estimation of
the wire length, without doing the floorplanning. Hence the re-
sults lack of real physical level effects. Furthermore, they cal-
culated the wire energy consumption without buffers to neglect
the circuit level issues. But buffers contribute significantly to
the overall energy consumption and latency.

A lot of work has been done in the physical design com-
munity to optimize chip area and improve circuit perfor-
mance [10] [11]. To utilize the large impact of physical design

on total system energy consumption, researchers have looked
into power optimization at the floorplanning stage. Chao et
al. [3] have introduced a floorplanner which optimizes the
module power consumption and chip area by choosing the spe-
cific shape for each module. The wire energy dissipation is
neglected. Several other approaches have been introduced to
include a low power objective in physical design. Prabhakaran
et al. [13] presented a simultaneous scheduling, binding and
floorplanning algorithm to minimize interconnect energy dis-
sipation. They contributed to the combination of high-level
synthesis and physical design for interconnect power reduc-
tion, but not targeting macro blocks.

Jingcao et al. [7] have proposed a new methodology to gen-
erate low energy and high performance communication net-
works at the floorplanning stage. Their methodology is based
on a point-to-point connection architecture. This architecture
is not suitable for connecting many macro blocks because it
can lead to routability and wire congestion problems. Jimenez
et al. [12] presented an activity aware placement methodology,
which aimed at reducing the power dissipation of macro block-
based VLSI design. They mainly introduced how to imple-
ment the simulated annealing algorithm efficiently. They did
not specify the communication architecture.

To the best of our knowledge, the impact of floorplanning
on the energy consumption of heavily segmented buses has
not been studied in the past. In sectionV, we will therefore
outline an exploration environment for investigating this prob-
lem in two steps of optimization. First, we explain the target
architecture more in detail.

III. PLATFORM DESCRIPTION

Our target domain is that of application domain specific em-
bedded portable systems. We focus on multimedia and wire-
less applications. This target implies a number of architectural
assumptions that we can exploit. Systems of this domain will
follow the System-on-Chip template and they will consist of
different tiles, among which one will be the mass storage mem-
ory which dominates the system area occupation. In this paper
we focus on the implementation of a given tile. The implemen-
tation of the complete system can be done in the same manner.

A. Memory Organization

These systems consist of application domain specific pro-
cessors with their local memories (Fig. 1). The processors can
be partitioned into distributed processing elements (PEs). The
memories are organized in a hierarchical manner for energy
optimal purpose [6]. The local memory layer typically consists
of many small memories. This heavily distributed memory or-
ganization increases the number of macro blocks, to at least
dozens but up to hundreds. And the additional available band-
width from the memories to the processors increases the num-
ber of parallel communication paths among the blocks. There-
fore, a hierarchal memory organization results in a more com-
plex communication network architecture and requires novel
floorplanning techniques.

The PEs and memories are assumed to be pre-designed IP
blocks in order to enable IP reuse and thus limit the system
development design efforts. The shapes of the blocks are pre-
defined and assumed to be rectangular. The width and height

Distributed processor elements

M1.1
M1.2 M1.3 C1.1 C1.2

M2.1 R2.1 C2.1

communication network

tile

to other tiles

Hierarchical
memories

Fig. 1. Memory hierarchy and distributed organization

of the memories are fixed to achieve optimal intra-block en-
ergy consumption at the system design phase. During physi-
cal design, the physical characteristics of the memories are not
changed any more to avoid overruling the already made deci-
sions at higher level.

B. Segmented Buses Network

Due to the large number of IP blocks, interconnecting them
becomes a critical issue. Shared buses are conventionally used
(Fig. 2-a) instead of the point-to-point connections in order
to use less communication wires. The main disadvantage of
shared buses is that they are power hungry, since every mas-
ter has to charge the entire bus for communicating data. In
Fig. 2-a, the most frequently accessed path is between mem-
ory1 and the processor. During each access the entire bus
swings, including connections 1-2-3. Traditionally, segmented
buses [9] introduce some switches on the buses (see Fig. 2-
b). The switches are 3-port uni-cast or multi-cast components
implemented using tri-state buffer chains [14]. They can be
programmed in order to configure the needed communication
paths and shut off the others. For instance, we can avoid those
connections 1-2-3 swing in Fig. 2-b by giving the control sig-
nal to the switches to shut off the paths. This way, it reduces
the capacitance which toggles when communicating and thus
reduces the communication energy consumption. In our case,
there are dozens of switching connections to many segments,
which implies a large potential energy gain there.

Fixing the netlist of the shared buses is straightforward,
where all the blocks connect to the same buses without al-
ternative solutions. When it comes to the segmented buses,
additional decisions need to be taken to finalize the netlist of
the system. Assuming a linear communication topology, the
blocks are connected to the bus one by one in a specific order
and no star connections exist. The order of the blocks con-
nected to the bus dictates the activation frequency of the var-
ious segments. Hence, the network energy of the segmented
buses has a strong dependency on the netlist. This step is ac-
tually necessary for any topology of segmented buses. In the
following sections we propose a simple way to order the blocks
on linear topologies.

memory4

memory2

memory1

memory3
Process
element

memory2

memory1

memory3Process
element

High active wires low active wires

a. Shared buses b. Segmented buses

switches

memory4

3

1
2

3

1

2

Fig. 2. Segmented buses based on shared connections

IV. MOTIVATIONAL EXAMPLE

The energy cost of the segmented bus depends directly on
the wirelength and the switching activity of each segment. The
energy cost can be computed as follows:

E = V 2
dd × Cl ×

∑

i

(αi × li × bitwidthi) (1)

We realistically assume that only the global metal layers are
used for the implementation of the communication network,
so Vdd and capacitance per unit of length Cl are constants for
a specific technology node. αi is the number of activations of
segment i. li is the average wirelength among the wires of a
given segment and bitwidthi is the number of parallel wires
of that segment. Conventional physical design flows minimize
the total wire length

∑
i(li × bitwidthi). This reduces wire

congestion, but it can lead to energy optimization only when
αi is constant or varies little for the different segments.

In typical embedded applications, the required bandwidth on
the different connections from processing elements to memo-
ries varies significantly. This translates into large differences in
activation frequency among the segments. We have measured
a ratio of up to ten between the most active and the least active
segments [17]. This large range in activities, means that we
cannot neglect it in the optimization cost function. To reduce
the energy consumption of the segmented bus, we should min-
imize the sum of the products of activity times total segment
wire length, denoted as

∑
i(li × bitwidthi × αi).

This optimization can be decoupled into two steps: (1)
heavily active communication paths should utilize the small-
est number of segments for the data transfer (block ordering)
and (2) the physical lengths of these segments should be mini-
mized (activity aware floorplanning).

A. Block Ordering

As discussed earlier, we have to deal with up to hundreds
of connections, leading to many alternative switches organiza-
tions and block ordering. The way the switches are connected
to each other introduces the order with which the memories are
connected on the buses. The number of segments that need to
be traversed to communicate between a given PE and a given
memory is determined by the connection ordering of the mem-
ories. A good ordering decision results in that the very active
transfer paths use a minimal number of segments, which im-
plies low cost. For instance, Fig. 3 illustrates two block order-
ing decisions. The same architecture is shown comprising two

processing elements and 4 memories connected with a differ-
ent order on the linear communication topology. The different
order is the only difference between the two netlists. To illus-
trate the potential for energy optimization we assume for sim-
plicity in this example that all segments have the same wire-
length L and we neglect the wirelengths from memory ports to
switches. Some memories communicate to 2 PEs like mem-
ory3. The values annotated on top of each memory block in
the figure are the number of accesses of each memory to the
two PEs individually for executing a given functionality. Fur-
thermore, we assume that the bitwidth is the same everywhere,
thus we can neglect it in the qualitative calculations that follow.

PE1memory4 memory2 memory3

b. Optimal block ordering decision for energy

switch1 switch2 switch3 switch4

LL L L

activity: 2/0 5/0 3/4

PE1memory4 memory3 memory2 memory1

a. Non optimal block ordering decision for energy

switch1 switch2 switch3 switch4

LL L L

activity: 2/0 3/4 5/0 0/6

L

PE2

memory1

L

PE2

0/6

Fig. 3. Block ordering decisions influence communication cost

Considering the energy related communication cost as the
product of total wire length from source to sink of communica-
tion and activity, the first block ordering decision has a cost of
E = 2×L+3×L+5×2L+4×3L+6×L = 33L. The second
netlist has a much lower cost, due to a better block ordering.
Its cost is E = 2×2L+5×L+3×L+4×L+6×L = 22L,
a nearly 40% energy reduction. The intuitive principle for en-
ergy optimal ordering is that the connection order is made ac-
cording to the activity order, that is, the most active memories
are closer to PE in terms of the number of switches existing
in the communication path between these two blocks and vice
versa.
B. Activity Aware Floorplanning

Given a netlist with a good block ordering decision, the
physical length of each segment should be minimized (step 2)
according to their activity in the physical design steps of floor-
planning and placement. An activity aware floorplanning tech-
nique has been outlined in [8]. The principle is that very active
segments should have minimal length, while not so active seg-
ments can tolerate a bit longer length. For instance, in Fig. 4,
the two floorplans are using the same netlist. The first floor-
plan does not consider the activity of each segment and aims
at minimizing the total wirelength and area occupation. In the
second floorplan, we change the positions of the modules such
that the wirelength of the most active link is reduced, which
should be energy optimal solution for the network. An area
penalty is incurred and the total wirelength might be increased
a bit. We quantify these overheads in a later section. How-
ever, large main on-chip storage memories (not layer1 mem-
ories) will dominate the chip area in the embedded systems,
thus small area overheads in the area of the individual tiles for

the distributed layer1 memories will be negligible at the level
of the entire chip.

memory3

memory1

memory2
Process
element

a. Non activity aware floorplanning

memory4

b. Activity aware floorplanning

Process
element memory1

memory2

memory3

memory4

High active wires low active wires

Fig. 4. Floorplanning techniques for segmented buses

In the remainder of this paper we outline an automated
methodology, which can produce an optimized implementation
of a system consisting of hard macro-blocks interconnected
via segmented buses starting from the RTL system descrip-
tion. The main optimization cost is communication energy
consumption.

V. PHYSICAL DESIGN FLOW FOR ENERGY OPTIMAL

COMMUNICATION

In order to make an automatic physical design implementa-
tion for low energy segmented buses architecture interconnect-
ing hard macro blocks, we introduce our approach in Fig. 5,
compared to a conventional approach. After the system design
step (or high-level synthesis), the system consists of blocks in
terms of many memories and a few processing elements. The
conventional approach inputs the RTL description into a placer
to get the placement and then performs the routing.

For segmented buses, the RTL description should be ex-
tended with the information about how the switch blocks are
connected. Normally, the switch blocks are much smaller than
the memory blocks. It is extremely difficult for most of the cur-
rent macro cell floorplanning tools to deal with macro blocks
of very different sizes. In that case, manual intervention is
need. For instance, some extremely large or small blocks are
pre-placed manually before automatically floorplanning the
other blocks.

Avoiding the manual placement of the switches while keep-
ing the smart strategy made by the floorplanner, we automat-
ically insert the switch blocks after floorplanning, closely to
the ports of the memories/PEs. Since the switches are small,
the insertion step does not change the relative locations of the
large macros, which have been optimized by the floorplanner
already. And since the switches are close to the communica-
tion ports, the insertion influence on the communication path
is slight. Hence the insertion impact on the cost of the activity
aware floorplanning is small.

In our approach, we first make the ordering decision accord-
ing to the memory activities. The ordering decision is nec-
essary to identify the activity of the segments between two
switches. Because switches do not appear at floorplanning
stage, an intermediate netlist, activity weighted netlist, is pro-
duced. This netlist has no switch description, but is annotated
with the activities of point-to-point communications between
the macros. These activities are equal to the segment activities

after the later switches insertion step. By this way, we use the
netlist without switches but still provide enough activity infor-
mation to physical design for energy optimization. The activity
weighted netlist is imported to the public domain floorplanner
Parquet [4] to get a network energy optimized placement so-
lution. Then switches are added and the placement is slightly
adjusted to accommodate them. In parallel, a new RTL netlist
which describes all the macro blocks including the switches in
the system after switches insertion is fixed. Finally, the place-
ment and the new RTL netlist are imported to the MAGMA [1]
environment for routing. We will explain the major steps in de-
tail.

Architecture description

Activity weighted netlist
Placer

(Parquet)

Floorplan

Router
(Magma)

Adding switches

Placement

Layout

Segmented buses

Architecture description

Placer

Router

RTL netlist

Layout

conventional approach our approach

Ordering decision

RTL netlist

Fig. 5. Exploration methodology flow-graph

A. Block Ordering Decision

This step aims at minimizing the number of segments those
need to be activated for very active communication paths. We
currently only deal with linear bus topologies. This is not a
severe limitation, since many of the bus-based designs in lit-
erature and in industry use linear topologies. This one di-
mensional topology is already able to illustrate well the gains
achieved by the topology decisions, though a two dimensional
topology might achieve more gains. Extending the principle to
other topologies is future work.

The system components that are involved in most of the data
transfers are obviously the processing elements. They fetch or
store all the data from and to the individual memories. Thus,
we have developed an approach where we start from the con-
nections of the processing elements on the bus and connect the
memories close to them based on their number of accesses.
The most frequently accessed memories are connected very
close to the processing element they communicate with and
vice versa. This ordering localizes most of the communication
activity in small areas and few segments need to be activated
for most of the transfers. Extending this principle to cover
multiple processing elements on a single linear bus is trivial. If
more than one bus exists in the netlist, we perform the ordering
per bus.

B. Floorplanning and Routing
In this stage, we need to implement the activity-aware floor-

planning technique in order to minimize the lengths of the ac-
tive segments in our macro block based netlist. We use Par-
quet [4] to obtain the floorplan for each design, which is a
macro block placement tool. It can minimize the weighted net
length and chip area via using a simulated annealing algorithm.

After the ordering decision, the activity of each net can be
determined exactly. The activity is annotated to the net as the
weight. Normally, the floorplanner minimizes w1 × area +
w2 × weighted wire length to achieve a good balance be-
tween area cost and network cost. In order to illustrate how
much energy gain we will have compared to the shared buses,
we set a low weight for area and a large weight for the weighted
wire length in the cost function. Due to the fact that the simu-
lated annealing process takes a long time to converge, we run
the process for a set of times, with a reasonable CPU time for
each run. The best floorplan is selected.

The floorplan generated by Parquet is not routable since
the block edges overlap with their neighbors’ edges. So it
needs to be changed to a legal placement for routing. In par-
allel, switches need to be added to implement the segmented
buses architecture. Again, the switches blocks and memory/PE
blocks can not overlap with each other. We do the switch in-
sertion and block separating simultaneously: starting from the
left-bottom block, the neighbor block is moved to the right or
to the top until a pre-defined space exists between these two
blocks. If switches are needed to be inserted there, further
movements are going on until enough space is assured for plac-
ing the switches.

The MAGMA BlastFusion chip implementation system was
used to check the placement and do the detail routing. Only
the global metal layers are used for connecting the memories
and PEs. Because the bus is segmented, the length of the seg-
ments is rather small and buffering is enough. We target low
power embedded system whose clock frequencies is several
100 MHZ but less than 1 GHZ. For these two reasons, no re-
peaters are needed. Hence, the wires can be routed over the
blocks. The wirelength of each segment is measured and chip
area is reported by the MAGMA tool suite.

VI. EXPERIMENTAL RESULTS

This section explains the way we performed the calculations
for communication energy and critical path length. The results
of our experiments are also presented here.

A. Network Energy and Critical Path Length

In order to have a better estimation of the real energy con-
sumption of the buses we take into account the required buffers
to drive the wires. The wires are buffered in a delay optimal
way [5] and all the calculations are made for the 130nm tech-
nology node with data coming from the ITRS roadmap [2].

The total network dynamic energy consumption is the sum
of all the individual segments energy consumption. We use the
critical path wire length as a delay metric. For shared buses,
the critical path wire length is equal to the whole bus length in
the case of a single bus or the longest bus length for multiple
buses. For segmented buses, the communication path length is
the sum of the activated segments wire length. So the critical
path length is the maximum sum of segment-lengths for any of
the communication paths.

B. Results
First, we performed the design on the motion estimation

and the motion compensation kernels of the main profile of an
MPEG4 encoder. This is an application specific design con-
sisting of two processing elements and 14 local memories.

We have followed two different combinations of communi-
cation architecture and physical design approach: shared buses
with minimal total HPWL (Half Perimeter Wire Length), and
segmented buses with minimal energy. The shared buses im-
plementation follows the conventional design flow shown in
Fig. 5. The RTL netlist is imported into Parquet, which gener-
ates one floorplan with minimal HPWL. For the second com-
bination, we adopted activity aware floorplanning combined
with a netlist which specifies the energy optimal block order
for the segmented buses up front.

TABLE I
THREE DESIGN APPROACHES, MPEG4 ENCODER

Buses area energy critical total
architecture (mm2) *1e-3(J) path(m) WL(m)

Shared buses 1.3333 0.481 0.0036 0.032
Min. HPWL

Segmented buses 1.423 0.126 0.0019 0.114
Min. energy

Table I presents the chip area, the network energy consump-
tion, critical path wirelength and total wirelength for these two
approaches. Compared to shared buses using the conventional
approach, significant energy gain is achieved when we use an
optimal netlist and the activity aware floorplanning technique
based on segmented buses. This combination reduces the wire
energy to around one quarter compared to the minimal HPWL
shared buses.

We evaluated the segmented buses architecture via our im-
plementation methodology for MPEG4 with two different
memory organizations and DAB (Digital Audio Broadcast) re-
ceiver with one memory organization in Table II. Similar com-
parisons of the two designs as in the Table I can be made and
the conclusions are the same. In average, the energy optimal
implementation of segmented buses can improve communica-
tion energy with a factor of 3.1 compared to the shared buses
approach.

To assess the impact of the two proposed optimizations in
the overall communication energy consumption we have con-
ducted a number of experiments for MPEG4 application. Two
different block ordering approaches, a random choice and the
optimal choice, were combined with two different floorplan-
ning approaches, a conventional one and the activity aware
one. Fig. 6 illustrates the results from the four different ex-
periments. The leftmost bars show the area and energy con-
sumption of a netlist with a random block ordering decision us-
ing a conventional floorplanning approach that optimizes area
and half-perimeter wirelength with equal weights. The second
bar from the left is obtained by combining the same block or-
dering decision with an activity-aware floorplanning approach.
The third set of bars is the result of an optimal block order-
ing decision (as explained in Section V) and the conventional
floorplanning, while the last set of bars are for optimal block
ordering and activity-aware floorplanning.

By comparing of the first and third experiments, it is evident
that block ordering can have a very significant impact on the
resulting communication energy (44.6% reduction). An opti-
mal block ordering decision can by itself reduce the energy,
by reducing the number of segments that are activated for very

TABLE II
SHARED BUSES VS. SEGMENTED BUSES FOR DIFFERENT APPLICATIONS

Applications Memory Communication area energy critical path total
organization network (mm2) *1e-5(J) *1e-3(m) WL(m)

DAB 13 memories Shared buses minimal HPWL 6.567 19.6 2.69 0.105
3 PEs 3 buses Segmented buses minimal energy 7.145 5.16 1.51 0.158

MPEG4 9 memories Shared buses minimal HPWL 5.333 2.08 1.92 0.076
Memory Mapping1 2 PEs 3 buses Segmented buses minimal energy 5.562 1.16 1.29 0.144

MPEG4 15 memories Shared buses minimal HPWL 5.193 23.9 2.39 0.101
Memory Mapping2 2 PEs 2 buses Segmented buses minimal energy 6.107 6.186 1.76 0.149

0

0.2

0.4

0.6

0.8

1

1.2

Random block
ordering plus

optimizing 0.5
area+0.5 HPWL

Random block
ordering plus

activity aware
floorpalnning

Optimal block
ordering plus

optimizing 0.5
area+0.5 HPWL

Optimal block
ordering plus

activity aware
floorpalnning

area

energy

16.6%

44.6%

1 2 3 4

Activity aware
floorplanning gain

Block ordering gain

Fig. 6. Impact of block ordering and activity aware floorplanning, MPEG4
application driver

active transfer paths. The comparison of experiments 3 and 4,
reveals that impact of activity-aware floorplanning on the final
results is relative small (16.6% reduction). Thus, such a floor-
planning without an optimized block ordering decision does
not provide large energy gains. If the two optimization steps
are coupled efficiently, significant energy gains of a factor of
2.16 can be achieved for this design. The area degradation is
about 11%. We can conclude that the final network energy cost
is much more sensitive to block ordering (netlist topology) than
to the activity aware floorplanning techniques.

VII. CONCLUSIONS

We propose a novel automated approach that can implement
a hard macro block netlist interconnected by segmented buses
while minimizing the energy consumed in the communication
network. The results show that this approach can reduce the
communication network energy consumption by up to a factor
of 4 compared to a conventional physical design stage imple-
mented the netlist interconnected with a shared bus. And we
present that the energy consumption of the communication net-
work is high sensitive to the netlist topology decisions.

REFERENCES

[1] “Blast Chip 4.0 User Guide”, Magma Design Automation, Cupertino, CA
95014, pp.271-351, http://www.magma-da.com.

[2] “International technology roadmap for semiconductors 2001 Edition.”

[3] Chao Kai-yuan, D. F. Wong, “Floorplanning for low power designs,”
IEEE international Symposium on Circuits and Systems, Vol. 1, pp. 45-
48, May 1995.

[4] S. N. Adya and I. L. Markov, “Fixed-outline floorplanning through better
local search”, International Conference On Computer Design (ICCD),
pp. 328-333, 2001.

[5] J. M. Rabaey, Digital integrated circuits: a design perspective, Upper
Saddle River (N.J.): Prentive Hall, 2003.

[6] A. Papanikolaou, K. Koppenberger, M. Miranda, F. Catthoor, Memory
communication network exploration for low-power distributed memory
organisations, Proc. IEEE Wsh. on Signal Processing Systems (SIPS),
Austin TX, IEEE Press, pp.176-181, Oct. 2004.

[7] Hu Jingcao, Deng Yangdong, R.Marculesu “System-level point-to-point
communication synthesis using floorplanning information”, ASP-DAC,
pp. 573-579, 2002.

[8] Hua Wang, A. Papanikolaou, M. Miranda, F.Catthoor, “A global bus
power optimization methodology for physical design of memory dom-
inated systems by coupling bus segmentation and activity driven block
placement”, ASP-DAC, pp. 759-761, 2004.

[9] J. Y. Chen et al., “Segmented bus design for low-power system”, IEEE
Trans. VLSI Syst pp. 25-29 Mar 1999.

[10] I. Hui-Ru Jiang, Yao-Wen Chang, Jing-Yang Jou, Kai-Yuan Chao, “Si-
multaneous floorplanning and buffer block planning”, ASP-DAC, pp.
431-434, 2003.

[11] Hua Xiang, Xiaoping Tang, M. D. F. Wong, “Bus-Driven floorplanning”,
ICCAD, pp. 66-73, 2003.

[12] M. A. Jimenez and M. Shanblatt, “Integrating a low-power objective into
the placement of macro block-based layouts”, Proceedings of the 44th
IEEE 2001 Midwest Symposium on Circuits and Systems, Vol 1 , pp. 14-
17 Aug 2001.

[13] P. Prabhakaran P. Banerjee, J. Crenshaw, M. Sarrafzadeh, “Simultaneous
scheduling, binding and floorplanning for interconnect power optimiza-
tion”, Proceedings of VLSI Design, pp. 423 - 427, 1999 .

[14] A.Papanikolaou, F.Starzer, M.Miranda, F.Catthoor, K.De Bosschere,
“Architectural and physical design optimizations for effi cient intra-tile
communication”, Proc. Intnl. System-on Chip Symp. (SoC), Tampere,
Finland, pp.-, Nov. 2005.

[15] P. Panda, F. Catthoor, N. Dutt, K. Danckaert, E. Brockmeyer, C. Kulka-
rni, A.Vandecappelle, P.G.Kjeldsberg, “Data and memory optimizations
for embedded systems”, on Design Automation for Embedded Systems
(TODAES), Vol.6, No.2, pp.142-206, April 2001.

[16] K. Heyrman, A. Papanikolaou, F. Catthoor, P. Veelaert, W. Philips “En-
ergy costs of transporting switch control bits for a segmented bus’, Pro-
ceeding of proRISC 2005.

[17] E. Brockmeyer, J. D’Eer, F. Catthoor, N. Busa, P. Lippens, J. Huisken,
Code transformations for reduced data transfer and storage in low power
realization of DAB synchro core Proc.IEEE Wsh. on Power and Timing
Modeling, Optimization and Simulation (PATMOS), Kos, Greece, pp.51-
60, Oct. 1999.

[18] STBus specifi cations http://www.stmcu.com/inchtml-pages-
STBus intro.html

[19] ARM AMBA bus specifi cation
http://www.arm.com/armwww.ns4/html/AMBA?OpenDocument

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

