
Task Placement Heuristic Based on 3D-Adjacency and Look-Ahead in
Reconfigurable Systems

Abstract- To get efficient HW management in 2D
Reconfigurable Systems, heuristics are needed to select the best
place to locate each arriving task. We propose a technique that
locates the task next to the borders of the free area for as many
cycles as possible, trying to minimize the area fragmentation.
Moreover, we combine it with a look-ahead heuristic that allows
delaying the scheduling of a task to the next event, increasing
the solution search space.

I. Introduction

Current multimedia systems have a very dynamic
behaviour. Moreover, sometimes the user wants to upgrade
their functionality by loading new applications. Traditional
platforms based on processors are not able to provide the
needed performance, whereas ASICs lack flexibility to deal
with such a changing environment.

A technology that lies between processors and ASICs is
reconfigurable hardware. It participates of the flexibility of
processors and, at the same time, it is able to offer very good
results in terms of performance. In recent years this
flexibility has increased with the possibility of partially
reconfiguring the hardware at run time [1]. This allows
changing the functionality of a digital system under user
demand, as multimedia applications require. It also allows
true hardware multitasking through space multiplexing.

In order to use all these capabilities, the functionality of
the operating system must be increased to manage this kind
of resources. In [2] some of the main problems of designing
such an operating system are outlined.

One of the most interesting problems is to decide where to
locate the bitmap of a new task in the FPGA when it must be
run. A data structure is needed that maintains information
about the available free area, and the algorithm must choose
the best place to locate the arriving task, trying to use the
reconfigurable area as efficiently as possible.

Our algorithm chooses the best location for an arriving
task trying to minimize the fragmentation that this mapping
will produce. The fragmentation of the free area is an indirect

measure of the probability of finding a suitable location for a
new task in the FPGA in the near future.

The rest of the paper is organized as follows. Section II
reviews related work in this field. Section III presents the
algorithm for area management. Section IV describes the
heuristics used to select a location for an arriving task. And
finally, in sections V and VI some experimental results and
conclusions are presented.

II. Related work

Task allocation, free space management and area
fragmentation are fundamental problems of managing 2D
reconfigurable resources. They have been dealt with recently
by several research teams.

Diessel et al. [3] have developed a quad-tree structure to
store the information of the available FPGA area. Such
structure can be travelled and updated quite fast, but it does
not guarantee that an adequate place is found, even if there is
enough area to store the task, but split among different
branches of the tree. This solution does not take into account
the resultant free area fragmentation to select the position
where the task is mapped to. On the contrary, it deals with
fragmentation by proposing several high-cost
defragmentation processes.

Bazargan et al. [4] deal with the area allocation problem
by using a bin-packing approach and applying some of the
classical algorithms for such theoretical problem. They
propose several strategies for on-line 2D bin-packing of the
arriving rectangular tasks. These strategies differ mainly in
the way the free area is managed. One of them keeps track of
all the maximum empty rectangles (MER) where an arriving
task could be placed. Such approach guarantees that, if an
adequate place exists, it can be found, but at the cost of a
very high complexity. A second approach tries to use
heuristics in order to reduce the number of rectangles
considered when updating the rectangle list. When a free
rectangle is selected to store the arriving task, the excess area

Jesús Tabero

Dept. Programas Espaciales
Instituto Nacional de Técnica Aeroespacial

Madrid 28850, Spain
Tel : +34-91-520-1693
Fax : +34-91-520-1492

taberogj@inta.es

Julio Septién, Hortensia Mecha, Daniel Mozos

Dept. Arquitectura de Computadores y Automatica
Universidad Complutense de Madrid

Madrid 28040, Spain
Tel : +34-91-394-7617/18/19

Fax : +34-91-394-7527
{jseptien,horten,mozos}@dacya.ucm.es

is divided in only two, non-overlapping, new rectangles.
Bazargan offers several criteria to do this splitting, but does
not decide clearly for one of them. Anyway, by selecting
some of the possible rectangles, situations can arise where
existing room cannot be used to store a task, because it is
split among several rectangles.

Walder et al. propose in [5] an enhanced version of
Bazagan’s partitioner with the same efficiency but improved
placement quality. This enhanced method delays the basic
vertical/horizontal split decision and manages overlapping
rectangles in a restricted form. They also present a hash
matrix approach to find a placement in constant time, but the
updating of this structure is very time consuming.

Ahmadinia et al. [6] present another version of Bazagan´s
partitioner, managing the occupied area instead of the free
area, so in most cases the number of rectangles is much
lower, though the complexity order is the same. The heuristic
used to allocate a task tries to minimize the distance to the
tasks it communicates with. But it does not take into account
the area fragmentation, nor time or data constraints during
scheduling.

Handa et al. [7] present a fast algorithm for finding empty
space in a FPGA which uses a staircase data structure to
report the empty area in the form of a list of MER. The
search of such structure has a complexity order of O(m*n)
where m and n are the number of columns and rows
respectively, but there is no details of the MER selection
criterion, and the complexity of the task placement algorithm
is not considered.

III. Vertex-List Based Area Management

Our approach to reconfigurable HW management keeps
track of the available FPGA free area with a vertex-list
structure that has been described in detail in [8]. Such
structure can be travelled with different heuristics in order to
choose the vertex where the arriving tasks will be placed.

As fig.1 shows, we use a 2D FPGA model, an
homogeneous two dimensional grid formed by W*H basic
reconfigurable blocks, that we will use as “area units” all
along. We suppose that each basic block includes processing
elements as well as I/O resources. The FPGA has also some
dedicated resources to manage the task I/O. A task can be
made of an arbitrary number of such basic blocks, but always
with a rectangular shape. The tasks are relocatable and can
be inserted at arbitrary row and column offsets. The tasks are
independent, with no data constrains between them, but there
can be real-time constrains that must be satisfied.

Each task is defined by the following parameters: Ti = {
wi, hi, t_exi, t_arri, t_maxi }, where wi and hi indicate the
task size, t_exi is the task execution time, t_arri the task
arrival time and t_maxi the maximum time allowed for the
task to finish execution. Therefore, the task Ti can’t be
scheduled later than t_maxi - t_exi .

Fig. 1 summarizes the operation of our HW manager, that
consists of three main modules, the Task Scheduler, the
Vertex Selector and the Vertex List Updater, and uses three

FPGA

Vertex List

VL1

HW ManagerHW Manager

Running task list-Lr
t1 t2 t3

Waiting task queue-Qw

BASIC BLOCK

Processing
Elements

I/O Elements

Fig. 1. HW manager and vertex-list structure

important data structures, the Running Task List, Lr, the
Waiting Task Queue, Qw, and the Vertex List Set, VLS, that
describes all the available FPGA free space, with a different
Vertex-List VLi for each FPGA free hole.

The Free Area Fragmentation Analizer is a module that
computes the fragmentation of the FPGA free area for a
given FPGA status, by using a new fragmentation metrics
described in detail in section IV. This value can be used
either by the HW Manager to perform a defragmentation
process, or by the Vertex Selector Module if a fragmentation-
based heuristic is used.

When a new task (an arriving or waiting task) is
considered, the Task Scheduler calls the Vertex Selector to
check whether a feasible position exists where the task could
be mapped to. The vertex is chosen among the candidates
according to the selected heuristic. The candidates can be of
several types: bottom-left (BL), bottom-right (BR), top-left
(TL) or top-right (TR). Then the task is inserted and the VLS
is updated by the Vertex List Updater accordingly. When a
task ends, the VLS is also updated, and different special
situations such as hole merging or island managing, that are
described in detail in [8], must be dealt with. If there is no
place for an arriving task, the task is temporally stored at the
queue Qw, and if timeout happens it is discarded.

IV. Heuristics for Location Selection

An heuristic is used to choose a given vertex among all
the feasible candidates to locate the task. A simple approach
based on a First-Fit criterion was proposed in [8]. A more
efficient alternative was presented in [9], with a Best-Fit
approach based on a cost function computed with a task-
adjacency criteria. We also presented a fragmentation metric
that was used to evaluate the quality of the FPGA status at
any given time. A 2D-Adjacency example is shown in Fig.
2a.

Fig. 2. 2D-Adjacency (a) and 3D-Adjacency (b)

What we are proposing now is a new alternative, where
the cost function considers not only 2D-spatial adjacency,
but also temporal adjacency. Then we will develop a look-
ahead heuristic based on this 3D-adjacency cost function that
will give even better experimental results.

A. 2D-Adjacency Heuristic

This heuristic inserts the task at the vertex position where
the arriving task achieves the higher contact level between
the new task borders and the envelope defined by the VLi.
The adjacency is computed in terms of block-length units.
This heuristic was presented in [9], and an example is shown
in Fig. 2a, where the adjacency value obtained when T3 is
placed next to T1 and T2 is of 12 units.

B. 3D-Adjacency Heuristic

This heuristic is an evolution of the 2D-Adjacency
heuristic described above, but extended to the time axis.
Considering the FPGA as a bin and the tasks as smaller
boxes, with time as vertical axis, the algorithm tries to pile
up the new box as close as possible to the rest of boxes
already in the FPGA or to the FPGA borders. This heuristic
is similar to the one we would use in the real world to place
the boxes inside the bin. This approach is shown in Fig. 2b,
where the 3D-adjacency value obtained when T3 is placed
next to T1 and T2 is now of 36 units (6x4+6x2).

To take this into account, it is necessary to store a new
value for each edge of the vertex list: the remaining
execution time of the task the edge belongs to, a kind of
“edge lifetime”. In order to simplify, if an edge belongs to
several adjacent tasks, the one with the shortest remaining
time is chosen as lifetime for the whole edge.

The 3D adjacency is then computed as the sum of the
length of the new task in contact with each adjacent edge,
multiplied by the temporal adjacency between the new task
and the edge. This temporal adjacency is the minimum
between the edge’s lifetime and the t_ex of the arriving task.
When the arriving task is in touch with any edge of the
FPGA perimeter, then t_ex of the arriving task is considered.
Thus, when it is possible at the current time, the task will be
preferably placed next to FPGA borders, or to other long-life
tasks.

V6

V4

V3

V1

FPGA 2D VIEW

3D-Adj-V2(BL)=7*150+7*50 3D-Adj-V3(BL)=5*50+3*100

3D-Adj-V5(TL)=7*150+7*150 3D-Adj-V6(TR)=7*150+7*150

T3
150

T3
150

T3
150

T3
150

3D-Adj-V1(BR)=7*150+7*150

3D-Adj-V4(BL)=7*100+7*150

T3
150

T3
150

V2

V5

Time

CT+100

CT+50

CT+150

X

Y

V1

V6

V4
V3

V2
FPGA 3D VIEW

CT
V1

V5

T2
50

T1
100

T2
50

T1
100

T2
50

T1
100

T2
50

T1
100

T2
50

T1
100

T2
50

T1
100

∞

∞

∞

∞
50

50
100

100

Fig. 3. 3D-Adjacency Heuristic computation

Fig. 3 shows this concept using an FPGA with two
running tasks T1 and T2. When T3 arrives, with a size of 7*7
basic cells and a t_ex value of 150 time units, the HW
Manager tries to schedule it at CT (Current Time). The 3D-
adjacency value for all the candidates vertex is calculated as
it is shown in the figure. Therefore the new task T3 will be
inserted on the candidate vertex V1, the first one where the
3D-adjacency value is maximum.

Fig. 4 shows a simple example to illustrate the behavior of
the heuristic. The FPGA initial status is shown on top. There
are four currently running tasks, with their remaining
execution time shown inside, and the corresponding VL.
When a new task, of 3*4 basic cells and a t_ex value of 150
time units arrives, this approach computes the 3D-adjacency
value for each feasible candidate position. As it can be seen,
this heuristic would place the task at candidate A (B is
equivalent).

We can analyse the quality of the decisions taken by the
3D-Adjacency heuristic by using the fragmentation metric
proposed in [8], where the fragmentation level of the free
area for a given FPGA status was estimated as follows:

F = 1 - Πi [(4/Vi) * (Ai/AF)]

where the term between brackets represents a kind of
suitability for each free hole i, with area Ai and Vi vertices, to
accommodate future tasks, while AF stands for the whole
free area in the FPGA.

New Task 3*4 VertexList

125100
75

T=150

A (BR) – B (BL)
3D-Adj = 1075

C (BL)
3D-Adj = 450

D (BL)
3D-Adj = 825

E (TL)
3D-Adj = 1050

F (TR)
3D-Adj = 825

T=CT+75

A-B Fragmentation=0,66 C Fragmentation= 0,92 D Fragmentation=0,75 E Fragmentation=0,71 F Fragmentation=0,71

T= CT+75 T= CT+75 T= CT+75 T= CT+75

T= CT+100 T= CT+100 T= CT+100 T= CT+100 T= CT+100

125

A-B Fragmentation=0,6 C Fragmentation= 0,71 D Fragmentation=0,71 E Fragmentation=0,66 F Fragmentation=0,66

AB
C

D

E F

Fig. 4. 3D Adyacency heuristic example

The task insertion at candidate A, the one selected by the
3D-Adjacency heuristic, leads to future FPGA states with
lowest fragmentation values, according to our metric, at
different simulation steps. When currently running tasks
finish execution at T=CT+75 and at T=CT+100, the
fragmentation obtained for candidate A is the lowest, as it
can be seen in fig. 4 where this fragmentation value is
labelled at the bottom of each feasible candidate position.

C. Look-ahead 3D Heuristic

This heuristic uses the 3D-adjacency value, computed as it
was described earlier, but in this approach this value is
calculated for all feasible candidates at both the current
simulation time and at the next event time (when the next
task-end happens), performing thus a one-level look-ahead
scheduling. The idea is that we could get a better 3D-
adjacency value for a location only available in the near
future.

However, sometimes it is not possible to perform this
look-ahead calculation, if the new task must be scheduled
before any running task can exit the FPGA, due to its timeout
t_maxi.

Fig.5 shows a comparative between 3D-Adjacency (3D-
Ad) and Look-Ahead-3D (LA-3D) heuristics behavior, when
two new tasks, T3 and T4, arrive simultaneously.

We have considered a 20*20 FPGA, with two currently
running tasks defined by the tuple of parameters (described
in section III): T1={12,12,6,98,110} and
T2={2,13,15,98,118}, placed at bottom-left and top-right
FPGA corners respectively.

Fig. 5. a) 3D-Ad Heuristic b) LA-3D Heuristic

Let us suppose T3={6,11,8,100,120} is processed then.
The 3D-Ad heuristic would give at current simulation time,
CT=100, a maximum value for TR candidate vertex at
coordinates X=18, Y=20. In the other hand, the LA-3D
heuristic would also compute the 3D-adjacency value at the
next event time, and would place T3 at the BL candidate at
coordinates X=0, Y=0, at Time=104 when T1 finishes
execution (fig. 5b).

When T4={3,10,21,100,123} is processed, at CT=100
also, the 3D-Ad heuristic can not find a feasible candidate
and T4 would be rejected at Time =103 because of its t_max
value. On the contrary, LA-3D heuristic would find a
feasible candidate for T4 at X=18, Y=20 which satisfies its
real-time constrains.

V. Experimental Results

To evaluate the quality of our new approaches, we have
made experiments using four different algorithms for area
management:

a. Classical FF with BL heuristic(FF_BL). When a
new task arrives to the FPGA, it performs an
exhaustive search through the block matrix, from
left to right and from bottom to top, in order to find
a feasible location for the arriving task.

b. Vertex List with BF_2D-Adjacency heuristic (2D-
Ad). Presented in [9].

c. Vertex List with BF-3D-Adjacency heuristic (3D-
Ad).

d. Vertex List with BF_LA-3D-Adjacency heuristic
(LA-3D).

These four algorithms have been tested with a simulated
FPGA of 100*100 basic blocks, and different data sets of
100 tasks each. They have been randomly generated with a
task size range and ratio, similar to others found in many
multitasking environments. Table 1 shows these data sets
which have been classified in three classes, considered as
representative scenarios, depending on the task size ranges
and their temporal features.

TABLE I
Data set classes

Data
Sets

Min.
task
area

Max.
task
area

Data Set features

D1, D2 5*5 40*40
Low arrival frequency
 Low execution time

Low task size

D3, D4 10*10 50*50
Medium arrival frequency
Medium execution time

Medium task size

D5, D6 10*10 60*60
High arrival frequency
High execution time

High task size

We have used two different parameters to evaluate the
results obtained. Table 2 includes for each data set, the
percentage of the computing volume rejected for each
algorithm. This volume represents all the tasks that were
rejected because the manager was not able to find a proper
location in time to meet the task’s time constraint. For each
task, the volume is the product of the task area multiplied by
its execution time. The other parameter shown in table 2 is
the average FPGA occupation maintained by each algorithm
when processing the different data sets.

Figure 6 shows the detailed and the average computing
volume rejected by the four algorithms, respectively. 3D-
Adjacency and LA-3D-Adjacency show better performance
than the others. Moreover, LA-3D is able to execute all the
tasks, giving a zero value for these parameters in all data
sets. Also LA-3D produces the best average occupation level
as it is shown in fig. 7.

TABLE II
Experimental results

% Computing Volume
Rejected

% Average Occupation
Level

Data
Set

FF
-B

L

2D
-A

dj

3D
-A

dj

LA
-3

D
-A

dj

FF
-B

L

2D
-A

dj

3D
-A

dj

LA
-3

D
-A

dj

D1 8,4 1,5 0 0 22,6 24,5 24,9 24,9
D2 8,5 5,8 2,4 0 28,8 29,6 30,7 31,4
D3 4,5 7,8 4,3 0 35,2 32,9 35,2 36,6
D4 9,5 2,2 5,6 0 32,9 35,05 34,2 36,1
D5 3,32 11,5 0 0 38,7 34,2 40 40
D6 14,9 14,5 1,9 0 41,4 42,1 48 48,7

%

0
2
4
6
8

10
12
14
16

FF-BL

2D-Adjacency

3D-Adjacency

LA-3D-Adjacency

 D1 D2 D3 D4 D5 D6 Average

Fig. 6. Detailed and Average Computing Volume Rejected
(Percentage)

%

31

32

33

34

35

36

37

FF-BL

2D-Adjacency

3D-Adjacency

LA-3D-Adjacency

 Fig. 7. Average FPGA Occupation Level (Percentage)

(ms)

0

500

1000

1500

2000

2500

FF_BL

BF_2D-Adjac

3D-Adjacenc

LA-3D-Adjacenc

 Fig. 8. Relative Average Execution Times

Finally, fig. 8 shows a comparative of the average
execution time of the algorithms for the different heuristics.
Logically 2D and 3D-Adjacency present the same values
because they have the same complexity, and LA-3D takes
almost twice this time, because it has to perform the same
computation at current time and at the next event time.
Finally FF_BL, being the algorithm with a higher complexity
order, spends much more time than the others.

VI. Conclusions

We have presented a new approach to HW multitasking
allocation, with an area manager that maintains the free area
with a vertex-list structure. As an adequate management of
the fragmentation problem has revealed itself crucial, our
heuristics tries to keep it as low as possible. This is done by
allocating the tasks next to the borders of the free area for as
many cycles as possible. This heuristic has produced very
good results in terms of FPGA area occupation and number
of task executed. Finally, we have proposed a look-ahead
heuristic that allows delaying the allocation of a task to the
next event in order to increase the solution search space. It
has clearly shown the best behavior.

Acknowledgements

This work has been supported by Spanish Government
research grant TIC2002-00160.

References

[1] K. Compton, S. Hauck, “Reconfigurable computing: a survey of
systems and software”, ACM Computing Surveys, Vol. 34, No.
2, pp 171-210. June 2002.

[2] O. F. Diessel, G. Wigley, "Opportunities for Operating Systems
Research in Reconfigurable Computing", Technical Report
ACRC-99-018. Advanced Computing Research Centre, School
of Computer and Information Science, University of South
Australia, 1999.

[3] O. F. Diessel, H. Elgindy, "On dynamic task scheduling for
FPGA-based systems", International Journal of Foundations of
Computer Science, IJFCS'01, Vol. 12, No. 5, 2001.

[4] K. Bazargan, R. Kastner, M. Sarrafzadeh, “Fast template
placement for reconfigurable computing systems”, IEEE Design
and Test of Computers, Vol. 17, pp 68–83, 2000.

[5] H. Walder, C. Steiger, M. Platzner, “Fast online task placement
on FPGAs: free space partitioning and 2D-Hashing”, IPDPS-
2003 (RAW’03), vol. 00, p. 178b, Munich, Germany, April
2003.

[6] A. Ahmadinia, C. Bobda, M. Bednara, J. Teich, “A new
approach for on-line placement on reconfigurable devices”,
IPDPS-2004 (RAW’04), vol. 04, nº4, p. 134a, 2004.

[7] Handa and R. Vemuri, "An efficient algorithm for finding empty
space for online FPGA placement," Design Automation
Conference, p. 960-965, San Diego, CA, June 2004.

[8] J. Tabero J. Septién, H. Mecha, D. Mozos, “A vertex-list
approach to 2D HW multitasking management in RTR FPGAs”,
DCIS 2003, Ciudad Real, Spain, pp. 545-550, Nov 2003.

[9]. J. Tabero J. Septién, H. Mecha, D. Mozos, “A low
fragmentation heuristic for task placement in 2D RTR HW
management”, FPL 2004, Antwerp, Belgium, pp. 241-250, Sep
2004

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

