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Reconfigurable Systems  

Abstract- To get efficient HW management in 2D 
Reconfigurable Systems, heuristics are needed to select the best 
place to locate each arriving task. We propose a technique that 
locates the task next to the borders of the free area for as many 
cycles as possible, trying to minimize the area fragmentation. 
Moreover, we combine it with a look-ahead heuristic that allows 
delaying the scheduling of a task to the next event, increasing 
the solution search space. 

I. Introduction 

Current multimedia systems have a very dynamic 
behaviour. Moreover, sometimes the user wants to upgrade 
their functionality by loading new applications. Traditional 
platforms based on processors are not able to provide the 
needed performance, whereas ASICs lack flexibility to deal 
with such a changing environment. 

A technology that lies between processors and ASICs is 
reconfigurable hardware. It participates of the flexibility of 
processors and, at the same time, it is able to offer very good 
results in terms of performance. In recent years this 
flexibility has increased with the possibility of partially 
reconfiguring the hardware at run time [1]. This allows 
changing the functionality of a digital system under user 
demand, as multimedia applications require. It also allows 
true hardware multitasking through space multiplexing. 

In order to use all these capabilities, the functionality of 
the operating system must be increased to manage this kind 
of resources. In [2] some of the main problems of designing 
such an operating system are outlined.  

One of the most interesting problems is to decide where to 
locate the bitmap of a new task in the FPGA when it must be 
run. A data structure is needed that maintains information 
about the available free area, and the algorithm must choose 
the best place to locate the arriving task, trying to use the 
reconfigurable area as efficiently as possible. 

Our algorithm chooses the best location for an arriving 
task trying to minimize the fragmentation that this mapping 
will produce. The fragmentation of the free area is an indirect 

measure of the probability of finding a suitable location for a 
new task in the FPGA in the near future.  

The rest of the paper is organized as follows. Section II 
reviews related work in this field. Section III presents the 
algorithm for area management. Section IV describes the 
heuristics used to select a location for an arriving task. And 
finally, in sections V and VI some experimental results and 
conclusions are presented.  

II. Related  work 

Task allocation, free space management and area 
fragmentation are fundamental problems of managing 2D 
reconfigurable resources. They have been dealt with recently 
by several research teams. 

Diessel et al. [3] have developed a quad-tree structure to 
store the information of the available FPGA area. Such 
structure can be travelled and updated quite fast, but it does 
not guarantee that an adequate place is found, even if there is 
enough area to store the task, but split among different 
branches of the tree. This solution does not take into account 
the resultant free area fragmentation to select the position 
where the task is mapped to. On the contrary, it deals with 
fragmentation by proposing several high-cost 
defragmentation processes. 

Bazargan et al. [4] deal with the area allocation problem 
by using a bin-packing approach and applying some of the 
classical algorithms for such theoretical problem. They 
propose several strategies for on-line 2D bin-packing of the 
arriving rectangular tasks. These strategies differ mainly in 
the way the free area is managed. One of them keeps track of 
all the maximum empty rectangles (MER) where an arriving 
task could be placed. Such approach guarantees that, if an 
adequate place exists, it can be found, but at the cost of a 
very high complexity. A second approach tries to use 
heuristics in order to reduce the number of rectangles 
considered when updating the rectangle list. When a free 
rectangle is selected to store the arriving task, the excess area 
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is divided in only two, non-overlapping, new rectangles. 
Bazargan offers several criteria to do this splitting, but does 
not decide clearly for one of them. Anyway, by selecting 
some of the possible rectangles, situations can arise where 
existing room cannot be used to store a task, because it is 
split among several rectangles. 

Walder et al. propose in [5] an enhanced version of 
Bazagan’s partitioner with the same efficiency but improved 
placement quality. This enhanced method delays the basic 
vertical/horizontal split decision and manages overlapping 
rectangles in a restricted form. They also present a hash 
matrix approach to find a placement in constant time, but the 
updating of this structure is very time consuming.  

Ahmadinia et al. [6] present another version of Bazagan´s 
partitioner, managing the occupied area instead of the free 
area, so in most cases the number of rectangles is much 
lower, though the complexity order is the same. The heuristic 
used to allocate a task tries to minimize the distance to the 
tasks it communicates with. But it does not take into account 
the area fragmentation, nor time or data constraints during 
scheduling. 

Handa et al. [7] present a fast algorithm for finding empty 
space in a FPGA which uses a staircase data structure to 
report the empty area in the form of a list of MER. The 
search of such structure has a complexity order of O(m*n) 
where m and n are the number of columns and rows 
respectively, but there is no details of the MER selection 
criterion, and the complexity of the task placement algorithm 
is not considered. 

III. Vertex-List Based Area Management 

Our approach to reconfigurable HW management keeps 
track of the available FPGA free area with a vertex-list 
structure that has been described in detail in [8]. Such 
structure can be travelled with different heuristics in order to 
choose the vertex where the arriving tasks will be placed.  

As fig.1 shows, we use a 2D FPGA model, an 
homogeneous two dimensional grid formed by W*H basic 
reconfigurable blocks, that we will use as “area units” all 
along. We suppose that each basic block includes processing 
elements as well as I/O resources. The FPGA has also some 
dedicated resources to manage the task I/O. A task can be 
made of an arbitrary number of such basic blocks, but always 
with a rectangular shape. The tasks are relocatable and can 
be inserted at arbitrary row and column offsets. The tasks are 
independent, with no data constrains between them, but there 
can be real-time constrains that must be satisfied.  

Each task is defined by the following parameters:  Ti = { 
wi, hi, t_exi, t_arri, t_maxi },  where wi  and hi indicate the 
task size, t_exi is the task execution time, t_arri  the task 
arrival time and t_maxi the maximum time allowed for the 
task to finish execution. Therefore, the task Ti can’t be 
scheduled later than  t_maxi - t_exi .

Fig. 1 summarizes the operation of our HW manager, that 
consists of three main modules, the Task Scheduler, the 
Vertex Selector and the Vertex List Updater, and uses three  
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Fig. 1. HW manager and vertex-list structure 

important data structures, the Running Task List, Lr, the 
Waiting Task Queue, Qw, and the Vertex List Set, VLS, that 
describes all the available FPGA free space, with a different 
Vertex-List VLi for each FPGA free hole. 

The Free Area Fragmentation Analizer is a module that 
computes the fragmentation of the FPGA free area for a 
given FPGA status, by using a new fragmentation metrics 
described in detail in section IV. This value can be used 
either by the HW Manager to perform a defragmentation 
process, or by the Vertex Selector Module if a fragmentation-
based heuristic is used. 

When a new task (an arriving or waiting task) is 
considered, the Task Scheduler calls the Vertex Selector to 
check whether a feasible position exists where the task could 
be mapped to. The vertex is chosen among the candidates 
according to the selected heuristic. The candidates can be of 
several types: bottom-left (BL), bottom-right (BR), top-left 
(TL) or top-right (TR). Then the task is inserted and the VLS 
is updated by the Vertex List Updater accordingly. When a 
task ends, the VLS is also updated, and different special 
situations such as hole merging or island managing, that are 
described in detail in [8], must be dealt with. If there is no 
place for an arriving task, the task is temporally stored at the 
queue Qw, and if timeout happens it is discarded. 

IV.  Heuristics for Location Selection 

An heuristic is used to choose a given vertex among all 
the feasible candidates to locate the task. A simple approach 
based on a First-Fit criterion was proposed in [8]. A more 
efficient alternative was presented in [9], with a Best-Fit 
approach based on a cost function computed with a task-
adjacency criteria. We also presented a fragmentation metric 
that was used to evaluate the quality of the FPGA status at 
any given time.  A 2D-Adjacency example is shown in Fig. 
2a. 



Fig. 2.  2D-Adjacency  (a) and 3D-Adjacency (b) 

What we are proposing now is a new alternative, where 
the cost function considers not only 2D-spatial adjacency, 
but also temporal adjacency. Then we will develop a look-
ahead heuristic based on this 3D-adjacency cost function that 
will give even better experimental results. 

A.  2D-Adjacency Heuristic

This heuristic inserts the task at the vertex position where 
the arriving task achieves the higher contact level between 
the new task borders and the envelope defined by the VLi.
The adjacency is computed in terms of block-length units. 
This heuristic was presented in [9], and an example is shown 
in Fig. 2a, where the adjacency value obtained when T3 is 
placed next to T1 and T2 is of 12 units. 

B.  3D-Adjacency Heuristic

This heuristic is an evolution of the 2D-Adjacency 
heuristic described above, but extended to the time axis. 
Considering the FPGA as a bin and the tasks as smaller 
boxes, with time as vertical axis, the algorithm tries to pile 
up the new box as close as possible to the rest of boxes 
already in the FPGA or to the FPGA borders. This heuristic 
is similar to the one we would use in the real world to place 
the boxes inside the bin. This approach is shown in Fig. 2b, 
where the 3D-adjacency value obtained when T3 is placed 
next to T1 and T2 is now of 36 units (6x4+6x2). 

To take this into account, it is necessary to store a new 
value for each edge of the vertex list: the remaining 
execution time of the task the edge belongs to, a kind of 
“edge lifetime”. In order to simplify, if an edge belongs to 
several adjacent tasks, the one with the shortest remaining 
time is chosen as lifetime for the whole edge. 

The 3D adjacency is then computed as the sum of the 
length of the new task in contact with each adjacent edge, 
multiplied by the temporal adjacency between the new task 
and the edge.  This temporal adjacency is the minimum 
between the edge’s lifetime and the t_ex of the arriving task. 
When the arriving task is in touch with any edge of the 
FPGA perimeter, then t_ex of the arriving task is considered. 
Thus, when it is possible at the current time, the task will be 
preferably placed next to FPGA borders, or to other long-life 
tasks. 
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Fig. 3. 3D-Adjacency Heuristic computation 

Fig. 3 shows this concept using an FPGA with two 
running tasks T1 and T2. When T3 arrives, with a size of 7*7 
basic cells and a t_ex value of 150 time units,  the HW 
Manager tries to schedule it at CT (Current Time). The 3D-
adjacency value for all the candidates vertex is calculated as 
it is shown in the figure. Therefore the new task T3 will be 
inserted on the candidate vertex V1, the first one where the 
3D-adjacency value is maximum. 

Fig. 4 shows a simple example to illustrate the behavior of 
the heuristic. The FPGA initial status is shown on top. There 
are four currently running tasks, with their remaining 
execution time shown inside, and the corresponding VL. 
When a new task, of 3*4 basic cells and a t_ex value of 150 
time units arrives, this approach computes the 3D-adjacency 
value for each feasible candidate position. As it can be seen, 
this heuristic would place the task at candidate A  (B is 
equivalent). 

We can analyse the quality of the decisions taken by the 
3D-Adjacency heuristic by using the fragmentation metric 
proposed in [8], where the fragmentation level of the free 
area for a given FPGA status was estimated as follows: 

F = 1  - Πi  [ (4/Vi) * (Ai/AF)]

where the term between brackets represents a kind of  
suitability for each free hole i, with area Ai and Vi vertices, to 
accommodate future tasks, while AF stands for the whole 
free area in the FPGA. 
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The task insertion at candidate A, the one selected by the 
3D-Adjacency heuristic, leads to future FPGA states with 
lowest fragmentation values, according to our metric, at 
different simulation steps. When currently running tasks 
finish execution at T=CT+75 and at T=CT+100, the 
fragmentation obtained for candidate A is the lowest, as it 
can be seen in fig. 4 where this fragmentation value is 
labelled at the bottom of each feasible candidate position.  

C. Look-ahead  3D Heuristic

This heuristic uses the 3D-adjacency value, computed as it 
was described earlier, but in this approach this value is 
calculated for all feasible candidates at both the current 
simulation time and at the next event time (when the next 
task-end happens), performing thus a one-level look-ahead 
scheduling. The idea is that we could get a better 3D-
adjacency value for a location only available in the near 
future. 

However, sometimes it is not possible to perform this 
look-ahead calculation, if the new task must be scheduled 
before any running task can exit the FPGA, due to its timeout 
t_maxi.

Fig.5 shows a comparative between 3D-Adjacency (3D-
Ad) and Look-Ahead-3D (LA-3D) heuristics behavior, when 
two new tasks, T3 and T4, arrive simultaneously.  

We have considered a 20*20 FPGA, with two currently 
running tasks defined by the  tuple of parameters (described 
in section III): T1={12,12,6,98,110} and 
T2={2,13,15,98,118}, placed at bottom-left and top-right 
FPGA corners respectively. 

Fig. 5. a) 3D-Ad Heuristic             b) LA-3D Heuristic

Let us suppose T3={6,11,8,100,120} is processed then. 
The 3D-Ad heuristic would give at current simulation time, 
CT=100, a maximum value for TR candidate vertex at 
coordinates X=18, Y=20. In the other hand, the LA-3D 
heuristic would also compute the 3D-adjacency value at the 
next event time, and would place T3 at the BL candidate at 
coordinates X=0, Y=0, at Time=104 when T1 finishes 
execution (fig. 5b).  

When T4={3,10,21,100,123} is processed, at CT=100 
also, the 3D-Ad heuristic can not find a feasible candidate 
and T4 would be rejected at Time =103 because of its t_max 
value. On the contrary, LA-3D heuristic would find a 
feasible candidate for T4 at X=18, Y=20 which satisfies its 
real-time constrains. 

V.  Experimental Results 

To evaluate the quality of our new approaches, we have 
made experiments using four different algorithms for area 
management: 

a. Classical FF with BL heuristic(FF_BL). When a 
new task arrives to the FPGA, it performs an 
exhaustive search through the block matrix, from 
left to right and from bottom to top, in order to find 
a feasible location for the arriving task.  

b. Vertex List with BF_2D-Adjacency heuristic (2D-
Ad). Presented in [9]. 

c. Vertex List with BF-3D-Adjacency heuristic (3D-
Ad).  

d. Vertex List with BF_LA-3D-Adjacency  heuristic 
(LA-3D).  

These four algorithms have been tested with a simulated 
FPGA of 100*100 basic blocks, and different data sets of 
100 tasks each. They have been randomly generated with a 
task size range and ratio, similar to others found in many 
multitasking environments. Table 1 shows these data sets 
which have been classified in three classes,  considered as 
representative scenarios, depending on the task size ranges 
and their temporal features. 



TABLE I
Data set classes 

Data 
Sets 

Min. 
task 
area

Max. 
task 
area

Data Set features 

D1, D2 5*5 40*40 
Low arrival frequency 
 Low execution time 

Low task size 

D3, D4 10*10 50*50 
Medium arrival frequency 
Medium execution time 

Medium task size 

D5, D6 10*10 60*60 
High arrival frequency 
High execution time 

High task size 

We have used two different parameters to evaluate the 
results obtained. Table 2 includes for each data set, the 
percentage of the computing volume rejected for each 
algorithm. This volume represents all the tasks that were 
rejected because the manager was not able to find a proper 
location in time to meet the task’s time constraint. For each 
task, the volume is the product of the task area multiplied by 
its execution time. The other parameter shown in table 2 is 
the average FPGA occupation maintained by each algorithm 
when processing the different data sets. 

Figure 6 shows the detailed and the average computing 
volume rejected by the four algorithms, respectively. 3D-
Adjacency and LA-3D-Adjacency show better performance 
than the others. Moreover, LA-3D is able to execute all the 
tasks, giving a zero value for these parameters in all data 
sets. Also LA-3D produces the best average occupation level 
as it is shown in fig. 7. 

TABLE II
Experimental  results

% Computing Volume 
Rejected 

% Average Occupation 
Level 

Data 
Set 

FF
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D
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FF
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2D
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D1 8,4 1,5 0 0 22,6 24,5 24,9 24,9 
D2 8,5 5,8 2,4 0 28,8 29,6 30,7 31,4 
D3 4,5 7,8 4,3 0 35,2 32,9 35,2 36,6 
D4 9,5 2,2 5,6 0 32,9 35,05 34,2 36,1 
D5 3,32 11,5 0 0 38,7 34,2 40 40 
D6 14,9 14,5 1,9 0 41,4 42,1 48 48,7 
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Finally, fig. 8 shows a comparative of the average 
execution time of the algorithms for the different heuristics. 
Logically 2D and 3D-Adjacency present the same values 
because they have the same complexity, and LA-3D takes 
almost twice this time, because it has to perform the same 
computation at current time and at the next event time. 
Finally FF_BL, being the algorithm with a higher complexity 
order, spends much more time than the others. 



VI.   Conclusions 

We have presented a new approach to HW multitasking 
allocation, with an area manager that maintains the free area 
with a vertex-list structure. As an adequate management of 
the fragmentation problem has revealed itself crucial, our 
heuristics tries to keep it as low as possible. This is done by 
allocating the tasks next to the borders of the free area for as 
many cycles as possible. This heuristic has produced very 
good results in terms of FPGA area occupation and number 
of task executed. Finally, we have proposed a look-ahead 
heuristic that allows delaying the allocation of a task to the 
next event in order to increase the solution search space. It 
has clearly shown the best behavior. 
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