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Abstract - this paper proposes the use of a high-level architecture explo-
ration method for different MPEG4 video encoders using different
customization parameters. The targeted architecture is a heterogeneous
MP-SoC which may include up 2 coarse grain SIMD (task level SIMD)
subsystems to perform the computations. The customization parameters
are related to video resolution, frame rate, Communication Network,
level of parallelism and CPU types. These parameters are determined
during the high-level architecture exploration, by estimating the archi-
tecture performances at early stages of the design flow. Experiments
shows that the error factor of these high-level performances estimations
are less than 10% compared to those obtained with final manually
implemented RTL architecture. This method was used successfully for
exploration of different MPEG4 architecture configurations with differ-
ent customization parameters. We consider these experiments a break-
through because they show how a complex design can be mastered
through a set of pragmatic choices.

Keywords – Multiprocessors SOC architecture, Video encoder, MPEG4,
Architecture exploration, Customization

I. Introduction

Video encoding is widely included in most of consumer, multi-
media, mobile and telecommunication applications [1], and becomes
a key technology for many future applications. These different
applications impose different constraints on the encoding parameters
(i.e. video resolution) and on the resulting design (cost, speed and
power). Even if MPEG4 is an accepted common standard for most
embedded systems domains, a plethora of MPEG4 architectures
exist today to comply with different applications [2].

MPEG4 requires a huge amount of computations, and thus needs
parallel computations and hardware accelerations. Encoding for
digital cinema system (HDTV 1920x1080 video resolution) using
full motion search, it requires 32TIPS (Tera Instructions Per Second,
1012) as computation power. This corresponds to a generic platform
with 32000 RISC processors running at 1 GHz in parallel. Current
technology doesn’t allow such integration, and such design is diffi-
cult to program and debug [3]. This implies an expensive design
process, and it’s out of reach of many applications domains.

Implementing an MP-SoC architecture until the RTL level, start-
ing from a wrong set of ad-hoc parameters (i.e. CPUs number or
communication topology) might turn out to be very costly. Each
modification of parameters, will lead to the need of expensive modi-
fications (which might also lead to a deteriorated final result, be-
cause new bugs may result after these “forced” modifications). In
the worst case, it might require a complete redesign of the architec-
ture. Very few products may justify such design budget, and the
only working solution to get video encoding for low cost products
(such as consumers) is to reduce the design cost of the product. The
key solution to reduce the design cost is to explore the architecture
at high-level, before the low-level architecture is implemented.

This paper proposes an efficient high-level architecture explora-
tion method for different MPEG4 video encoders, using different
customization parameters. This work concentrates only on perform-
ance estimations in term of speed.

A. Solution space for MPEG4 encoder on MP-SoC

Implementations of MPEG4 video encoder on MP-SoC can be
applied in multiple domains: video surveillance, camera recorders,
mobile telecommunications, home entertainment, etc. Each of them
requires specific architecture configurations, and imposes their own
constraints in term of speed, power and chip surface. Finding the
final implementation solution requires adjusting a large number of
parameters. These parameters can be split into two categories:

1) Standard MPEG4 Algorithm parameters are related specifi-
cally to the algorithm functionality: video resolution, frame rate,

bitrate, quantization range, quantization type, motion estimation
precision, motion search area, progressive/interlaced encoding, key
frame rate, scene change detection, etc [4]. As it will be shown later
in this paper, these algorithm parameters are not sufficient for im-
plementing the MPEG4 video encoder on MP-SoC. To be able to
implement the MPEG4 video encoder on a parallel architecture, the
algorithm should be able to be easily parallelized / pipelined, by
adding parameters for parallelism/pipelining support.

2) Architecture parameters are related to the targeted MP-SoC
architecture: number of CPUs to be used, type of CPUs, HW-SW
partitioning, communication topology, blocking/non-blocking pro-
tocol, arbitration type, message sizes, data width, maximum allowed
data transfer latency, transfer initialization latency, etc.

B. Classical exploration flow

In classical exploration flows [5][6][7][8] (Fig.1a) , the designer
implements the Algorithm Specifications starting from a set of al-
ready chosen Algorithm Configurations. After that, the Architecture
Specifications is implemented, which should match with the Algo-
rithm Specifications. In the end, the Algorithm Specifications and
Architecture Specifications are combined, to obtain an Algo-
rithm/Architecture Executable Model. This model simulates the
algorithm and architecture running together, and it’s used for Per-
formance Estimations. If these estimations are not satisfying the
requirements, the designer has to modify/redesign the algorithm
and/or architecture specifications. This flow has some weak points:

a) The exploration space is highly reduced. The reason is that
when having to change the algorithm and/or architecture specifica-
tions, the only things which can be changed is related to the parallel-
ism/pipelining functionality of the algorithm on the architecture,
some mapping decisions [8], data organizations and communica-
tions [5][6]. Any change leads to the need of completely redesigning
the specifications, which means “restarting” the project.

b) Building the algorithm/ architecture executable model has to
be done manually, which is a fastidious work, requires long design
time, and might induces many errors[7]. Also, this model has to be
re-designed every time the algorithm and/or architecture specifica-
tions are changed. The simulation speed of this model depends on
the used abstraction level. If the abstraction level is too low [7], the
simulation speed becomes unacceptable long.

c) The performance estimation precision depends on the used ab-
straction level. No matter the level of abstraction, the estimation
precision represents a key issue. In [5][6], the performance estima-
tions are covering only the communication. In [8], the performance
estimations are covering precisely the computations, but the com-
munication performances are estimated using an “always available”
shared memory. This is insufficient if other communication topol-
ogy is required. In [7], the estimations are precise, but the lack of
any abstractions makes the simulations very long.

C. Contribution

The key contribution of this paper is a working solution for archi-
tecture exploration, used for the implementation of the MPEG4
video encoder on MP-SoC. We use a flexible target architecture and
a flexible modeling strategy, that allow for both algo-
rithm/architecture exploration. Compared with the previously pre-
sented classical exploration flow, our proposed exploration flow
(Fig.1b) is able to cover multiple requirements:

a) The need to explore a large solution space is solved by auto-
matically generating the Executable Algorithm / Architecture Model.
Different customized Executable Algorithm / Architecture Models
can be obtained from a unique Flexible Algorithm/Architecture
Model for MPEG4. This model provides the possibility of automati-



cally customize the algorithm and build the abstract architecture,
based on a set of Algorithm/Architecture Configurations.

b) The need of obtaining a fast simulation is covered by doing the
architecture exploration at high-level. As result, by ignoring many
low-level architecture details in the Algorithm/Architecture Execu-
table Model, the simulation becomes fast.

c) The need of precise simulation results is solved by using a
High-Level Architecture Exploration which provides estimation
results with high precision. This is done by using precise estimations
for the computations and communication times, by time annotating
both computations and communications. Additionally, the explora-
tion is capturing the computations and communications running
together, to estimate the performances of the entire system.
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Fig.1 Classical exploration(a) vs. Proposed exploration(b)

By using such high-level architecture exploration, the time re-
quired to obtain efficient architectures of MPEG4 video encoder
into MP-SoC is decreased drastically. This architecture exploration
is achieved at High-Level using the Flexible Algorithm / Architec-
ture Model for MPEG4. This decreases the time needed to obtain
and test multiple architecture configurations. Thus, the time required
to find acceptable architecture configurations is reduced. The pro-
posed approach was applied successfully for the generation of sev-
eral configurations of MPEG4 encoders.

The rest of the paper is organized as following. Section 2 presents
the Flexible Algorithm/Architecture Model for MPEG4. Section 3
details the models used during the proposed high-level architecture
exploration. Section 4 shows the architecture exploration flow for
MPEG4 encoder with custom parameters. Section 5 presents the
experiments and results, followed by conclusions in Section 6.

II. Flexible Algorithm/Architecture Model for MPEG4

This section presents the MPEG4 encoder algorithm and the
Flexible Algorithm/Architecture Model for MPEG4, which will be
used to generate different models required during the exploration.

A. MPEG4 video encoder algorithm

In this work we used the DivX specifications. The DivX is a
popular algorithm implementation of the MPEG-4 video compres-
sion technology (ISO/IEC 14496-2). The idea of this technology is
to compress and store only the spatio-temporal differences between
consecutive frames. A block diagram of the DivX algorithm is
shown in Fig.2. Describing each block is out of this paper’s scope,
and more details can be found in [4][9].
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Fig.2 Block diagram of the DivX algorithm

The initial MPEG4 encoder algorithm is a sequential algorithm.
The Standard MPEG4 Algorithm parameters don’t provide any
automatic parallelism/pipeline support, which makes difficult to

implement the MPEG4 encoder on multi-processors. This drastically
reduces the exploration space.

So, the need of inserting parallelism and pipeline support is re-
quired. The parallelism/pipeline shouldn’t change the algorithm
specifications, only the implementation will be different. Our goal is
to build a Flexible MPEG4 Encoder algorithm, which supports the
Standard MPEG4 Algorithm parameters plus parameters for the
level of Parallelism/Pipeline.

For this, the MPEG4 algorithm was grouped into 2 pipelined
tasks: MainDivX task and the VLC (Variable Length Coding) task.
The MainDivX is processing the current image relative to the previ-
ous one, and its results are motion vectors, quantized DCT Macro-
Blocks (image zones of 16x16 pixels). The VLC is compressing
these results using a Zigzagging and Huffman compression. The
final output respects the MPEG4/ISO standard.

Several approaches for parallelization can be found in [10][11]. In
[10] and [11], the image is split into smaller areas to be able to
achieve parallel computations. In their approach, the MainDivXs and
VLCs were not separated, thus splitting the image into areas required
an equal number of MainDivXs and VLCs. Also, a VLC has to wait
for the corresponding MainDivX to finish its computations for all the
Macro-Blocks, which means that the VLC is 90% into idle mode.

In our work the algorithm is divided into two pipeline stages: the
first contains the MainDivXs, and the second contains the VLCs. We
use SIMD architectures for each of the pipeline stage, to handle
heavy computations. Since the two stages require different computa-
tion powers, the structure of both SIMD may be different in term of
number and type of CPU. To adapt the algorithm to this architecture,
the image is split into areas, and the computations are done in paral-
lel for each of them.

We’ve exploited the fact that the VLC task doesn’t have to wait
for the MainDivX task to finish processing the entire image. By
adapting the VLC task to work at Macro-Block level, once the
MainDivX task finished processing a Macro-Block, the VLC task can
start to compress it, while the MainDivX task continues to process
the next Macro-Block. Also, the VLC task requires very few compu-
tations but large memory (because the need to store its standard
Huffman tables). To reduce the memory for the VLC tasks, we use a
number of VLC tasks much smaller than the number of MainDivX
tasks, but just enough not to become a computational bottleneck. As
results, the processing and compression are executed in parallel, and
the application’s memory is reduced.

Along with these tasks, the use of 4 other smaller tasks is re-
quired: Video, Splitter (for image splitting), Combiner (for final
reordering) and Storage (Fig.3).

Splitter

MainDivX1

MainDivX2

MainDivX3

MainDivXN

...

VLC1

VLCM

..

.
Combiner

Video Storage

SIMD SIMD

quanta

Fig.3 Flexible MPEG4 Encoder algorithm

The Video task doesn’t belong in the final design. It’s a test-bench
task that simulates a video source. It sends the video under the form
of a pixels stream, compatible with YUV420 standard to the Splitter.
The Splitter divides the image and routes the pixels to the corre-
sponding MainDivX, which processes the image. Once the Main-
DivXs processed a Macro-Block, its results are sent to a correspond-
ing VLC, which will compress the Macro-Blocks one by one.

The compressed Macro-Blocks are then sent to the Combiner,
which reorders all the VLC results, in order to obtain an
MPEG4/ISO bitstream. Also it adjusts the quantization value to be
used for the encoding of the future images. The bitstream is sent to
the output Storage task, which is another test-bench task simulating
a storage support. As result, the architecture’s behavior is composed
of 2 pipelines. One pipeline at frame level between the Splitter and
the rest of the architecture using a lock step synchronization at
frame level, and a second local pipeline at MacroBlock level be-
tween the MainDivXs , VLCs and Combiner.



Coarse grain parallelization was chosen instead of fine grain one
(i.e. every basic function of the MainDivX task to be a different task)
for simplicity and efficiency. Instead of achieving the parallelism by
dividing the algorithm into multiple tasks, resulting in computation
distribution on the architecture, the parallelism is done using data
distribution. If one of the tasks becomes a bottleneck, the amount of
data associated to that task is reduced [12]. Also, using fine grained
partitioning for highly called tasks induces serious performance
degradation, because of the required big number of context switches.

B. Configuration parameters

To explore the architecture for the MPEG4 video encoder, we use
2 categories of configurations parameters, shown in Table 1.

Algorithm parameters Architecture parameters
Level of Parallelism/Pipeline Number of CPUs

Video resolution Type of CPUs
Frame rate HW-SW partitioning

Bitrate Communication topology
Key frame Blocking/Non-blocking comm.

MotionEstimation precision Arbitration type
MotionEstimation search area Message size
Progressive/Interlaced mode Data width

Scene change detection Data transfer latency
Quantization range Transfer initialization latency

Quantization type (H263,MPEG4) Transfer close latency
Table 1. Algorithm and Architecture parameters to be explored

C. Flexible Algorithm/Architecture Model

The Flexible Algorithm/Architecture Model for MPEG4 (Fig.4) is
composed of Modules and an Abstract interconnect execution model.
Each Module contains one task, which can be of 2 types:
a) flexible tasks, which has at least one of following characteristics:

- flexible computations – tasks which are belonging to a SIMD:
MainDivX and VLC

- flexible input – tasks which are receiving data from a SIMD:
VLC and Combiner

- flexible output – tasks which are sending data to a SIMD: Split-
ter and MainDivX

b) fixed tasks – none of the above: Video and Storage
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Abstract interconnect execution model (MPI-SystemC)

API

Video

MPI MPI

Task with flexible computations

Fixed task

Task with flexible input/output

Fig.4 Flexible Algorithm/Architecture Model for MPEG4

Tasks are communicating via API calls. The interconnections are
done through an Abstract interconnect execution model, which in
[13] is called High-Level Parallel Programming Model (HLPPM).
A HLPPM hides completely the low-level architecture details:
Communication Network, HW/SW & HW/HW Interfaces.

The targeted architecture model is also flexible as shown in Fig.5.
It features 2 SIMD and an interconnect structure. The Splitter and
Combiner may be HW or SW. For example, in case of Fig.5, it was
freely chosen to map the Splitter and Combiner on HW, to avoid
them to become I/O bottlenecks.
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III. Algorithm and architecture representation

During the architecture exploration, a unique representation will
be used to combine both the architecture and the MPEG4 algorithm.
This combined architecture/algorithm format will be used to model
different customized algorithm/architecture instances at different
levels of abstraction, starting from the pure algorithm model down
to the architecture. All these models are executable SystemC models
that can be simulated and used for performance estimations, debug,
and as entry for design. This section describes in details all the
models used during the high-level explorations.

A. Flexible Algorithm/Architecture Model for MPEG4

This model is a macro-code made of a set of generic SystemC
modules containing each of them a single task written in C/C++.
Tasks are communicating through message passing by calling a set
of MPI primitives (see Fig.6)

MP_Init(*this,argc,argv);
MP_Finalize(*this);

MP_[I]Send(*this,buf,count,datatype,dest,tag,comm);
MP_[I]Recv(*this,buf,count,datatype,source,tag,comm,status);

MP_[I]BSend(*this,buf,count,datatype,dest,tag,comm);
MP_[I]BRecv(*this,buf,count,datatype,source,tag,comm,status);

MP_[I]SSend(*this,buf,count,datatype,dest,tag,comm);
MP_[I]SRecv(*this,buf,count,datatype,source,tag,comm,status);

MPI_Wait(*this,request,status);
MPI Test(*this,request,flag,status);

Fig.6 MPI communication primitives subset

An example of a task using MPI primitives is illustrated in Fig.7.
//------------------ MainDivX”N” task ---------------------------------------------
void MainDivX”N”_MAIN(*image_memory“N”,height“N”, length“N”, top_border“N”,

left_border”N”, bottom_border“N”, right_border“N”,&result)
{

//initialization of computations
MainDivX”N”_INIT (&image_memory“N”, height”N”, length”N”);

//data_receive_communication from the Splitter
MPI_”PROTOCOL”Recv(this,&image_memory”N”,sizeof(image_memory”N”),

”DATA_WIDTH”,SPLITTER_ID,22,MPI_COMM_WORLD);

//calls the function with flexible computations
MainDivX”N”_COMPUTE (&image_memory“N”,height“N”, length“N”,

top_border“N”, left_border”N”,
bottom_border“N”, right_border“N”,&result);

//send_results_communication to the coresponding VLC
MPI_”PROTOCOL”Send(this,&result,sizeof(result),”DATA_WIDTH”,

VLC[“target_vlc”]_ID,22, MPI_COMM_WORLD);
}

Fig.7 Example of task description using MPI primitives

MPI_”PROTOCOL”Recv(this,&image_memory”N”,sizeof(image
_memory”N”),”DATA_WIDTH”,SPLITTER_ID,22,MPI_COMM
_WORLD) receives data from other task. This primitive specifies the
pointer were data will be stored, the amount of data, the communi-
cation data width and the unique ID assigned to the source task
(Splitter). It can be noticed that most parameters are not yet fixed.

Flexible tasks with flexible computations are parameterized to be
duplicated and work on different data. For example, the MainDivX
task uses a set of parameters that specify the address where the
image is stored, the image size, the border characteristics, the results
storing address, and it uses them to call its computations.

Flexible I/Os are coded using Generate like loops. Fig.8 shows a
part of the code of the Splitter. p

void Splitter()
{

for (target=0; target<“N”; target++)
{

MPI_”PROTOCOL”Send(&this,data[target],”BURST_SIZE”,
”DATA_WIDTH”,MainDivX[target]_ID,
22,MPI_COMM_WORLD);

}
}

void Splitter()
{

for (target=0; target<“N”; target++)
{

MPI_”PROTOCOL”Send(&this,data[target],”BURST_SIZE”,
”DATA_WIDTH”,MainDivX[target]_ID,
22,MPI_COMM_WORLD);

}
}

Fig.8 Describing the flexible I/O in the Splitter

The loop executes “N” MPI_Send to split the image among the
MainDivX modules performing the encoding. Even the protocol can
be parameterized. In Fig.8, the MPI_“PROTOCOL”Send can be
expanded into MPI_ISend, MPI_BSend or MPI_SSend, according



to the “PROTOCOL” parameter of communication. [13] details the
differences between these protocols. The “BURST_SIZE” sets the
communication message size, and the “DATA_WIDTH” defines the
communication data width. This flexible model is used to generate
an executable SystemC Model.

The Flexible Algorithm/Architecture Model for MPEG4 is made
of a set of Modules interconnected through MPI-SystemC HLPPM
(Fig.4). The MPI_SystemC HLPPM is a runtime execution environ-
ment for message passing communication using the subset of MPI
primitives presented in Fig.6. It’s similar to MPICH [14] (supports
the same MPI primitives) but with the possibility of including con-
figurable timing annotations for the communication, using SystemC
libraries. Fig.9 shows that the communication between 2 tasks are
done using Communication Units (CU) (one CU for each task),
which manages the MPI requests from the tasks, the communication
with other CUs, and inserts the timing annotations. Since a CU can
be connected to many other CUs, the MPI-SystemC HLPPM can
support point to point and bus topologies.

Task CU TaskCU
Transfer

Comm request

Data access

SystemC
channel

SystemC
process

Fig.9 Task to Task communication using MPI-SystemC

Using the Flexible Architecture/Algorithm Model for MPEG4,
many customized models can be macro-generated. This is done by
expanding the flexible model with the desired algorithm / architec-
ture configuration parameters, with the approach presented at [15].

Fig.10 shows an example of macro-generated SystemC Model
with 2 SIMD subsystems (MainDivX and VLC), and the data de-
pendencies between the tasks (the dotted arrows). This model is
called Executable SystemC Model of Combined Architecture/
Algorithm. It is an un-timed model, and it captures both the
architecture and the algorithm. Fig.11 (the WAITs will be explained
later) shows the C/C++ code of the resulted MainDivX1 task after
the macro-expansion. It can be seen that all the
algorithm/architecture parameters are now fixed. For different
configuration parameters, different Executable SystemC Models are
obtained. The key advantage of such model is its suitability for
performances analysis, algorithm debug, syncronization debug, etc.
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Fig.10 Executable SystemC Model of Combined Architecture/Algorithm

For performance estimations, a Timed Executable SystemC Model
is used. This model is obtained by inserting time annotations for
computations and communications, into the tasks code of the
previously untimed Executable SystemC Model. The time
annotations for computations are done by inserting WAIT calls to
simulate the computations delays [14]. The time annotations for
communications are embedded within the MPI-SystemC.

Fig.11 shows the code of the resulted Timed Model for the
MainDivX task, which contains the time annotations for the
computations, and the time annotations for the communications
(integrated into MPI-SystemC HLPPM). The values for these delays
are captured in tables and depend on the configurations chosen for
the computations (i.e. CPU model, CPU clock frequencies) and
communication primitives (i.e. data width, message sizes, latencies).
This Timed Model allows performance estimations at High-Level for
different algorithm/architecture configurations.

//------------------ MainDivX1 task ---------------------------------------------
void MainDivX1_MAIN(*image_memory1,height1, length1, top_border1,

left_border1, bottom_border1, right_border1,&result)
{

//initialization of computations
MainDivX1_INIT (&image_memory1, height1, length1);
WAIT(13.224);

//data_receive_communication from the Spliter
MPI_Recv(this,&image_memory1,sizeof(image_memory1),

32,SPLITTER_ID,22,MPI_COMM_WORLD);

//calls the function with flexible computations
MainDivX1_COMPUTE (&image_memory1,height1, length1,

top_border1, left_border1,
bottom_border1, right_border1,&result);

WAIT(2.312.564);

//send_result_communication to the VLC
MPI_BSend(this,&result,sizeof(result),32,

VLC[0]_ID,22, MPI_COMM_WORLD);
}

//------------------ MainDivX1 task ---------------------------------------------
void MainDivX1_MAIN(*image_memory1,height1, length1, top_border1,

left_border1, bottom_border1, right_border1,&result)
{

//initialization of computations
MainDivX1_INIT (&image_memory1, height1, length1);
WAIT(13.224);

//data_receive_communication from the Spliter
MPI_Recv(this,&image_memory1,sizeof(image_memory1),

32,SPLITTER_ID,22,MPI_COMM_WORLD);

//calls the function with flexible computations
MainDivX1_COMPUTE (&image_memory1,height1, length1,

top_border1, left_border1,
bottom_border1, right_border1,&result);

WAIT(2.312.564);

//send_result_communication to the VLC
MPI_BSend(this,&result,sizeof(result),32,

VLC[0]_ID,22, MPI_COMM_WORLD);
}

Fig.11 Timed Model for the MainDivX task

IV. High-level architecture exploration flow for MPEG4

This section describes in details the high-level architecture explo-
ration flow (Fig.12) used for the MPEG4 video encoder.
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Fig.12 Detailed representation of the design flow

This flow is composed of 3 major phases: (1) obtaining the
Timed Executable SystemC Model; (2) performance estimation and
reconfiguration; (3) building the final RTL architecture. Only the
first 2 phases are part of the high-level architecture exploration and
will be detailed. Presenting the phase of building the final RTL
architecture is outside the scope of this paper [21].

A. Obtaining the Timed Executable SystemC Model

The Timed Executable Model is obtained in two steps. First the
Flexible Algorithm/Architecture Model for MPEG4 is macro-
expanded to obtain the Executable SystemC Model of Combined
Algorithm/Architecture. This initial model is used to compute the
delays. Afterwards, the delays are inserted in the executable model.

Delays are obtained using a classical approach consisting of exe-
cuting the code on an Instruction Set Simulator (ISS) of the targeted
CPU. This gives approximate number of clock cycles required by
the different tasks, independently of the communications. The ob-
tained times aren’t 100% accurate, because the scheduling effect
isn’t captured with this approach. However, the experiments show
that the precision is enough for our architecture exploration, as will
be shown later in this paper.

Communication times are given for different communication con-
figurations (message size, data width, protocol, transfer latencies).
In this work, these times are given as parameterized delay functions
associated to each MPI primitive. The execution of each primitive is
broken into 3 steps: initialization (initial synchronizations), transfer
(for each data) and close (communication release). An execution



time is associated to each of these steps, allowing a detailed view-
ing/analyzing of the communication behavior.

B. Performance estimations and architecture exploration

By compiling and executing the Timed Executable SystemC
Model, performances can be measured using the function
sc_simulation_time() after encoding every frame. The execution of
this timed model gives an estimation of performances. The obtained
performances can be represented using performances diagrams
(graphic tables), and they include the time annotated computations
and communications running together. Also, in the same graphic can
be displayed for comparison the performances measured for multi-
ple different algorithm/architecture configurations, to help the de-
signer to take the next decisions. Fig.13 gives the estimated per-
formance for the execution of MPEG4 for 25 frames of QCIF
(176x144) video resolution movie, using 1,2,4,8,16 and 32 CPUs
ARM7[17] at 60MHz for the MainDivX tasks and 1 CPU for VLC.
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Fig.13 Performance estimated for QCIF, using ARM7, 60MHz

As benchmark movie we used one second (25 frames) of „snow-
show” movie (similar to what the TV receivers show when there is
no signal on the antenna). This represents the worst case scenario for
the MPEG4 application. Consequently, is assured the real-time
encoding for any other input cases. Also, the used search area for the
Motion Estimation is 16x16. The reason is that previous research
experiments showed that for QCIF (176x144) and CIF (352x288)
resolutions, the full area search can be discarded, because the
compression gain doesn’t pay for the performance loss. However,
this isn’t true for higher video resolutions.

Fig.14 shows the estimated performances using ARM946E-S,
4kI$, 4kD$ CPUs at 60MHhz [17]. In order to achieve real-time,
maximum 2.400.000 cycles are allowed for compressing 1 frame.
From this figures, we can determine that minimum 5 ARM7 or 2
ARM946E-S processors are required to achieve real-time.
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Fig.14 Performance estimated for QCIF, using ARM946E-S CPUs, 4kI$,
4kD$, 60 MHz

Different curves of these simulations are obtained doing a new
macro-expansion of the initial model with different parameters.
Besides number and types of CPU, several other parameters may be
explored. For example, the communication may be explored via
message size, data width, protocols and latencies.

C. Validation of the High-Level simulation results

The architecture exploration allows fixing a set of parameters that
will define the number of required CPUs, models of CPUs, commu-

nication protocols, message sizes, maximum latencies, etc. These
parameters will be followed during the architecture implementation.
Fig.15 shows an example of obtained configurations.

CPUs Number 5 (4 MainDivX + 1 VLC)
IPs Number 2
Splitter IP
MainDivX1 CPU (ARM7)
MainDivX1 60MHz
MainDivX1 no cache
… the same for the other 3 MainDivX
VLC1 CPU (ARM7)
VLC1 60MHz
VLC1 no cache
Combiner IP
Splitter-MainDivX1 send protocol Blocking
MainDivX1-Splitter recv. protocol Non-Blocking
Splitter-MainDivX1 burst size 128 bytes
Splitter-MainDivX1 data_width 32 bits
Splitter-MainDivX1 init_latency 2 cycles
Splitter-MainDivX1 data_latency 3 cycles
MainDivX1-VLC1 send protocol Blocking (FIFO 810bytes)
VLC1-MainDivX1 recv. protocol Blocking
VLC1 recv. arbitration AnySource
MainDivX1-VLC1 burst size 810 bytes
MainDivX1-VLC1 data_width 32 bits
.... similar for the other modules

Fig.15 Example of architecture configuration file

V. Experiments and results analysis

This section presents the experiments results obtained for the ar-
chitecture exploration of the MPEG4 application for QCIF
(176x144) and CIF (352x288) video resolution at 25 frames/sec,
using ARM7 and ARM946E-S processors running at 60 MHz.

For QCIF video resolution using only ARM7 processors running
at 60MHz, the resulted architecture required 5 processors: 4 proces-
sors for 4 MainDivX tasks, and 1 processor for 1 VLC task. Simula-
tion for 1, 2, 4, 8, 16 and 32 CPUs for MainDivX and 1 for VLC was
shown in Fig.13. The obtained architecture configurations are shown
in Fig.15.

For CIF (352x288) video resolution, the same experiments were
conducted. In case of using only ARM7 processors, the architecture
required 23 processors: 20 for MainDivX task and 3 for VLC task.
Initially, 16 processors were sufficient for the MainDivX tasks, but
the communication degradation made this impossible. So it was
opted for more processors, instead of choosing a very “super” com-
munication. Fig.16 shows the performance diagram using ARM7
CPUs at 60 MHz.
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Fig.16 Performance estimated for CIF, using ARM7, 60MHz

When ARM946E-S processors were chosen, things got simpler
because of the higher provided computation power. Fig.17 shows
the obtained performance diagram for CIF video resolution, using
ARM946E-S processors. Fig.17 shows that 10 ARM946E-S proces-
sors at 60 MHz were required to obtain a real-time functionality: 8
for MainDivX tasks and 2 for VLC tasks.
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Fig.17 Performance estimated for CIF, using ARM946E-S CPUs, 4kI$,
4kD$ at 60 MHz



For higher resolutions of MPEG4, ARM7 and ARM9 are not
enough. Additionally the amount of embedded memory gets higher
than what the current technology may allow. For memory, an off
chip memory may be required which might change the required
interconnect. For computations, powerful DSP or VLIW processors
are needed, or HW instructions [18][19].

To validate the precision of the high-level architecture exploration,
an RTL architecture was built more or less manually, using one of
the architecture configurations obtained during the high-level archi-
tecture exploration. Fig.18 shows that the precision of the perform-
ance estimations, obtained during the high-level architecture explo-
ration, are very close with the one measured at RTL level. The
communication infrastructure used in case of the RTL architecture,
is a highly performant and customizable data transfer architecture
[20] that can be easily configured with the communication parame-
ters obtained by architecture explorations.

Fig.18 Estimated vs. Measured performance precision
[QCIF, 1 frame, 2 ARM7 CPUs (1 MainDivX + 1 VLC), 60MHz]

To compress 1 frame at QCIF resolution, using 2 ARM7 CPUs (1
MainDivX + 1 VLC) running at 60MHz, the high-level estimations
predicted that 115.02 ms are required (in Fig.13, 6.82 million cycles
is equivalent with 115.02 ms). The performance measured for the
obtained RTL architecture proved that 123.53 ms were required to
compress 1 frame. The 7.39% precision error comes from the im-
possibility to capture with our proposed high-level estimations, the
performance degradations of the:
- OS (scheduling, service calls latencies induced by the API calls)
- Interconnect between the CPU buses and communication infra-

structure (the conflicts for local bus grant between the CPUs and
the Network Interfaces).

- HW/SW Wrappers

By using the proposed high-level architecture exploration, differ-
ent and already validated architecture configurations were explored
very quickly, even for a big number of CPUs and complex commu-
nications. This process dramatically shortened the time required to
do the architecture exploration. As an example, in case of 25 frames
of QCIF resolution video and using ARM7 processors running at
60MHz, approximately 15 minutes were required to generate the
Timed Model. The simulation for 25 frames took approximately 2
minutes. Exploring one architecture solution takes less than one
hour. This is the time required just to simulate one frame at RTL
level. Approximately 25 hours were required to simulate 25 frames
using the RTL model. So, the high-level performance estimations
error of less than 10% compared with the low-level performance
measurements is more then acceptable, considering the gain of
design time. In these experiments we’ve used a Pentium4, 3GHz,
1Gbytes RAM, using Linux Mandrake 9.2.

Currently, in order to adapt this approach to other applications,
the Initial Specifications Model must be adapted manually. Also, if
the communication network is changed (uses different topologies
with the ones already supported), the MPI-SystemC HLPPM model
needs to be adapted to the new communication constrains. Automat-
ing these tasks or finding a method to reduce the effort needed for
applying the proposed design paradigm to different applications are,
in our opinion, open research subjects, and we have chosen to leave
this point for future works.

VI. Conclusions

The architecture exploration of the MPEG4 video encoder into
MP-SoC raises many challenges, because its complexity in term of
computation, communications and memory requirements. Architec-
ture exploration at low-level is a very long time consuming process.
This paper proposed the use of a high-level architecture exploration
method, since early stages of the design flow. The design effort gain
is more important when lots of processors and complex communica-
tion networks are used, as showed by our case study. Because the
architecture validation is done at High-Level, finding the optimal
architecture configurations becomes possible in a much shorter time,
compared with the validation at Low-Level. The proposed approach
was successfully used during the architecture exploration of MPEG4
video encoders. The time required to explore different architectures
was reduced from days to approximately 1 hour. This method can be
extended for different other application, by adapting the Flexible
Algorithm/Architecture Model for this new application.
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