
A Dynamic Test Compaction Procedure for High-quality Path Delay Testing 

Abstract - We propose a dynamic test compaction procedure to 
generate high-quality test patterns for path delay faults. While 
the proposed procedure generates a compact two-pattern test 
set for paths selected by a path selection criterion, the 
generated test set would detect not only faults on the selected 
paths but also faults on many unselected paths. Hence both 
high test quality by detecting untargeted faults and test cost 
reduction by reducing test patterns can be achieved. 
Experimental results show that the proposed procedure could 
generate a compact test set that detect many untargeted path 
delay faults certainly, compared with the static test compaction 
method previously proposed in [15]. 

I. Introduction 

Path delay fault model [1] is known as a powerful delay 
fault model to detect defects which lead to the timing 
violation. Since the path delay fault model models localized 
as well as distributed excessive delays, test patterns 
generated for a path delay fault can detect most of other 
types of delay faults such as gate delay faults [2] on the path. 
However it is practically impossible to generate test patterns 
for all paths because there are a huge number of paths in a 
logic circuit. Therefore we need to select only a subset of 
paths and target it in test generation. 

In path selection for test generation, it is important to 
select paths which are likely to be faulty, i.e. longer paths. 
Path selection criteria are categorized into two approaches, 
which are based on static timing analysis and statistical or 
dynamic timing analysis. The former selects structurally 
longest paths in the circuit, and are categorized into two 
approaches further. One approach is to select N longest paths 
in order of the path length. The length of any selected path is 
longer than the length of any unselected path. However since 
the selected paths may not be distributed all over the circuit 
and may be locally concentrated in a part of the circuit. The 
other approach is to select a set of paths which contains at 
least one of the longest paths through each line [3-8]. If we 
select paths based on this approach, the selected paths would 
be distributed all over the circuit. However the structurally 
longest paths may not be actual longest paths in a 
manufactured circuit due to process variation and/or circuit 
noise [9,10]. On the other hand, [11,12] tried to select actual 

longest paths by using statistical or dynamic timing analysis. 
However it is difficult to know exact delay distribution of 
manufactured circuits. In addition, the longest paths may be 
different for each manufactured circuit. Hence actual longest 
paths cannot be selected necessarily. 

A test generation method proposed in [13,14] selects two 
subsets of paths. For paths in the primary set consisting of 
structurally longest paths, test patterns are guaranteed to be 
generated. For paths in the secondary set consisting of next 
longest paths, fault detection is not guaranteed, but it is 
considered so as to maximize accidental detection by the test 
patterns for paths in the primary set. 

Recently an idea of test generation for a given set of path 
delay faults was proposed [15]. A test generation procedure 
based on the idea can bring an effective solution for two 
major problems in test generation for path delay faults, 
namely reducing the number of test patterns and achieving 
high fault coverage against process variation and noise. In 
test compaction, while each two-pattern test is generated for 
more than one fault in the given fault list as well as ordinary 
test compaction methods, the faults simultaneously detected 
are selected such that paths with the faults have many cross 
points. When crossing paths on which there is a common 
gate are tested simultaneously, non-target paths consisting of 
partial paths of the paths can be accidentally sensitized and 
faults on the non-targeted paths can be detected 
simultaneously too. Note that the accidentally detected faults 
may not be included in the fault list. Hence even if longer 
paths in a manufactured circuit are not structurally long 
paths and not included in the target fault list, the compact 
test set generated by the method would detect the longer 
untargeted faults. Although a test compaction procedure 
based on this idea was given in [15], it is a simple static test 
compaction [16] and hence the advantage of the idea has not 
been derived very much. 

In this paper we propose a dynamic test compaction 
procedure based on the concept described in [15]. Dynamic 
compaction [16] is a well-known compaction procedure with 
a higher ability of compaction than static compaction. While 
the proposed procedure selects a primary target fault and 
secondary target faults from the fault list, the secondary 
targeted faults are selected such that there are many cross 
points with the primary fault or other secondary faults 
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processed in the test pattern. Experimental results showed 
that the size of test sets generated by the proposed dynamic 
compaction procedure is about six times smaller than that of 
uncompacted test sets, and 1.5 times smaller than that 
generated by the static test compaction procedure described 
in [15]. Though final fault coverage of the test sets by the 
proposed procedure is lower a little due to the much smaller 
size of the test sets, certainly detected faults by specified 
inputs at test generation are increased. 

This paper is organized as follows. In Section 2, we 
explain the method of test compaction for high-quality path 
delay testing described in [15]. In Section 3, we propose a 
dynamic test compaction procedure to detect many 
untargeted path delay faults. In Section 4, experimental 
results and discussions are given. Finally, we conclude this 
paper in Section 5. 

II. Path Delay Tests with Process Variation Tolerance 

In [15] an idea of test generation for path delay faults has 
been proposed. The compaction method tries to generate not 
only compact test patterns for a given set of path delay faults 
but also detect many path delay faults not included in the 
fault set. The basic idea of this method is to test path delay 
faults on crossing paths simultaneously. Fig. 1 illustrates a 
simple example. Assume that there are two paths, PI1-g-PO2,
and PI2-g-PO1 which cross at a gate g. If test patterns are 
generated for PI1-g-PO2 and PI2-g-PO1 separately, path 
delay faults on PI1-g-PO1 and PI2-g-PO2 may not be tested 
by the generated test patterns. On the other hand, if paths
PI1-g-PO2 and PI2-g-PO1 are tested by a same test pattern t,
then t can test both PI1-g-PO1 and PI2-g-PO2 simultaneously. 
When faults on the two paths, PI1-g-PO1 and PI2-g-PO2 are 
included in the fault list, we have no need to generate 
additional test patterns for them. This situation would lead to 
efficient generation of a compact test set. Even when two 
paths, PI1-g-PO1 and PI2-g-PO2 are not included in the fault 
list, t would enhance fault coverage.  

In order to simultaneously test crossing paths on which 
there is a common gate, the paths must be satisfied with 
following conditions: 

(1) The crossing paths have same transition at the 
common gate each other. 

(2) The transition at the common gate is from the 
controlling value [22] of the gate to the non-controlling 
value.

Since paths that are likely to be faulty should be tested, 
longer paths are selected according to a criterion. Test 
patterns generated would detect path delay faults on the 

selected paths certainly if they are testable. However, it is 
difficult to predict the delay size of a path in manufactured 
circuits because of process variation or noise. As a result, 
there remain paths that are more likely to be faulty than the 
selected ones and the generated test patterns might miss a 
fault on the paths. Test patterns generated by this method, 
however, would detect not only faults on the selected paths 
but also some faults on unselected paths. If the unselected 
paths whose faults are accidentally detected consist of parts 
of the selected paths, the length of the unselected paths is 
relatively long because the selected paths are long. Therefore 
the test patterns potentially compensate the detection of 
untargeted faults.

III. The proposed dynamic compaction

A. Outline of the Proposed Procedure 
In this section we propose a dynamic compaction 

procedure to generate test patterns for a given set of path 
delay faults which are selected with a criterion of path 
selection. 

First we pick up an undetected fault from the fault list and 
generate an initial test pattern with unspecified bits for the 
fault. We call the fault a primary fault. Next, another 
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Fig. 1: Two paths with one cross point. 
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Fig. 2: Outline of the proposed procedure



undetected fault, which is called a secondary fault, is picked 
up from the fault list. When the secondary fault is selected, 
we care whether the path of the secondary fault crosses the 
path of the primary fault or not. Test generation for the 
secondary fault tries assigning logic values to unspecified 
bits in the initial test pattern for the primary fault. 

Fig. 2 illustrates the outline of the proposed dynamic 
compaction procedure. Suppose that path p1, p2 and p3 is 
included in the given fault list. First, we pick up an 
undetected fault and generates an initial test pattern like Fig. 
2 (a), where the path of the primary fault is path p1, and the 
generated initial test pattern is (I1, I2, I3, I4, I5) = (X, X, X, 0,
X), (1, X, 0, 1, X). Next we search an undetected fault in the 
fault list that satisfies the following conditions: 

(1) The fault is detected by filling unspecified bits of the 
initial test pattern. 

(2) The path of the fault produces more sensitized paths 
additionally by crossing the path of the primary fault 
than any other undetected fault in the fault list. 

In Fig. 2(b), assume that the path p2 is satisfied with above 
conditions, and that the new test pattern, (I1, I2, I3, I4, I5) = (0,
X, X, 0, X), (1, 1, 0, 1, X), is generated by dynamic 
compaction. Two paths p1 and p2 are tested by the test 
pattern simultaneously, and more two additional paths, 
I1-g1-O1, I4-g1-O4 can be tested by the test pattern. After that 
we repeat to select secondary faults and to assign values for 
the detection of the secondary faults as long as there is a 
candidate of the secondary fault. Fig. 2(c) illustrates the 
repetition of the dynamic compaction. Path p3 is processed 
after the dynamic compaction for p2. In this case, more three 
additional paths can be tested by the test pattern, (I1, I2, I3, I4,
I5) = (0, X, X, 0, 1), (1, 1, 0, 1, 0). Finally, five paths in the 
given fault list can be tested by one test pattern, and five 
paths are tested by the test pattern additionally. 

B. Selection of a primary fault 

In selecting a primary fault, it is important to select one 
which gives a chance to cross with other paths to be selected 
as secondary faults. Such a path as a primary fault would 
satisfy the conditions below. 

(1) The path has more off-inputs on each gate having the 
transition from the controlling value of the gate to the 
non-controlling value. 

(2) The path has more fan-out branches associated with 

the path. 
Fig. 3 shows two examples. Assume that two sub-circuits 

in Fig. 3 are a part of a logic circuit, and the path p1, (a-c-d 
with rising transition at a), and the path p2, (g-i-k with 
falling transition at g) are included in the fault list. The path 
p1 can cross a path including b-c-e with rising transition at b
and a path b-c-f with rising transition at b. If the three paths 
can be tested by the same test pattern, six paths can be tested 
additionally. On the other hand, the path p2 can cross only a 
path h-i-k with falling transition at b. No other paths can be 
crossed with the two paths. Therefore when we select a 
primary fault to generate an initial test pattern, we had better 
care the above two conditions. 

C. Detailed procedure 

We implemented a dynamic test compaction procedure 
shown below. This procedure generates test patterns for 
faults in a given fault list with heuristics to detect as many 
untargeted path delay faults as possible by crossing paths in 
the fault list. Note that, in this procedure, Pinit is the given 
fault list, and Tfin is the final test pattern set. 

Step1: Select a primary fault p from Pinit, which is 
undetected and satisfied with two conditions 
described in the previous section. If Pinit is empty, 
go to Step 8. Otherwise go to Step 2.

Step2: Remove p form Pinit, and go to Step 3.

Step3: If p is untestable, go to Step 1. Otherwise 
generates the initial test pattern t for p, which has 
unspecified bits, and go to Step4.

Step4: Search a fault q in Pinit which is satisfied with 
below two conditions. 

(1) The test pattern for q can be generated by 
filling unspecified bits of t.

(2) The path of q produces most additional paths 
by crossing the path p than any other paths 
in Pinit.

If there is a path in Pinit, which are satisfied with 
these conditions, go to Step 5. Otherwise go to 
Step 7. 

Step5: Generate a new test pattern t’ for q by filling 
unspecified bits of t. Remove q from Pinit, define a 
new test pattern t’ as new t, and go to step 6. 

Step6: If Pinit is not empty, return to Step 4. Otherwise go 
to Step 7. 

Step7: Output the generated test pattern t to Tfin, and go to 
Step 8. 

Step8: If Pinit is not empty, return to Step1. Otherwise this 
procedure is finished. 
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Fig. 3: Deference of the first selected path.



IV. Experimental Results and Discussions

We implemented the proposed procedure of dynamic test 
compaction using C programming language on a PC 
(Pentium III Xeon 2GHz, 4GB memory) and applied it to 
full scan version of ISCAS’89 benchmark circuits. We 
assume single path delay fault, and refer to untestable paths 
as non-robust untestable paths in the rest of this paper. 
However, discussions in this paper are valid for any other 
sensitizing conditions of path delay faults. We constructed a 
given fault list such that one of the longest potentially 
testable paths through each line of the circuit are included. 
In the construction of a given fault list, we use the partial 
path sensitization method to identify untestable paths. Note 
that the length of a path is determined by the number of 
logic gates on the path. In our experiments, we compared 
with uncompacted test sets, compacted test sets generated by 
static compaction procedure described in [15] and 
compacted test sets generated by the proposed dynamic 
compaction procedure. 

Table 1 shows statistics of each circuit in terms of testable 
paths and selected paths. The columns of Table 1 give the 
circuit name, the total number of logical paths i.e. path delay 
faults, the number of testable paths which can be calculated 
by ATPG for all logical paths, and the number of selected 
paths and the number of testable paths out of the selected 
paths. The given fault list consists of the selected paths. In 
the selected paths some untestable paths existed except for 
s35932 because of the incompleteness of the partial path 
sensitization method in path selection. However most of 
potentially testable paths were testable. 

Table 2 gives the number of generated test patterns. The 
first column shows circuit names. The second column shows 
the results of test generation without test compaction where 
each test pattern is generated for an undetected fault in the 
fault list and fault simulation is performed for the generated 
test pattern after random-filling for unspecified bits. The 
third column shows the result of static test compaction by 
using the procedure introduced in [15]. The last column 
shows the results of the proposed test compaction procedure. 
Table 2 shows that the dynamic test compaction could 
generate about 6 times smaller test pattern sets than 
uncompacted test pattern sets on the average. In addition, 
compared with the test pattern sets generated by static test 

compaction, the size of test pattern sets generated by 
dynamic test compaction is about 2/3. This result strongly 
suggests that the proposed dynamic test compaction 
procedure generates very small test sets. 

Table 3 shows the number of path delay faults which are 
certainly detected by ATPG. In this result, accidentally 
detected path delay faults by random filling for remaining 
unspecified bits are not included. In Table 3, the second 
column and third column and fifth column show the number 
of certainly detected path delay faults by ATPG when using 
generated uncompacted or compacted test patterns. The forth 
column and the last column show the percentage of 
increased path delay faults that detected by the compact test 
patterns generated compared with the uncompacted test 
patterns. Table 3 shows that the test patterns generated by 
static compaction can certainly detect about 20% of more 
path delay faults than that by uncompacted test patterns, and 
the test patterns generated by dynamic compaction can 
certainly detect about 26% of more path delay faults than 
uncompacted test patterns. Therefore the generated test 
patterns can detect many untargeted path delay faults. In 
addition, the generated test pattern by dynamic compaction 
can detect more path delay faults than that by static 
compaction. Hence we should generate test patterns using 
dynamic compaction method. 

Table 4 shows the coverage of untargeted path delay faults 
in 10000 longest testable paths. This experiment brings out 
how generated test sets cover structurally longest paths. In 
this experiment, we calculated the number of certainly 
detected paths by ATPG for an uncompacted test set, a 
compacted test set generated by static compaction and a 
compacted test set generated by dynamic compaction. 
Accidentally detected path delay faults by random filling for 
unspecified bits are not included in these results. In Table 4, 
the second column shows the number of untargeted path 
delay fault in 10000 longest testable paths. The third, fifth 
and seventh columns show the number of detected path 
delay faults in the untargeted path delay faults for each test 
pattern. The forth, sixth and eighth columns show the 
percentage of detected path delay faults for the number of 
untargeted paths delay faults in 10000 longest testable paths. 
From Table 4, we can observe that the generated compacted 
test patterns by dynamic compaction could certainly detect 
about 10% more path delay faults compared with the 

Table 1: The number of selected paths and testable paths.            Table 2: The size of test pattern sets.

circuit #total paths
#testable

paths
#selected

paths

#testable
paths in

selected paths
circuit

uncompacted
tests

compacted
tests (static
compation)

compacted
tests

(dynamic
compation)

s5378 27,084 21,928 4,170 4,133 s5378 920 254 173

s9234 489,708 59,854 5,193 5,159 s9234 1287 429 296

s13207 2,690,738 476,145 8,792 8,723 s13207 1441 511 384

s15850 329,476,092 10,782,994 10,027 9,950 s15850 1855 922 456

s35932 394,282 58,657 28,549 28,549 s35932 257 32 24

s38417 2,783,158 1,138,194 28,713 27,496 s38417 6799 833 596

s38584 2,161,446 334,927 30,891 30,730 s38584 2803 522 347



uncompacted test patterns. Although the generated 
compacted test patterns by static compaction could certainly 
detect many untargeted path delay faults, the number of 
detected paths are less than that by dynamic compaction 
From this result, since the compacted test patterns can detect 
many longer paths, even if critical paths are distributed by 
process variation or electrical noise, real critical path delay 
faults would detect by the compact test patterns. Therefore, 
to generate the compacted test patterns by the proposed 
method is to generate high quality compact test patterns for 
recent DSM circuits. 

Table 5 shows the number of detected faults and fault 
efficiency of each test pattern set. In this experiment, 
unspecified bits of each test pattern are filled with 0 or 1 at 
random. Therefore detected faults include in faults 
accidentally detected by random-filling. From Table 5, we 
can observe that uncompacted test pattern sets have higher 
fault efficiency than the other compacted test sets. Since the 
number of uncompacted test pattern sets is larger than that of 
compacted test sets and uncompacted test sets would have 
many unspecified bits, by filling unspecified bits with 0 or 1 
at random, accidentally detected faults would be increase. 

Table 3: Certainly detected path delay faults. 

#detected faults #detected faults %increase #detected faults %increase

s5378 7252 9345 28.86% 10110 39.41%

s9234 10804 14209 31.52% 15136 40.10%

s13207 80001 81961 2.45% 82068 2.58%

s15850 365360 450920 23.42% 483689 32.39%

s35932 34719 37027 6.65% 36307 4.57%

s38417 104912 140404 33.83% 154017 46.81%

s38584 82144 91158 10.97% 92989 13.20%

average 19.67% 25.58%

 static compaction dynamic compaction
uncompacted

testscircuit

compated tests

Table 4: Coverage for 10000 longest testable paths by certainly detected path delay faults. 

#detected
untergeted

%coverage #detected
untergeted

%coverage #detected
untergeted

%coverage

s5378 7672 663 8.64% 1736 22.63% 2043 26.63%
s9234 9463 1217 12.86% 1499 15.84% 1890 19.97%
s13207 9205 4199 45.62% 4209 45.73% 4186 45.48%
s15850 9734 2752 28.27% 3470 35.65% 3684 37.85%
s35932 4324 1522 35.20% 2163 50.02% 2222 51.39%
s38417 8413 3079 36.60% 4122 49.00% 4356 51.78%
s38584 9563 2717 28.41% 2847 29.77% 2669 27.91%
average 27.94% 35.52% 37.29%

circuit dynamic compactionstatic compaction
compacted tests

uncompacted testsuntergeted
path delay

faults

Table 5: Fault efficiency of each test pattern set.

#detected
faults

fault
efficiency

#detected
faults

fault
efficiency

#detected
faults

fault
efficiency

s5378 17240 78.62% 15992 72.93% 15436 70.39%
s9234 31174 52.08% 27509 45.96% 27118 45.31%
s13207 167612 35.20% 146771 30.82% 138209 29.03%
s15850 1537904 14.26% 1411797 13.09% 1293744 12.00%
s35932 57904 98.72% 46005 78.43% 44172 75.31%
s38417 405046 35.59% 346901 30.48% 332759 29.24%
s38584 180556 53.91% 167841 50.11% 152199 45.44%
average 52.63% 45.98% 43.82%

uncompacted tests
circuit  static compaction dynamic compaction

compated tests



On the other hand, compacted test pattern sets would have a 
small number of unspecified bits in itself. Even if certainly 
detected faults are increased by the proposed dynamic 
compaction method, the total number of detected faults is 
not increased so much. However these accidentally detected 
faults cannot guarantee the quality of generated test pattern, 
since they may not be detected by another random-filling for 
unspecified bits. To guarantee the quality of generated test 
pattern set, many faults should be detected certainly. 
Therefore generated test pattern sets by the proposed 
dynamic compaction have high quality to guarantee the 
circuit operation. 

V. Conclusions 

In this paper, we proposed a dynamic compaction procedure 
to test paths with cross points simultaneously so as to 
accidentally detect many faults which may not be included 
in the target fault list. The proposed procedure for path delay 
faults brought improvement of test quality in spite of 
reduction of test patterns. Experimental results showed that 
the proposed procedure could generate a compact 
two-pattern test set and it could detect many untargeted path 
delay faults efficiently. Our future work is to improve the 
heuristics algorism to detect more certainly detected paths. 
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