
A Dynamic Test Compaction Procedure for High-quality Path Delay Testing

Abstract - We propose a dynamic test compaction procedure to
generate high-quality test patterns for path delay faults. While
the proposed procedure generates a compact two-pattern test
set for paths selected by a path selection criterion, the
generated test set would detect not only faults on the selected
paths but also faults on many unselected paths. Hence both
high test quality by detecting untargeted faults and test cost
reduction by reducing test patterns can be achieved.
Experimental results show that the proposed procedure could
generate a compact test set that detect many untargeted path
delay faults certainly, compared with the static test compaction
method previously proposed in [15].

I. Introduction

Path delay fault model [1] is known as a powerful delay
fault model to detect defects which lead to the timing
violation. Since the path delay fault model models localized
as well as distributed excessive delays, test patterns
generated for a path delay fault can detect most of other
types of delay faults such as gate delay faults [2] on the path.
However it is practically impossible to generate test patterns
for all paths because there are a huge number of paths in a
logic circuit. Therefore we need to select only a subset of
paths and target it in test generation.

In path selection for test generation, it is important to
select paths which are likely to be faulty, i.e. longer paths.
Path selection criteria are categorized into two approaches,
which are based on static timing analysis and statistical or
dynamic timing analysis. The former selects structurally
longest paths in the circuit, and are categorized into two
approaches further. One approach is to select N longest paths
in order of the path length. The length of any selected path is
longer than the length of any unselected path. However since
the selected paths may not be distributed all over the circuit
and may be locally concentrated in a part of the circuit. The
other approach is to select a set of paths which contains at
least one of the longest paths through each line [3-8]. If we
select paths based on this approach, the selected paths would
be distributed all over the circuit. However the structurally
longest paths may not be actual longest paths in a
manufactured circuit due to process variation and/or circuit
noise [9,10]. On the other hand, [11,12] tried to select actual

longest paths by using statistical or dynamic timing analysis.
However it is difficult to know exact delay distribution of
manufactured circuits. In addition, the longest paths may be
different for each manufactured circuit. Hence actual longest
paths cannot be selected necessarily.

A test generation method proposed in [13,14] selects two
subsets of paths. For paths in the primary set consisting of
structurally longest paths, test patterns are guaranteed to be
generated. For paths in the secondary set consisting of next
longest paths, fault detection is not guaranteed, but it is
considered so as to maximize accidental detection by the test
patterns for paths in the primary set.

Recently an idea of test generation for a given set of path
delay faults was proposed [15]. A test generation procedure
based on the idea can bring an effective solution for two
major problems in test generation for path delay faults,
namely reducing the number of test patterns and achieving
high fault coverage against process variation and noise. In
test compaction, while each two-pattern test is generated for
more than one fault in the given fault list as well as ordinary
test compaction methods, the faults simultaneously detected
are selected such that paths with the faults have many cross
points. When crossing paths on which there is a common
gate are tested simultaneously, non-target paths consisting of
partial paths of the paths can be accidentally sensitized and
faults on the non-targeted paths can be detected
simultaneously too. Note that the accidentally detected faults
may not be included in the fault list. Hence even if longer
paths in a manufactured circuit are not structurally long
paths and not included in the target fault list, the compact
test set generated by the method would detect the longer
untargeted faults. Although a test compaction procedure
based on this idea was given in [15], it is a simple static test
compaction [16] and hence the advantage of the idea has not
been derived very much.

In this paper we propose a dynamic test compaction
procedure based on the concept described in [15]. Dynamic
compaction [16] is a well-known compaction procedure with
a higher ability of compaction than static compaction. While
the proposed procedure selects a primary target fault and
secondary target faults from the fault list, the secondary
targeted faults are selected such that there are many cross
points with the primary fault or other secondary faults

Masayasu Fukunaga1, Seiji Kajihara2, Xiaoqing Wen2,
Toshiyuki Maeda3, Shuji Hamada3, and Yasuo Sato3

1Fujitsu Ltd., Kawasaki, Japan
fukunaga-m@jp.fujitsu.com

2Kyushu Institute of Technology, Iizuka, Japan
{kajihara, wen}@cse.kyutech.ac.jp,

3Semiconductor Technology Academic Research Center, Yokohama, Japan
{maeda,hamada.shuji,satoh.y}@starc.or.jp

processed in the test pattern. Experimental results showed
that the size of test sets generated by the proposed dynamic
compaction procedure is about six times smaller than that of
uncompacted test sets, and 1.5 times smaller than that
generated by the static test compaction procedure described
in [15]. Though final fault coverage of the test sets by the
proposed procedure is lower a little due to the much smaller
size of the test sets, certainly detected faults by specified
inputs at test generation are increased.

This paper is organized as follows. In Section 2, we
explain the method of test compaction for high-quality path
delay testing described in [15]. In Section 3, we propose a
dynamic test compaction procedure to detect many
untargeted path delay faults. In Section 4, experimental
results and discussions are given. Finally, we conclude this
paper in Section 5.

II. Path Delay Tests with Process Variation Tolerance

In [15] an idea of test generation for path delay faults has
been proposed. The compaction method tries to generate not
only compact test patterns for a given set of path delay faults
but also detect many path delay faults not included in the
fault set. The basic idea of this method is to test path delay
faults on crossing paths simultaneously. Fig. 1 illustrates a
simple example. Assume that there are two paths, PI1-g-PO2,
and PI2-g-PO1 which cross at a gate g. If test patterns are
generated for PI1-g-PO2 and PI2-g-PO1 separately, path
delay faults on PI1-g-PO1 and PI2-g-PO2 may not be tested
by the generated test patterns. On the other hand, if paths
PI1-g-PO2 and PI2-g-PO1 are tested by a same test pattern t,
then t can test both PI1-g-PO1 and PI2-g-PO2 simultaneously.
When faults on the two paths, PI1-g-PO1 and PI2-g-PO2 are
included in the fault list, we have no need to generate
additional test patterns for them. This situation would lead to
efficient generation of a compact test set. Even when two
paths, PI1-g-PO1 and PI2-g-PO2 are not included in the fault
list, t would enhance fault coverage.

In order to simultaneously test crossing paths on which
there is a common gate, the paths must be satisfied with
following conditions:

(1) The crossing paths have same transition at the
common gate each other.

(2) The transition at the common gate is from the
controlling value [22] of the gate to the non-controlling
value.

Since paths that are likely to be faulty should be tested,
longer paths are selected according to a criterion. Test
patterns generated would detect path delay faults on the

selected paths certainly if they are testable. However, it is
difficult to predict the delay size of a path in manufactured
circuits because of process variation or noise. As a result,
there remain paths that are more likely to be faulty than the
selected ones and the generated test patterns might miss a
fault on the paths. Test patterns generated by this method,
however, would detect not only faults on the selected paths
but also some faults on unselected paths. If the unselected
paths whose faults are accidentally detected consist of parts
of the selected paths, the length of the unselected paths is
relatively long because the selected paths are long. Therefore
the test patterns potentially compensate the detection of
untargeted faults.

III. The proposed dynamic compaction

A. Outline of the Proposed Procedure
In this section we propose a dynamic compaction

procedure to generate test patterns for a given set of path
delay faults which are selected with a criterion of path
selection.

First we pick up an undetected fault from the fault list and
generate an initial test pattern with unspecified bits for the
fault. We call the fault a primary fault. Next, another

PI1

PI2

PO2

PO1g
PI1

PI2

PO2

PO1g

Fig. 1: Two paths with one cross point.

X1

p1

XX

X0

XX

I1

I2

I3

I4

I5

O1

O2

O3

O4

O5

X1

p1

XX

X0

XX

I1

I2

I3

I4

I5

I1

I2

I3

I4

I5

O1

O2

O3

O4

O5

O1

O2

O3

O4

O5

(a) Initial path selection and test generation

p1

X1

X0

XX

p2

I1

I2

I3

I4

I5

O1

O2

O3

O4

O5

g1

p1

X1

X0

XX

p2

I1

I2

I3

I4

I5

I1

I2

I3

I4

I5

O1

O2

O3

O4

O5

O1

O2

O3

O4

O5

g1

(b) Dynamic compaction for p2

X1

p1X0

p2

p3

I1

I2

I3

I4

I5

O1

O2

O3

O4

O5

g2

g1X1

p1X0

p2

p3

I1

I2

I3

I4

I5

O1

O2

O3

O4

O5

g2

g1

(c) Dynamic compaction for p3

Fig. 2: Outline of the proposed procedure

undetected fault, which is called a secondary fault, is picked
up from the fault list. When the secondary fault is selected,
we care whether the path of the secondary fault crosses the
path of the primary fault or not. Test generation for the
secondary fault tries assigning logic values to unspecified
bits in the initial test pattern for the primary fault.

Fig. 2 illustrates the outline of the proposed dynamic
compaction procedure. Suppose that path p1, p2 and p3 is
included in the given fault list. First, we pick up an
undetected fault and generates an initial test pattern like Fig.
2 (a), where the path of the primary fault is path p1, and the
generated initial test pattern is (I1, I2, I3, I4, I5) = (X, X, X, 0,
X), (1, X, 0, 1, X). Next we search an undetected fault in the
fault list that satisfies the following conditions:

(1) The fault is detected by filling unspecified bits of the
initial test pattern.

(2) The path of the fault produces more sensitized paths
additionally by crossing the path of the primary fault
than any other undetected fault in the fault list.

In Fig. 2(b), assume that the path p2 is satisfied with above
conditions, and that the new test pattern, (I1, I2, I3, I4, I5) = (0,
X, X, 0, X), (1, 1, 0, 1, X), is generated by dynamic
compaction. Two paths p1 and p2 are tested by the test
pattern simultaneously, and more two additional paths,
I1-g1-O1, I4-g1-O4 can be tested by the test pattern. After that
we repeat to select secondary faults and to assign values for
the detection of the secondary faults as long as there is a
candidate of the secondary fault. Fig. 2(c) illustrates the
repetition of the dynamic compaction. Path p3 is processed
after the dynamic compaction for p2. In this case, more three
additional paths can be tested by the test pattern, (I1, I2, I3, I4,
I5) = (0, X, X, 0, 1), (1, 1, 0, 1, 0). Finally, five paths in the
given fault list can be tested by one test pattern, and five
paths are tested by the test pattern additionally.

B. Selection of a primary fault

In selecting a primary fault, it is important to select one
which gives a chance to cross with other paths to be selected
as secondary faults. Such a path as a primary fault would
satisfy the conditions below.

(1) The path has more off-inputs on each gate having the
transition from the controlling value of the gate to the
non-controlling value.

(2) The path has more fan-out branches associated with

the path.
Fig. 3 shows two examples. Assume that two sub-circuits

in Fig. 3 are a part of a logic circuit, and the path p1, (a-c-d
with rising transition at a), and the path p2, (g-i-k with
falling transition at g) are included in the fault list. The path
p1 can cross a path including b-c-e with rising transition at b
and a path b-c-f with rising transition at b. If the three paths
can be tested by the same test pattern, six paths can be tested
additionally. On the other hand, the path p2 can cross only a
path h-i-k with falling transition at b. No other paths can be
crossed with the two paths. Therefore when we select a
primary fault to generate an initial test pattern, we had better
care the above two conditions.

C. Detailed procedure

We implemented a dynamic test compaction procedure
shown below. This procedure generates test patterns for
faults in a given fault list with heuristics to detect as many
untargeted path delay faults as possible by crossing paths in
the fault list. Note that, in this procedure, Pinit is the given
fault list, and Tfin is the final test pattern set.

Step1: Select a primary fault p from Pinit, which is
undetected and satisfied with two conditions
described in the previous section. If Pinit is empty,
go to Step 8. Otherwise go to Step 2.

Step2: Remove p form Pinit, and go to Step 3.

Step3: If p is untestable, go to Step 1. Otherwise
generates the initial test pattern t for p, which has
unspecified bits, and go to Step4.

Step4: Search a fault q in Pinit which is satisfied with
below two conditions.

(1) The test pattern for q can be generated by
filling unspecified bits of t.

(2) The path of q produces most additional paths
by crossing the path p than any other paths
in Pinit.

If there is a path in Pinit, which are satisfied with
these conditions, go to Step 5. Otherwise go to
Step 7.

Step5: Generate a new test pattern t’ for q by filling
unspecified bits of t. Remove q from Pinit, define a
new test pattern t’ as new t, and go to step 6.

Step6: If Pinit is not empty, return to Step 4. Otherwise go
to Step 7.

Step7: Output the generated test pattern t to Tfin, and go to
Step 8.

Step8: If Pinit is not empty, return to Step1. Otherwise this
procedure is finished.

p1
a

c d

e

f

b
g

h

i

j

k

p2

p1
a

c d

e

f

b
g

h

i

j

k

p2

Fig. 3: Deference of the first selected path.

IV. Experimental Results and Discussions

We implemented the proposed procedure of dynamic test
compaction using C programming language on a PC
(Pentium III Xeon 2GHz, 4GB memory) and applied it to
full scan version of ISCAS’89 benchmark circuits. We
assume single path delay fault, and refer to untestable paths
as non-robust untestable paths in the rest of this paper.
However, discussions in this paper are valid for any other
sensitizing conditions of path delay faults. We constructed a
given fault list such that one of the longest potentially
testable paths through each line of the circuit are included.
In the construction of a given fault list, we use the partial
path sensitization method to identify untestable paths. Note
that the length of a path is determined by the number of
logic gates on the path. In our experiments, we compared
with uncompacted test sets, compacted test sets generated by
static compaction procedure described in [15] and
compacted test sets generated by the proposed dynamic
compaction procedure.

Table 1 shows statistics of each circuit in terms of testable
paths and selected paths. The columns of Table 1 give the
circuit name, the total number of logical paths i.e. path delay
faults, the number of testable paths which can be calculated
by ATPG for all logical paths, and the number of selected
paths and the number of testable paths out of the selected
paths. The given fault list consists of the selected paths. In
the selected paths some untestable paths existed except for
s35932 because of the incompleteness of the partial path
sensitization method in path selection. However most of
potentially testable paths were testable.

Table 2 gives the number of generated test patterns. The
first column shows circuit names. The second column shows
the results of test generation without test compaction where
each test pattern is generated for an undetected fault in the
fault list and fault simulation is performed for the generated
test pattern after random-filling for unspecified bits. The
third column shows the result of static test compaction by
using the procedure introduced in [15]. The last column
shows the results of the proposed test compaction procedure.
Table 2 shows that the dynamic test compaction could
generate about 6 times smaller test pattern sets than
uncompacted test pattern sets on the average. In addition,
compared with the test pattern sets generated by static test

compaction, the size of test pattern sets generated by
dynamic test compaction is about 2/3. This result strongly
suggests that the proposed dynamic test compaction
procedure generates very small test sets.

Table 3 shows the number of path delay faults which are
certainly detected by ATPG. In this result, accidentally
detected path delay faults by random filling for remaining
unspecified bits are not included. In Table 3, the second
column and third column and fifth column show the number
of certainly detected path delay faults by ATPG when using
generated uncompacted or compacted test patterns. The forth
column and the last column show the percentage of
increased path delay faults that detected by the compact test
patterns generated compared with the uncompacted test
patterns. Table 3 shows that the test patterns generated by
static compaction can certainly detect about 20% of more
path delay faults than that by uncompacted test patterns, and
the test patterns generated by dynamic compaction can
certainly detect about 26% of more path delay faults than
uncompacted test patterns. Therefore the generated test
patterns can detect many untargeted path delay faults. In
addition, the generated test pattern by dynamic compaction
can detect more path delay faults than that by static
compaction. Hence we should generate test patterns using
dynamic compaction method.

Table 4 shows the coverage of untargeted path delay faults
in 10000 longest testable paths. This experiment brings out
how generated test sets cover structurally longest paths. In
this experiment, we calculated the number of certainly
detected paths by ATPG for an uncompacted test set, a
compacted test set generated by static compaction and a
compacted test set generated by dynamic compaction.
Accidentally detected path delay faults by random filling for
unspecified bits are not included in these results. In Table 4,
the second column shows the number of untargeted path
delay fault in 10000 longest testable paths. The third, fifth
and seventh columns show the number of detected path
delay faults in the untargeted path delay faults for each test
pattern. The forth, sixth and eighth columns show the
percentage of detected path delay faults for the number of
untargeted paths delay faults in 10000 longest testable paths.
From Table 4, we can observe that the generated compacted
test patterns by dynamic compaction could certainly detect
about 10% more path delay faults compared with the

Table 1: The number of selected paths and testable paths. Table 2: The size of test pattern sets.

circuit #total paths
#testable

paths
#selected

paths

#testable
paths in

selected paths
circuit

uncompacted
tests

compacted
tests (static
compation)

compacted
tests

(dynamic
compation)

s5378 27,084 21,928 4,170 4,133 s5378 920 254 173

s9234 489,708 59,854 5,193 5,159 s9234 1287 429 296

s13207 2,690,738 476,145 8,792 8,723 s13207 1441 511 384

s15850 329,476,092 10,782,994 10,027 9,950 s15850 1855 922 456

s35932 394,282 58,657 28,549 28,549 s35932 257 32 24

s38417 2,783,158 1,138,194 28,713 27,496 s38417 6799 833 596

s38584 2,161,446 334,927 30,891 30,730 s38584 2803 522 347

uncompacted test patterns. Although the generated
compacted test patterns by static compaction could certainly
detect many untargeted path delay faults, the number of
detected paths are less than that by dynamic compaction
From this result, since the compacted test patterns can detect
many longer paths, even if critical paths are distributed by
process variation or electrical noise, real critical path delay
faults would detect by the compact test patterns. Therefore,
to generate the compacted test patterns by the proposed
method is to generate high quality compact test patterns for
recent DSM circuits.

Table 5 shows the number of detected faults and fault
efficiency of each test pattern set. In this experiment,
unspecified bits of each test pattern are filled with 0 or 1 at
random. Therefore detected faults include in faults
accidentally detected by random-filling. From Table 5, we
can observe that uncompacted test pattern sets have higher
fault efficiency than the other compacted test sets. Since the
number of uncompacted test pattern sets is larger than that of
compacted test sets and uncompacted test sets would have
many unspecified bits, by filling unspecified bits with 0 or 1
at random, accidentally detected faults would be increase.

Table 3: Certainly detected path delay faults.

#detected faults #detected faults %increase #detected faults %increase

s5378 7252 9345 28.86% 10110 39.41%

s9234 10804 14209 31.52% 15136 40.10%

s13207 80001 81961 2.45% 82068 2.58%

s15850 365360 450920 23.42% 483689 32.39%

s35932 34719 37027 6.65% 36307 4.57%

s38417 104912 140404 33.83% 154017 46.81%

s38584 82144 91158 10.97% 92989 13.20%

average 19.67% 25.58%

 static compaction dynamic compaction
uncompacted

testscircuit

compated tests

Table 4: Coverage for 10000 longest testable paths by certainly detected path delay faults.

#detected
untergeted

%coverage #detected
untergeted

%coverage #detected
untergeted

%coverage

s5378 7672 663 8.64% 1736 22.63% 2043 26.63%
s9234 9463 1217 12.86% 1499 15.84% 1890 19.97%
s13207 9205 4199 45.62% 4209 45.73% 4186 45.48%
s15850 9734 2752 28.27% 3470 35.65% 3684 37.85%
s35932 4324 1522 35.20% 2163 50.02% 2222 51.39%
s38417 8413 3079 36.60% 4122 49.00% 4356 51.78%
s38584 9563 2717 28.41% 2847 29.77% 2669 27.91%
average 27.94% 35.52% 37.29%

circuit dynamic compactionstatic compaction
compacted tests

uncompacted testsuntergeted
path delay

faults

Table 5: Fault efficiency of each test pattern set.

#detected
faults

fault
efficiency

#detected
faults

fault
efficiency

#detected
faults

fault
efficiency

s5378 17240 78.62% 15992 72.93% 15436 70.39%
s9234 31174 52.08% 27509 45.96% 27118 45.31%
s13207 167612 35.20% 146771 30.82% 138209 29.03%
s15850 1537904 14.26% 1411797 13.09% 1293744 12.00%
s35932 57904 98.72% 46005 78.43% 44172 75.31%
s38417 405046 35.59% 346901 30.48% 332759 29.24%
s38584 180556 53.91% 167841 50.11% 152199 45.44%
average 52.63% 45.98% 43.82%

uncompacted tests
circuit static compaction dynamic compaction

compated tests

On the other hand, compacted test pattern sets would have a
small number of unspecified bits in itself. Even if certainly
detected faults are increased by the proposed dynamic
compaction method, the total number of detected faults is
not increased so much. However these accidentally detected
faults cannot guarantee the quality of generated test pattern,
since they may not be detected by another random-filling for
unspecified bits. To guarantee the quality of generated test
pattern set, many faults should be detected certainly.
Therefore generated test pattern sets by the proposed
dynamic compaction have high quality to guarantee the
circuit operation.

V. Conclusions

In this paper, we proposed a dynamic compaction procedure
to test paths with cross points simultaneously so as to
accidentally detect many faults which may not be included
in the target fault list. The proposed procedure for path delay
faults brought improvement of test quality in spite of
reduction of test patterns. Experimental results showed that
the proposed procedure could generate a compact
two-pattern test set and it could detect many untargeted path
delay faults efficiently. Our future work is to improve the
heuristics algorism to detect more certainly detected paths.

Acknowledgements

This work was supported by the New Energy and Industrial
Technology Development Organization (NEDO).

References

[1] G. L. Smith, “Model for delay faults based upon paths,”
International Test Conf., pp.342-349, 1985.
[2] Z.Barzilai and B.K.Rosen, “Comparison of AC
Self-testing Procedures,” International Test Conf., pp.89-91,
1983.
[3] W.-N. Li, S. M. Reddy, S. K. Sahni, “On Path Selection
in Combinational Logic Circuits,” IEEE Trans. on CAD.,
vol.8, no.1, pp.56-63, 1989.
[4] A. Murakami, S. Kajihara, T. Sasao, I. Pomeranz, and S.
M. Reddy, “Selection of Potentially Testable Path Delay
Faults for Test Generation,” International Test Conf., pp.
376-384, 2000.
[5] M. Sharma and J. H. Patel, “Finding a Small Set of
Longest Testable Paths that Cover Every Gate,”
International Test Conf., pp.974-982, Oct. 2002.
[6] Y. Shao, S. M. Reddy, I. Pomeranz, S. Kajihara, “On
Selecting Paths to Test in Scan Designs,” Journal of
Electronic Testing Theory and Applications, volume 19,
pp.447-456, August 2003.
[7] W. Qiu and D. M. H. Walker, “An Efficient Algorithm
for Finding the K Longest Testable Paths Through Each
Gate in a Combinational Circuit,” International Test Conf.,
pp.592-601, Sept. 2003.
[8] S. Tragoudas, S. Padmanaban, “A Critical Path Selection

Method for Delay Testing,” International Test Conf., pp.
232-241, Oct. 2004.
[9] L.-C. Chen, S. K. Gupta and M. A. Breuer, “High
Quality Robust Tests for Path Delay Faults”, in Proc. VLSI
Test Symp., pp.88-93, April 1997.
[10] K.-T. Cheng, S. Dey, M. Rodgers, K. Roy. “Test
Challenges for Deep Sub-Micron Technologies,” Design
Automation Conf., pp.142-149, June 2000.
[11] J.-J. Liou, A. Krstic, Y.-M. Jiang and K.-T. Cheng,
“Path Selection and Pattern Generation for Dynamic Timing
Analysis Considering Power Supply Noise Effects”,
International Conf. on Computer-Aided Design, pp.493-496,
Nov. 2000.
[12] J.-J. Liou, A. Krstic, L.-C. Wang, K.-T. Cheng.
“False-Path-Aware Statistical Timing Analysis and Efficient
Path Selection for Delay Testing and Timing Validation.
Design Automation Conf., pp.566-569, 2002.
[13] I. Pomeranz and S. M. Reddy, “Test Enrichment for
Path Delay Faults Using Multiple Sets of Target Faults”,
Conf. on Design Automation and Test in Europe, pp.722-729,
March 2002.
[14] I. Pomeranz and S. M. Reddy, “A Postprocessing
Procedure of Test Enrichment for Path Delay Faults”, Asian
Test Symposium, pp.448-453, Nov. 2004.
[15] S. Kajihara, M. Fukunaga, X. Wen, T. Maeda, S.
Hamada, Y. Sato,"Path Delay Test Compaction with Process
Variation Tolerance," Design Automation Conference, pp.
845-850, June 2005.
[16] P. Goel and B. C. Rosales, “Test Generation & Dynamic
Compaction of Tests”, in Digest of Papers 1979 Test Conf. ,
pp.189-192, Oct. 1979.
[17] I. Hamzaoglu, J.H. Patel, “Compact two-pattern test set
generation for combinational and full scan circuits,”
International Test Conf., pp.944-953, Oct. 1998.
[18] S. Kajihara, I. Pomeranz, K. Kinoshita and S. M. Reddy,
“Cost-Effective Generation of Minimal Test Sets for
Stuck-at Faults in Combinational Logic Circuits,” IEEE
Trans. Computer-Aided Design of Integrated Circuits and
Systems, vol.14, no.12, pp.1496-1504, Dec. 1995.
[19] I. Hamzaoglu and J. H. Patel, “Test Set Compaction
Algorithms for Combinational Circuits,” Intl. Conf. on
Computer-Aided Design, pp. 283-289, Oct. 1998.
[20] S. Bose, P. Agrawal, V. Agrawal, “Generation of
compact delay tests by multiple path activation,”
International Test Conf., pp.714-723, Oct. 1993.
[21] J. Saxena; D.K.Pradhan, “A method to derive compact
test sets for path delay faults in combinational circuits,”
International Test Conf., pp. 724-733, Oct. 1993.
[22] M. Abramovici, M. A. Breuer, A. D. Friedman, Digital
Systems Testing and Testable Design, Piscataway,
NewJersey: IEEE Press, 1990.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

