
Spec-based flip-flop and latch repeater planning

Man Chung Hon

Intel Corportation

Santa Clara, CA 95054, USA

manch.c.hon@intel.com

Abstract— Shrinking process geometries and fre-

quency scaling give rise to an increasing number of

interconnects that require multiple clock cycles. This

paper explores efficient techniques to insert flip-flops

and latches to meet pre-determined latency and mar-

gin constraints at the receivers. Previous approaches

push timing margins to either ends of interconnect.

We present an O(n log n)-time algorithm to insert flip-

flops that evens out timing margins across the entire

interconnect, resulting in more robust designs and

faster design convergence. An O(n log n)-time exten-

sion to handle symmetric, two-phases latches is also

presented. Experimental results verify the correct-

ness and practicality of our approach.

I. Introduction

Deep submicron process has created a number of new
design challenges. Primary among them is the increas-
ing dominance of interconnects. Current scaling trends
show that the frequency of high-performance ICs approx-
imately doubles and the die size grows by 25% with every
process generation. Interconnect optimization techniques
such as repeater insertion and gate sizing have proven
effective in reducing interconnect delay. However, with
such short clock cycles, the delay on global signals may
be longer than one clock cycle even after being optimized
with these techniques. Insertion of clocked repeaters such
as flip-flops and latches become necessary on these signals.

In a typical design flow, microarchitects determine the
target latencies for each driver-receiver pair in the de-
sign during the early phase of design cycle. Traditionally,
flip-flops and latches are coded into RTL manually. It is
difficult for the circuit designers to try out different con-
figurations and placements. A recent study on the effect
of process scaling on repeaters [9] shows that, not only
is a clock cycle’s worth of metal length shrinking faster
than the scaling of geometries, it is also decreasing at a
much faster rate than the repeater-to-repeater distance.
It is predicted that at the 45-nm process node, as many
as one in every four repeaters is clocked [9].

There has been growing interests among researchers
on the problem of multi-cycle global interconnects. Lu,
Zhong, Koh and Chao [8] proposed an analytical for-
mulation for the simultaneous insertion of flip-flops and

buffers to minimize latencies. Hassoun, Alpert and Thi-
agarajan [3] combined routing, buffer and flip-flop inser-
tion in multiple clock domain systems. Both [8] and [3]
only work with two-pin nets, and do not respect latency
constraints specified a priori. Cocchini [2] extended van
Ginneken’s classical dynamic programming structure [12]
to simultaneously insert flip-flops and buffers, and can be
directed to either minimize latencies or to meet specified
latency constraints. This algorithm was in turn extended
by Seth, Zhao and Hu [10] to incorporate single phase
level-sensitive latches. As pointed out by Akkiraju and
Mohan [1], Cocchini’s approach puts all margins, both
positive and negative, to the first segment right after the
driver. (On a 2-pin net bounded by two flip-flops, margin
is defined to be the difference between a clock cycle and
the arrival time at the receiving flip-flop. On a multi-
fanout net, we take the minimum from all the receivers.)
Instead, [1] proposed another extension of van Ginneken
to insert flip-flops in such a way that margins are evenly
distributed in the driver and the receiver ends, while hold-
ing the middle segments timing-tight. Researchers have
also investigated techniques other than clocked repeaters.
Zhang, Hu and Chen [14] suggested a new global inter-
connect architecture using the wave-pipelining technique.
Lin and Zhou [7] applied retiming to improve the clock
speed on an initial flip-flop placement.

In this paper, we present an algorithm to insert flip-
flops to even out margins throughout the entire intercon-
nect. This way of margin distribution is often what a
circuit designer wants intuitively. In the case of positive

margin, putting all at the extremities of the interconnect,
as is done in Cocchini [2] and Akkiraju and Mohan [1],
makes the middle segments timing-critical. A large num-
ber of tight segments could pose challenges to downstream
design stages. This is especially problematic when design-
ers seek to improve the chip’s speed in minor revisions of
a taped-out design. The middle segments, which barely
pass the original frequency goal, may now come in with
negative margins. In the case of negative margin, putting
all at the ends of the interconnect makes the timing prob-
lem more difficult to fix. As an example, imagine a 2-pin
net with 9 flip-flops in between, and a negative margin
of −100 pico-seconds. Fixing 10 nets each with a −10 ps
margin is arguably easier than fixing one net with a −100
ps margin (Cochinni), or two nets with −50 ps margin

(Akkiraju and Mohan)
The remainder of the paper is organized as follows.

Section II sets up the flip-flop and latch insertion prob-
lems in terms of equivalent retiming problems. Section III
presents an efficient O(n log n)-time flip-flop insertion al-
gorithm that evens out margins. Section IV extends the
flop algorithm to handle 2-phase symmetric latches, which
also runs in O(n log n) time. Both algorithms are asym-
totically faster and easier to implement than previous
work. Section V presents experimental results, and we
conclude in Section VI.

II. Preliminaries

In this paper, we model the topology of an intercon-
nect as a tree T (V, E). V = {vd ∪ SN ∪ STN} is a set
of n nodes, with root vd and leaves SN of T being the
interconnect driver and receivers respectively. The inter-
mediate Steiner nodes STN contain candidate locations
for flop and latch insertion. E is a set of |V | − 1 edges
corresponding to wires. A stage is an ordered subset of
edges (u, u1), . . . , (uk, v) in E such that u is either vd or
contains a flop (latch), v is either in SN or contains a flop
(latch), and u1, . . . , uk are free of flops and latches. Each
receiver vr ∈ SN has a non-negative, integeral latency
requirement l(vr), and a non-negative required margin
m(vr). l(vr) specifies the number of flops, or in the case
of latches, half the number of latches, on the unique path
from vd to vr. The margin requirement states that the
signal must arrive at vr no later than m(vr) time-units
before the falling clock edge. We model the delay inside
a flop or a latch by a single, fixed real number dcell ≥ 0.

Our modeling of wire delay follows [1]. We assume the
delay of a wire to be proportional to the square root of
its RC-content. The maximum unrepeated distance for a
wire was computed based on performance and reliability
requirements. Buffers were inserted based on this distance
and simulations were done to compute the delay across
the wire. The delays were then curve-fitted to a linear
equation with respect to the square root of the wire’s total
RC-content. This allows us to quickly estimate the wire
delay d(e), under the assumption that the wire is part of
a buffered interconnect path.

We now describe our notion of proper latch timing. We
follow closely the definition in [4]. In particular, we re-
quire the latches to hold the same values as in an identi-
cal circuit in which all elements, including both gates and
wires, have zero propagation delay. The notion of proper
latch timing is structural in nature, in the sense that the
circuit should operate correctly regardless of the functions
it computes.

Formally, we seek to solve the following two problems:

1. Flip-Flop Repeater Insertion Problem Assign
flops to STN such that: (i) margins are equally dis-
tributed among all stages; and (ii) latency and mar-
gin requirements at the receivers are satisfied.

0

d v2

v6

v1

v3 v4 v5

v7

v8 v9

v10

v11

e1 e2

e3

e4 e5

e6

e7

e8

e9

e10

e11

0

0

1 1

2

2
3

vd e1 v1 e2
v

e

v e v e v

veve

e

v e

v

e

v

e

v

2

3

3 4 4 5 5

6

6 7

7

8 8 9 9

10

10

11

11

0

1 1 3

2

2

2

0 2

2 3

2

0

0

0

1

0 2

v

Fig. 1. Top: Original graph model T (V, E). d(e1), · · · , d(e5) = 1,
d(e6), · · · , d(e11) = 2. Receivers have required margins
m(v5) = 3, m(v9) = m(v11) = 2, and required latencies
l(v5) = 2, l(v9) = l(v11) = 3. Bottom: Transformed graph model
T ′(V ′, E′). Edges have implicit weight 0, unless otherwise
specified. Numbers on nodes are associated delays.

2. Latch Repeater Insertion Problem Assign two-
phase, symmetric level-sensitive latches to STN such
that: (i) latency and margin requirements at the re-
ceivers are satisfied; and (ii) timing is structurally
correct.

Let us break the circuit T into |vr| sub-circuits Tr, each
consisting of the unique 2-pin sub-net from the driver vd to
a single receiver vr. It is clear that distributing margins
evenly on the 2-pin net Tr amounts to minimizing the
clock period of Tr. The clock period of T is given by the
relation period(T) ≥ maxvr

period(Tr) ≥ period(Tr) for
all vr. Minimizing clock period of T evens out margins
by proxy.

Retiming [5] is a technique that relocates registers to
reduce cycle time while preserving circuit functionality.
As a first step, we convert each edge e ∈ E into a ver-
tex with propagation delay d(e). Formally, we transform
T (V, E) into another tree T ′(V ′, E′), with V ′ = V ∪ E

and each edge u
e
→ v in the original edge set E spawns

two edges in E′: u → e and e → v.

There are three possibilities for d(v′), v′ ∈ V ′. If
v′ comes from a receiver vr in the original vertex set V ,

d(v′) = m(vr). If v′ comes from an edge e ∈ E, d(v′) =
d(e). For all other vertices, d(v′) = 0.

As in [5], sequential elements are represented implicitly
by a non-negative integral weight w(e′) on e′ ∈ E′. In our
case, w(e′) = 0 except for the edges that are adjacent to a
receiver vr, in which case w(e′) = l(vr) (2l(vr) for latches)
(Fig. 1.) Note that the original flop or latch placement,
if there is any, is ignored. Our algorithms operate on the
transformed tree model T ′. For ease of exposition, we will
refer to both as T in the rest of the paper. Note that the
asymptotic bounds derived for T ′ also hold for T .

A retiming solution can be viewed as an integral label-
ing r of vertices. r(v) represents the number of sequentials
moved from v’s outputs toward its inputs. In particular,
if we require that r(vd) at the driver and r(vr) at all re-
ceivers to be equal, it is guaranteed that latencies at the
receivers remain the same after retiming. Since we model
delays across a clocked repeater as a constant dcell, it does
not factor in the selection of one retiming solution over
another. For the rest of the paper we assume dcell = 0.

III. Flip-Flop Insertion

A general framework to calculate the minimum period
is to perform a binary search over a range of possible clock
periods until a user-definied accuracy is reached. At each
step in the binary search, a new clock period is tried. Re-
timing is performed to recalculate r(v) at each node in an
attempt to make the circuit work with the current clock
period. The smallest period for which retiming succeeds
is returned as the best clock period.

The efficiency of the binary search depends strongly on
the retiming step in its inner loop. One algorithm for the
retiming step is the relaxation method, modelled after
the Bellman-Ford algorithm for the single source shortest
path problem [5, 11]. Shown in Fig. 2, relaxation works
on general graphs. We denote by δ(v) the latest arrival
time at v along any combinational path that terminates
at v. It is obvious that the clock period c is given by
c = maxv∈V δ(v). For a given set of r(v), we calculate
δ(v) for all v, which takes O(E) time. The relaxation
method thus runs in O(V E) time.

An analysis by Yen [13, 6] explains why the V − 1 loop
in lines 2-7 of Graph Flop Clk Feas (Fig. 2) works. The
latest arrival time δ(v) converges to its final value if the
edges along the longest path (in terms of propagation
time) from the source node vd to v are relaxed in order.
The sequence of edges relaxed in the loop consists of V −1
copies of some ordering of E, and therefore contains every
vertex-disjoint path as a subsequence. Since T is a tree,
there is a unique path from vd to v. There is thus no need
for the V −1 loop. Instead, we combine the calculation of
δ(v) with the relaxation of r in a single topological tour
of the nodes. The new linear-time relaxation algorithm is
shown in Fig. 2.

We bound the binary search in Fig. 2 from above with

Graph Flop Clk Feas(G,r,c)

/* Input: Graph G(V,E), label r, period c

* Output: Feasibility of c */

1 for each v ∈ V r(v) ← 0
2 for |V | − 1 {
3 Compute retimed edge weights

4 Compute δ(v) for all v ∈ V
5 for all v ∈ V such that δ(v) > c
6 r(v) ← r(v) + 1
7 }
8 Compute retimed edge weights

9 if maxv∈V δ(v) > c
10 then no feasible retiming

11 else the current r is legal

Tree Flop Clk Feas(T,r,c)

/* Input: Tree T(V,E), label r, period c

* Output: Feasibility of c */

1 for each v ∈ V r(v) ← 0
2 for v ∈ V in topological order {
3 Compute δ(v)
4 if δ(v) > c
5 then r(v) ← r(parent(v)) + 1
6 δ(v) ← d(v)
7 else r(v) ← r(parent(v))
8 }
9 Compute retimed edge weights

10 if maxv∈V δ(v) > c
11 then no feasible retiming

12 else the current r is legal

Tree Flop Insert(T,ε)
/* Tree Flip-Flop Insertion

* Input: Tree T(V,E), rel error ε
* Output: Retiming label r*/

1 dmax ← maxv∈V d(v)
2 chi ← maxvr

d(vd � vr)
3 clo ← maxvr

{d(vd � vr)/(l(vr) + 1)}
4 r ← 0
5 while chi − clo > ε ∗ dmax {
6 c ← (chi + clo)/2
7 if Tree Flop Clk Feas(T,r,c) = true

8 then chi ← c
9 else clo ← c
10 }
11 return r

Fig. 2. Clock feasibility test in FF retiming for general graphs,
clock feasibility test for trees and FF insertion for trees

1
0 φ1γ γ0

φ

Fig. 3. Two phase clocking scheme, reproduced from [4].

vd

d1 d2 d3 d4

v10

4

yx z

2

v1
2

v2
3

v3
1

v4
4

v5
8

v6
2

v7
1

v8
3

v9
2

v11

4

12

3

v

Fig. 4. The path v4 � v8 satisfying Condition 1 implies v5 � v7

meets the same condition. di denotes the sum of vertex delays in
the i-th stage.

chi = maxvr
d(vd � vr). This corresponds to the cir-

cuit being entirely combinational. The search is bounded
from below by clo = maxvr

{d(vd � vr)/(l(vr) + 1)},
which corresponds to margins being distributed perfectly
evenly along every driver to receiver path. Note that
for c >= clo, it is guaranteed that Tree Flop Clk Feas
leaves r(vr) = 0 = r(vd) for all receivers vr: the latency
requirement is satisfied throughout the binary search.
Tree Flop Insert solves Problem 1 in O(V log V) time for
any fixed ε.

IV. Latch Insertion

In a two-phase clocking scheme 〈φ0, γ0, φ1, γ1〉, two
clocking phases are employed (Fig. 3). φ0, φ1 denote the
duty cycle of the first and second phases, and γ0, γ1 de-
note the gaps. The period is given by φ0 +γ0 +φ1 +γ1. A
two-phase symmetric clocking scheme is characterized by
equal duty cycles and gaps: φ0 = φ1 = φ and γ0 = γ1 = γ.

The conditions for proper timing of T are based on con-
sidering the operation of T when all propagation delays
are 0. It can be shown that T is properly timed if and

only if for every path u
p
� v, the following condition is

satisfied [4]:

d(p) ≤ c

(
1 + w(p)

2

)
+ φ. (1)

Furthermore, we only need to make sure (1) is satisfied
for maximal paths. These are paths that start right after
a latch and ends right before another. To see this, note
that the right hand side of (1) stays the same as we take in
more nodes into the path, as long as the number of latches
does not change. On the other hand, more nodes could
potentially increase d(p), leading to a tighter inequality.
To reduce clutter on the formulas, we set φ = 0 for the
rest of the paper.

(1) leads to a greedy algorithm. Nodes are visited in
topological order staring with the driver. In Fig. 4, sup-
pose all the maximal paths up until v10 satisfy (1), and

we are considering whether a latch must be inserted be-
tween v10 and v11 to maintain timing feasibility. Applying
(1) to the maximal paths that end with v11, we consider
whether the following inequalities are satisfied:

y ≤
c

2
− x

y ≤
c

2
∗ 2 − d4 − x

...

y ≤
c

2
∗ 5 − d1 − d2 − d3 − d4 − x (2)

Case 1 Not satisfied. In this case we must insert a
latch. x becomes the new d5, the right hand sides of (2)
adjusted, and a new inequality is added to the set:

z ≤
c

2
− y

...

z ≤
c

2
∗ 6 − d1 − d2 − d3 − d4 − d5 − y (3)

Case 2 Satisfied. We can avoid adding a latch:

z ≤
c

2
− x − y

...

z ≤
c

2
∗ 5 − d1 − d2 − d3 − d4 − x − y (4)

The inequality satisfaction tests can be done more effi-
ciently by replacing (2) with a single inequality y ≤ dmin,
where dmin is the minimum of the right hand sides in (2):

dmin = min(
c

2
− x, . . . ,

c

2
∗ 5 − d1 − d2 − d3 − d4 − x).

Comparing the updated inequalities in (3) and (4) with
(2), it is evident that dmin can be computed efficiently.
Starting with dmin(vd) = c

2
at the driver, dmin(v) is com-

puted recursively from dmin(u), where u → v is an edge
in E, as follows:

dmin(v) =

⎧⎨
⎩

c
2

+ min(0, dmin(u) − d(u))
if u → v is latched

dmin(u) − d(u) otherwise
(5)

With (5), feasibility of any period c can be determined
in linear time (Fig. 5). Using this as a subroutine, a binary
search over the range of possible periods is performed. Let
D = maxv∈V d(v). The search is bounded by |V |∗D+2∗φ
from above, and 2 ∗ φ from below. This results in an
O(n log n)-time algorithm (Fig. 5).

V. Experimental Results

We implemented three different spec-based sequential
insertion algorithms in C++, and compared them on a
block from an Intel XeonTMmicroprocessor designed on
90-nm process technology.

Tree Latch Clk Feas(T,r,c)

/* Input: Tree T(V,E), label r, period c

* Output: Feasibility of c*/

1 for each v ∈ V r(v) ← 0
2 for v ∈ V in topological order {
3 Compute dmin(v) according to Eq 5

4 if v is source or sink

5 then r(v) ← 0
6 elseif d(v) > dmin(v)
7 then r(v) ← r(parent(v)) + 1
8 else r(v) ← r(parent(v))
9 }
10 for e = u → v ∈ E {
11 if w(e) − r(u) + r(v) < 0
12 then no feasible retiming

13 }
14 The current r is legal

Tree Latch Insert(T,ε)
/* Input: Tree T(V,E), rel error ε
* Output: Retiming label r*/

1 dmax ← maxv∈V d(v)
2 chi ← |V | ∗ dmax + 2 ∗ φ
3 clo ← 2 ∗ φ
4 r ← 0
5 while chi − clo > ε ∗ dmax {
6 c ← (chi + clo)/2
7 if Tree Latch Clk Feas(T,r,c) = true

8 then chi ← c
9 else clo ← c
10 }
11 return r

Fig. 5. Latch clock feasibility test for trees and latch insertion for
trees

TABLE I
Results of various sequential insertion algorithms. The

flop number of LATCH is half the number of latches.

Algorithm Flops RunTime (seconds)

SBFIA 14989 3104.38
RFLOP 14907 11.54
LATCH 15028.5 11.92

• SBFIA - Spec-based FF insertion from [1].

• RFLOP - FF insertion algorithm from Section III.

• LATCH - Latch insertion algorithm from Section IV.

The design has 1769 multi-cycle nets, with fanouts rang-
ing from 1 to 34. The nets’ topologies are discretized by
breaking the wires with a candidate insertion node ev-
ery 100 microns. The relative error ε is set to 0.001. All
experiments were run on a workstation with four Intel
XeonTM2.8GHz/512KB processors and 8GB of memory,
although none of the three algorithms exploit the paral-
lelism afforded by the machine.

As shown in Table I, the three algorithms used similar
amount of sequential resources. For accounting purpose
a latch is counted as half a flop. Note that even though
minimizing flop usage is not an explicit goal of RFLOP, it
used slightly fewer flops than SFBIA, while LATCH used
0.26% more. A more detailed study of the result shows
that RFLOP was more flop-efficient than SBFIA in every
fanout bucket.

The comparison on runtime is more pronounced. Both
RFLOP and LATCH finished under 12 seconds, while the
O(n2 log n)-time SFBIA took over 50 minutes.

We observe that stage spread – the difference between
maximum and minimum flop-to-flop propagation delay –
is smaller for RFLOP than SBFIA (Table II), validat-
ing our design goal of a more even margin distribution.
Errors from discretization and imbalance among multi-
ple receivers keep the spread positive. Perfectly balanced
margins would have given a spread of zero.

Both RFLOP and LATCH improved negative slacks
compared to SFBIA (Table III). In the case of LATCH,
all the negative slacks were wiped out. The median gain
on frequency over SFBIA ranges from 15.96% to 35.11%
for RFLOP, and 22.42% to 44.27% for LATCH.

VI. Conclusions

We have presented fast and practical algorithms for flop
and latch insertion to facilitate design of pipelined inter-
connects within the latency constraints at the receivers.
We argued that evening out timing margins across the
entire interconnect is more beneficial than pushing them
to either ends, and made it an explicit goal of our algo-
rithms to distribute margins evenly. Experimental results

TABLE II
Stage spread is measured in picoseconds. The number of

nets is given in parentheses next to the fanouts.

Algorithm No. Stage Spread
Flops Median Average

1-fanout (941)

SBFIA 5766 162.12 175.96
RFLOP 5766 58.23 80.31

2-fanout (456)

SBFIA 4968 249.78 253.46
RFLOP 4956 146.73 152.98

3-fanout (187)

SBFIA 1877 269.94 256.91
RFLOP 1876 183.30 181.92

4-fanout to 6-fanout (145)

SBFIA 1703 281.67 281.46
RFLOP 1671 205.34 200.73

7-fanout+ (40)

SBFIA 675 333.72 319.72
RFLOP 638 230.98 224.37

TABLE III
Negative slack is measured in picoseconds. The number of

nets is given in parentheses next to the fanouts.

Negative Slack Freq Gain
Total Worst Nets Median Average

1-fanout (941)

SBFIA -38242.2 -213.4 707 0 0
RFLOP -253.2 -16.6 192 17.51% 19.36%
LATCH 0.0 0.0 0 24.35% 29.67%

2-fanout (456)

SBFIA -17859.8 -220.0 413 0 0
RFLOP -69.1 -6.3 59 17.47% 17.13%
LATCH 0.0 0.0 0 23.47% 25.53%

3-fanout (187)

SBFIA -7704.4 -180.8 168 0 0
RFLOP -278.6 -15.0 44 15.96% 17.45%
LATCH 0.0 0.0 0 22.42% 26.48%

4-fanout to 6-fanout (145)

SBFIA -7756.8 -189.9 142 0 0
RFLOP -335.8 -15.8 60 16.24% 21.66%
LATCH 0.0 0.0 0 24.05% 29.27%

7-fanout+ (40)

SBFIA -3312.1 -169.0 40 0 0
RFLOP -119.4 -13.2 22 35.11% 32.36%
LATCH 0.0 0.0 0 44.27% 39.58%

demonstrate the efficiency and efficacy of the algorithms
on industrial test cases. unsrt

References

[1] N. Akkiraju and M. Mohan. Spec based flip-flop and
buffer insertion. In Proceedings of the 21st International
Conference on Computer Design, pages 270–275. IEEE
Computer Society, 2003.

[2] P. Cocchini. A methodology for optimal repeater inser-
tion in pipelined interconnects. Computer-Aided Design
of Integrated Circuits and Systems, IEEE Transactions
on, 22(12):1613–1624, 2003.

[3] S. Hassoun, C. J. Alpert, and M. Thiagarajan. Optimal
buffered routing path constructions for single and mul-
tiple clock domain systems. In Proceedings of the 2002
IEEE/ACM international conference on Computer-aided
design, pages 247–253. ACM Press, 2002.

[4] A. T. Ishii, C. E. Leiserson, and M. C. Papaefthymiou.
Optimizing two-phase, level-clocked circuitry. J. ACM,
44(1):148–199, 1997.

[5] C. Leiserson and J. Saxe. Retiming synchronous circuitry.
Algorithmica, 6(1):5–35, 1991.

[6] C. E. Leiserson and J. B. Saxe. A mixed-integer linear
programming problem which is efficiently solvable. J.
Algorithms, 9(1):114–128, 1988.

[7] C. Lin and H. Zhou. Retiming for wire pipelining in
system-on-chip. In Proceedings of the 2003 international
conference on on Computer-aided design, pages 215–220.
IEEE Computer Society, 2003.

[8] R. Lu, G. Zhong, C. Koh, and K. Chao. Flip-flop and
repeater insertion for early interconnect planning. In Pro-
ceedings of the conference on Design, automation and test
in Europe, page 690. IEEE Computer Society, 2002.

[9] P. Saxena, N. Menezes, P. Cocchini, and D. Kirkpatrick.
Repeater scaling and its impact on cad. Computer-Aided
Design of Integrated Circuits and Systems, IEEE Trans-
actions on, 23(4):451–463, 2004.

[10] V. Seth, M. Zhao, and J. Hu. Exploiting level sensitive
latches in wire pipelining. In Proceedings of the 2004
international conference on on Computer-aided design,
pages 283–290. IEEE Computer Society, 2004.

[11] N. Shenoy. Retiming: theory and practice. Integr. VLSI
J., 22(1-2):1–21, 1997.

[12] L. van Ginneken. Buffer placement in distributed rc-tree
networks for minimal elmore delay. In Proceedings of the
IEEE International Symposium on Circuits and Systems,
volume 2, pages 865–868. IEEE Computer Society, 1990.

[13] J. Yen. An algorithm for finding shortest routes from all
source nodes to a given destination in general networks.
Quarterly of Applied Mathematics, 27(4):526–530, 1970.

[14] L. Zhang, Y. Hu, and C. Chen. Wave-pipelined on-chip
global interconnect. In Proceedings of the Design Au-
tomation Conference Asia and South Pacific, page to ap-
pear. IEEE Computer Society, 2005.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

