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Abstract— This paper presents a fundamental re-

sult on buffer sizing. Given an interconnection wire

with n buffers evenly spaced along the wire, we would

like to size all buffers such that the Elmore delay is

minimized. It is well known that the problem can be

solved by an iterative algorithm which sizes one buffer

at a time. However, no closed form solution has ever

been reported. In this paper, we derive a closed form

buffer sizing function f(x) where f(x) gives the opti-

mal buffer size for the buffer at position x. We show

that f(x) can be expressed in terms of the Weierstrass

elliptic function ℘(x) and its derivative ℘′(x).

I. Introduction

Buffer insertion, buffer sizing and wire sizing have been
shown to be effective techniques in reducing interconnect
delay [1]. This paper focuses on the buffer sizing problem
under the Elmore delay model [2]. Suppose we only have
one buffer size and we want to insert a fixed number of
buffers into an interconnection wire for delay minimiza-
tion, it is well known that the buffers will be uniformly
spaced in the optimal solution [3, 4]. Provided that only
buffers of identical size are allowed, closed-form solutions
for the optimal number of buffers [5, 3] and their uniform
size [5] have already been reported. Clearly if we allow to
size the buffers, the overall delay will be further reduced.
Therefore, this paper considers the following buffer sizing
problem:

Given an interconnection wire with n buffers evenly
spaced along the wire, we would like to size all buffers such
that the Elmore delay is minimized. It is well known that
the problem can be solved by an iterative algorithm which
sizes one buffer at a time [6]. Chu and Wong [7] even con-
sidered a more general problem than ours and described
an algorithm running in polynomial time. However, no
closed form solution has ever been reported.

In this paper, we present a closed form solution to the
buffer sizing problem. Without loss of generality, we may
assume that the interconnection wire is of unit length rep-
resented by the interval [0, 1] with source (driver) at 0 and
sink (load) at 1. Let xi = i

n+1 be the position of buffer
i, for 1 ≤ i ≤ n. We derive a continuous function f(x)
such that f(xi) gives the optimal buffer size for buffer i,

for all i. The buffer sizing function f(x) can be expressed
in terms of the Weierstrass elliptic function ℘(x) and its
derivative ℘′(x) as follows:

f(x) = a +
b℘′(x) + c℘(x) + d

2(℘(x) − e)2
, (1)

where a, b, c, d, and e are constants.
The reminder of the paper is organized as follows. Sec-

tion II presents our circuit model and derives a recurrence
relation for optimal buffer sizing. Section III shows that
the recurrence relation for optimal buffer sizing implies
an ordinary differential equation. In Section IV, we give
a brief overview of the Weierstrass ℘(x) function and its
fundamental difference equation that will be used in Sec-
tion V to give our closed form expression (1). Section VI
briefly discusses an integration constant that arose during
our derivations and in Section VII, we show our experi-
mental results. Finally we conclude the paper in Section
VIII.

II. The recurrence relation

This section introduces our circuit model of an inter-
connect with several equally spaced buffers. We derive a
recurrence relation for the buffer sizes and show that it is
both a necessary and sufficient condition to minimize the
Elmore delay on the wire.

Consider an interconnect of length L that has a total
resistance of R and capacitance of C. The interconnect
has a driver resistance RD at the source and a load ca-
pacitance CL at the sink. To minimize the propagation
delay on the interconnect, we want to insert n buffers at
equally spaced locations, thus we split the interconnect
into n + 1 segments; each segment has a length of L

n+1 .
We have RS = R

n+1 and CS = C
n+1 being the segment

resistance and capacitance, respectively. (Since we do not
perform wire sizing, we can include the fringing capaci-
tance into the unit capacitance of our wire model and can
thus avoid limitations that occurred, for example, in [8]).
Each wire segment is modeled as a π-type RC-circuit.

A buffer of size b is represented by a switch-level RC-
circuit as shown in Fig. 1, where RB/b denotes its output
resistance, CBb denotes its input capacitance and CDb



Fig. 1. RC switch-level model of a buffer of size b.

Fig. 2. RC switch level interconnect between buffers i and i + 1.

denotes its output capacitance. For the ease of presen-
tation, we also model the driver and the load as buffers
of fixed sizes b0 = λ and bn+1 = µ, respectively, so that
RD = RB/b0 and CL = CBbn+1. The Elmore delay be-
tween buffer i and buffer i + 1 is, as shown in Fig. 2,

EDi =
RB

bi
(CDbi+CS+CBbi+1)+RS(

CS

2
+CBbi+1) (2)

and the total delay from the driver to the load is

ED =
n∑

i=0

EDi. (3)

Clearly, (3) is only a function of b1, b2, ..., bn since all
other parameters depend on the physical device character-
istics. As it was stated above, b0 = λ and bn+1 = µ define
boundary conditions because the driver and the load are
fixed. The problem therefore consists in finding positive
b∗1, b∗2, ..., b∗n that minimize (3).

A neccessary condition is that the partial derivatives of
ED with respect to all bi are equal to zero, i. e.,

∂

∂bi
ED = 0 ∀i = 1...n. (4)

Since bi only appears in the expressions of EDi−1 and
EDi, we get

RSCB + RBCB
1

bi−1
− RBCS

1
b2
i

− RBCB
bi+1

b2
i

= 0. (5)

Solving for bi yields our basic recurrence relation for op-
timal buffer sizing,

b2
i =

bi+1 + CS/CB

b−1
i−1 + RS/RB

∀i = 1, ..., n. (6)

To simplify the notation in the following sections, we de-
fine

α

n + 1
=

CS

CB
=

C

(n + 1)CB
,

β

n + 1
=

RS

RB
=

R

(n + 1)RB
.

(7)
Then (6) becomes

b2
i =

bi+1 + α/(n + 1)
b−1
i−1 + β/(n + 1)

. (8)

Note that (8) gives a recurrence relation for the buffer
sizes with bi expressed as a function of bi−1 and bi+1 with
boundary values b0 = λ and bn+1 = µ. Furthermore, it is
both a necessary and sufficient condition to minimize the
Elmore delay expression (3). To see this, we note that (3)
is of the form

ED(b1, ..., bn) =
T∑

i=1

ai

n∏
j=1

b
cij

j (9)

where the ai are non-negative, bj are positive and cij

are real numbers. Equation (9) is a posynomial with T
terms and n variables. Under a change of variables bi =
edi , ED(d1, ..., dn) is a convex function of (d1, ..., dn).
Therefore, the local optimum determined by (8) is simul-
taneously a global optimum.

III. ODE Formulation

In the following sections, we derive our closed form ex-
pression f(x). First, we show that the recurrence relation
for optimal buffer sizing (8) implies a second order ordi-
nary differential equation. We will use this ODE then in
Section V to find the buffer sizing function f(x).

In a first step, we replace bi in (8) by f(xi) and have

f(x)2 =
f(xi+1) + α/(n + 1)

f(xi−1)−1 + β/(n + 1)
(10)

Next we set xi = x and ∆x = 1
n+1 . We have xi+1 =

x + ∆x, xi−1 = x − ∆x, and 1
n+1 · 1

n ≈ ∆x2. Equation
(10) becomes

f(x)2 =
f(x + ∆x) + ∆x2nα

f(x − ∆x)−1 + ∆x2nβ
. (11)

To show that the RHS of (11) effectively defines a second
order ordinary differential equation, it is useful to substi-
tute f(x) = eg(x) and to perform a Taylor expansion of
the resulting exponential terms on the RHS, so we have

eg(x+∆x) =

eg(x) + ∆xg′eg +
1
2
∆x2eg(g′′ + g′2) + O(∆x3) (12)

for the numerator and a similar expression for the denomi-
nator. Collecting terms, (11) becomes the quotient of two



polynomials in ∆x,

f(x)2 = e2g(x) =

eg(1 + ∆xg′ + ∆x2( 1
2g′2 + 1

2g′′ + αne−g)) + O(∆x3)
e−g(1 + ∆xg′ + ∆x2( 1

2g′2 − 1
2g′′ + βneg)) + O(∆x3)

=
P (∆x)
Q(∆x)

= A(∆x). (13)

It is now our goal to find A(∆x) = a0 + a1∆x + a2∆x2 +
O(∆x3) so that f(x)2 = A(∆x). The ai are determined
by

(a0 + a1∆x + a2∆x2 + ...)(q0 + q1∆x + q2∆x2 + ...)

= p0 + p1∆x + p2∆x2 + O(∆x3). (14)

and we simply have to compare coefficients to get

a0 =
p0

q0
= e2g (15)

a1 =
1
q0

(p1 − a0q1) = e2gg′ − e2gg′ = 0 (16)

a2 =
1
q0

(p2 − a0q2 − a1q1)

= g′′e2g + αneg − βne3g

= e2g(g′′ + αne−g − βneg). (17)

Hence, (13) becomes

A(∆x) = e2g(1 + ∆x2(g′′ + αne−g − βneg)) + O(∆x3)

= e2g(x) = f(x)2 (18)

For the last step, we drop the terms of third and higher
order and require that g(x) satisfies the differential equa-
tion g′′ = βneg − αne−g.

An intermediate result is that the buffer sizing function
f(x) must satisfy

f(x) = eg(x), x =
i

n + 1
∀i = 0, ..., n + 1 (19)

where g(x) is a solution to the second-order ordinary dif-
ferential equation

g′′ = βneg − αne−g (20)

with the boundary conditions

g(0) = ln(λ) and g(1) = ln(µ). (21)

IV. Weierstrass elliptic function

Our buffer sizing function f(x) will be obtained by solv-
ing an elliptic integral and has the form of a rational func-
tion in terms of the Weierstrass ℘-function and its deriva-
tive ℘′. Before we solve the ODE from the last section,
we briefly state important properties of the Weierstrass
elliptic function. Due to space constraints, we refer to the
excellent presentation in [9] for further details.

Apart from being a prototype for all elliptic functions,
the Weierstrass ℘-function has the fundamental property
that it satisfies the differential equation

(℘′(x))2 = 4℘3(x) − g2℘(x) − g3. (22)

℘(x) and its derivative ℘′(x) have two parameters, g2

and g3, which are called invariants. We will use the
shorter notation ℘(x) and ℘′(x) instead of ℘(x; g2, g3)
and ℘′(x; g2, g3) in this paper.

The elliptic integral

x =
∫ ∞

y

(4t3 − g2t − g3)−
1
2 dt (23)

implicitely defines y as a function of x and cannot be
solved using elementary functions. However, differentiat-
ing leads to

(
dy

dx
)2 = 4y3 − g2y − g3 (24)

which is of the same form as (22). The solution is then
given by y = ℘(x) with g2, g3 as parameters [9]. This
relationship can be used to solve elliptic integrals of the
form

x =
∫ y

y0

dt√
h(t)

, (25)

where h(t) is a cubic or quartic polynomial. Provided that
y0 is a root of h(t), the solution to (25) is given by [9]

y = y0 +
1
4h′(y0)

℘(x) − 1
24h′′(y0)

, (26)

where ℘(x) is dependent on the invariants g2 and g3 of
the polynomial h(t). However, for our purposes, the more
general formula given by Weierstrass [9] allows the lower
bound y0 of the integral (25) to be any constant a, not
necessarily a root of h(t). The solution is then slightly
more complex, but it is still only a rational function in-
volving ℘(x), ℘′(x) and some constants,

y = a +

√
h(a)℘′(x)

2(℘(x) − 1
24h′′(a))2 − 1

48h(a)hiv(a)

+
1
2h′(a)(℘(x) − 1

24h′′(a)) + 1
24h(a)h′′′(a)

2(℘(x) − 1
24h′′(a))2 − 1

48h(a)hiv(a)
. (27)

Given the invariants g2 and g3 of h(t) as parameters, ℘
and ℘′ can be calculated using standard mathematical
software such as Mathematica. The derivations of (26)
and (27) are rather lengthy and therefore omitted from
this paper.

In the rest of this paper, we derive an elliptic integral
similar to (25) from the set of recurrence relations (8). Its
explicit solution f(x) is our optimal buffer sizing expres-
sion and has the same form as (27).

V. Closed form solution

In this section, we give the closed form expression f(x)
for optimal buffer sizing which has the form of a rational



function in terms of the Weierstrass functions ℘(x) and
℘′(x). We have found so far that f(x) = eg(x), where
g(x) satisfies the ODE (20). We will now derive an ODE
in f which finally can be solved using the Weierstrass ℘-
function.

As a first step, we multiply both sides of (20) by 2g′ and
apply the chain rule of differentiation backwards. Hence,

2g′g′′ = 2g′(nβeg − nαe−g) (28)
d

dx
(g′2) = 2n

d

dx
(βeg − αe−g) (29)

g′2 = 2n(βeg − αe−g) + c, (30)

where c is a constant of integration that has to be deter-
mined numerically. We briefly deal with this problem in
Section VI.

We now undo the substitution made in (13) so that
g(x) = ln f(x) and therefore g′ = f ′(x) · 1

f(x) . The desired
buffer sizing function f(x) is now given as the solution to
the differential equation

f ′2 =
(

df

dx

)2

= 2nβf3 + cf2 + 2nαf. (31)

Moving all terms with f to one side and integrating gives
an elliptic integral

∫
dx = x =

∫ f(x)

f(0)

dt

±
√

2nβt3 + ct2 + 2nαt
(32)

which essentially has the same form as (25). It only re-
mains to find the invariants g2 and g3 in order to apply
(27) to get a solution for f(x). This can be done by a
simple transform of variables

t′ =
2

nβ
· t − c

6nβ
(33)

in (32). This changes the expression under the radical
sign 2βnt3 + ct2 + 2αnt into

4t′3 − (
c2

12
− αβn2)t′ − (

1
12

αβn2c − c3

216
)

so that the invariants become

g2 =
c2

12
− αβn2, g3 =

1
12

αβn2c − c3

216
. (34)

This leads to our central result. The buffer sizing function
f(x) for optimal buffer sizing at equally spaced points
x = xi = i

n+1 , i = 0...n + 1, is given by

f(x) = λ +

√
h(λ)℘′(x)

2(℘(x) − 1
24h′′(λ))2

+ 1
2h′(λ)(℘(x) − 1

24h′′(λ)) + 1
24h(λ)h′′′(λ)

2(℘(x) − 1
24h′′(λ))2

, (35)

where h(t) = 2βnt3+ct2+2αnt and the Weierstrass func-
tion has the invariants (34) as parameters. f(x) fulfills the
boundary values f(0) = λ and f(1) = µ.

VI. Integration constant

In the last section, we did not give a description of
the integration constant c. For completeness, this section
shows that one can distinguish four non-trivial cases for
the behavior of f(x). Each case has its different expres-
sion that determines c.

1. From (20), g′′ can be either purely non-negative, then
g(x) and consequently f(x) = eg(x) are convex func-
tions and f(x) has the shape of a U , limited by the
boundary values. Setting g′′ = 0, we find that all bi,
including b0 = λ and bn+1 = λ, must be larger than
eln

√
α
β =

√
α
β . The slope f ′ from (31) must consist

of a decreasing part from λ to a minimum buffer and
an increasing part from the minimum to µ. It is not
hard to see that the value of this minimum is given
by the zero of (31) that lies to the right of

√
α
β which

is

bmin(c) =
−c +

√
c2 − 16αβn2

4βn
(36)

We then have a simple condition that the constant c
must fulfill: integrating and summing the two parts
of the slope must be equal to one,

1 =
∫ λ

bmin(c)

dy√
2nβy3 + cy2 + 2nαy

+
∫ µ

bmin(c)

dy√
2nβy3 + cy2 + 2nαy

. (37)

2. Conversely, if g′′ is strictly non-positive, f(x) is con-
cave and all bi are below

√
α
β . This case is analog to

the first one and leads to a similar condition.

3. Also, f ′ can have only one monotonic part and is
strictly increasing on the whole interval [λ;µ], then
λ ≤

√
α
β and µ ≥

√
α
β . We integrate the (positive)

slope f ′ from λ to µ and have a simpler condition for
c,

1 =
∫ µ

λ

dy√
2nβy3 + cy2 + 2nαy

. (38)

4. The case that f ′ is strictly decreasing and thus λ ≥√
α
β and µ ≤

√
α
β can be handled in a similar manner

as the previous one.

5. Note that if f ′ is equal to zero, f(x) =
√

α
β follows

as a trivial case.

For the cases 1-4, one can construct simple procedures to
find c. For case 3, for example, one can interpret (38) as
a function

d(c) =
∫ µ

λ

dy√
2nβy3 + cy2 + 2nαy

− 1. (39)

It is not hard to show that d(c) is monotonic with re-
spect to c and has a unique root which can be determined
efficiently by bisection, for example.
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Fig. 3. n = 50, b0 = 20, b51 = 10.
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Fig. 4. n = 12, b0 = 35, b13 = 40.
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Fig. 5. n = 25, b0 = 15, b26 = 35.

TABLE I
Physical parameters for unit buffer and wire

Buffer Wire

Output res. [kΩ] 4.5 resistance [ Ω
mm

] 620

Input cap. [fF] 0.425 capacitance [ fF
mm

] 58.5

intrinsic delay [ps] 45.8 length [mm] 1

VII. Experimental results

In this section, we show that our solution performs very
well in practice. We compare buffer sizes obtained by an
iterative method [7, 6] with values calculated by evaluat-
ing (35) at equally spaced points on the interval [0, 1].

For the physical parameters, we rely on values given
in [1]. More specifically, we consider a copper wire (ρ =
2.2µΩ · cm) with a width of 130 nm, a length of 1 mm

and an aspect ratio of 2.1:1. We add unit-length area
and fringing capacitance. These values are summarized
in table I. Applying (7), we have α = 137.65 and β =
0.1378. The following Fig. 3 - 5 plot iteratively obtained
buffer sizes (dots) and those calculated by applying (35)
(straight curve) for several combinations of b0, bn+1 and
n. We observed that our closed form expression shows
a very good agreement with iteratively calculated buffer
sizes.

VIII. Conclusion

In this paper we addressed the problem of sizing n uni-
formly spaced buffers on an interconnection wire to min-
imize Elmore delay.

Previously there was no known closed form solution to
this problem. We presented a closed-form buffer sizing
function f(x), expressed in terms of the Weierstrass ellip-
tic function ℘(x) and its derivative ℘′(x), such that f(xi)
gives the optimal buffer size for buffer i (at position xi),
1 ≤ i ≤ n.

We showed that the buffer sizes obtained by our closed
form expression matched very well with those obtained by
the iterative method [7, 6].

Clearly, our approach has some limitations, some of
which we would like to address in the future: First, our
solution is restricted to non-branch lines, however most
interconnects have a line topology. Second, the derivation
in Section III relies on the assumption of equally spaced
buffers with continuous size. In practice, obstacles and
area constraints require a different setup. Currently, one
has to resort to iterative procedures such as in [7].
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