
Post-Routing Redundant Via Insertion for Yield/Reliability Improvement*
Kuang-Yao Lee and Ting-Chi Wang

Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan
d924347@oz.nthu.edu.tw, tcwang@cs.nthu.edu.tw

Abstract - Reducing the yield loss due to via failure is one of the
important problems in design for manufacturability. A well
known and highly recommended method to improve via
yield/reliability is to add redundant vias. In this paper we study
the problem of post-routing redundant via insertion and
formulate it as a maximum independent set (MIS) problem. We
present an efficient graph construction algorithm to model the
problem, and an effective MIS heuristic to solve the problem.
The experimental results show that our MIS heuristic inserts
more redundant vias and distributes them more uniformly
among via layers than a commercial tool and an existing
method. The number of inserted redundant vias can be
increased by up to 21.24%. Besides, since redundant vias can
be classified into on-track and off-track ones, and on-track
ones have better electrical properties, we also present two
methods (one is modified from the MIS heuristic, and the other
is applied as a post processor) to increase the amount of on-
track redundant vias. The experimental results indicate that
both methods perform very well.

I. Introduction
With the advent of the very deep submicron (VDSM)

technologies, the process variations become more and more serious,
and thus achieving high yield rates on semiconductor chips will be
more difficult. In order to reduce the burden of manufacturers to
maintain the manufacturability and high yield rates, a new design
methodology, design for manufacturability (DFM), is suggested.
This design methodology proposes that in order to improve the
manufacturability and yield of a design, the manufacturability
issues could be considered during the physical design stage [1].

In an IC layout, a via provides a connection between two net
segments from adjacent metal layers. Due to the growing of the
design scale and/or the jumper-based solution to avoid the antenna
effect [11], the number of vias could become very large. However,
due to various reasons such as cut misalignment in a manufacturing
process, electromigration and thermal stress, a via may fail partially
or completely. For a partially failed via, the contact resistance and
the parasitic capacitance will increase and may induce timing
problems. On the other hand, a complete via failure will leave an
open net on the circuit. These may heavily impact the functionality
and yield of a design. Therefore, reducing the yield loss due to via
failure is one of the most important problems in DFM.
 A well known and highly recommended method to improve via
yield is to add a redundant via adjacent to a single via [2,3],
enabling a single via failure to be tolerated. Therefore, redundant
vias will improve the reliability of a design.

Although major EDA vendors have already added the redundant
via insertion feature to their routers, their results still have space to
improve. (The details will be discussed in section VI.) The tools
EYE/PEYE [4] reported in the literature are designed specially to
insert redundant vias in the post layout stage but the details of how
they do redundant via addition are not given. Besides, according to
[4] and the results of the commercial tool used in our experiments,
redundant vias are not evenly added on via layers.

[5] is the first work to consider redundant via insertion during
the routing stage, but it will overcount the number of alive vias
when all alive vias are critical, and cannot estimate the number of
free neighbors of alive vias accurately in the general case. (In [5],

the number of free neighbors of a via is the number of redundant
vias that can be inserted adjacent to the via without inducing any
design rule violation; a via with at least one free neighbor is called
an alive via.) [6] simultaneously considers redundant via insertion
and via minimization during routing. However, in order to reduce
the number of vias, the routed wire segments could become longer
and violate the antenna rules, and thus need to introduce more vias
to fix antenna problems in the post-routing stage. Besides, post-
routing ECO operations might also change the routing result and
introduce extra vias into the design. Therefore, no matter whether
the router considers the redundant via insertion issue or not, it is
usually necessary to consider redundant via insertion after detailed
routing to improve yield and reliability.

(a) (b)

(c)

(a) (b)

(c)
Fig. 1. Illustration of redundant via insertion.

Given a detailed routing solution, because the positions of
inserted redundant vias will affect the number of redundant vias
that can be inserted into the design, how to decide the position of
each inserted redundant via after detail routing is an important
problem. As shown in Fig. 1, we can see that there are only four
redundant vias inserted in (b), but as illustrated in (c), all of five
single vias can be inserted with redundant vias.

Therefore, in this paper we study the post-routing redundant via
insertion problem, and our contributions are threefold. First, we
reduce the problem into the maximum independent set problem.
All the vias of a circuit are considered simultaneously, and we
believe that doing this can get better results than considering
redundant via insertion layer by layer. Second, we present an
efficient algorithm to construct the conflict graph (to model the
problem) from a given detailed routing solution, and an effective
heuristic to find a maximal independent set of the graph. The
experimental results show that our MIS heuristic not only can
insert more redundant vias but also can make the inserted
redundant vias more evenly distributed among via layers, as
compared to a commercial tool and a method based on [6]. Third,
since redundant vias can be classified into on-track and off-track
ones, and on-track ones have better electrical properties, we also
propose two methods (one is modified from the MIS heuristic, and
the other is applied as a post processor) to increase the amount of
on-track redundant vias. The experimental results indicate that both
methods perform very well.

The rest of this paper is organized as follows. In section II we
show that the redundant via insertion problem can be transformed
into the maximum independent set problem. In section III, an

* The work was partially supported by the National Science Council
of Taiwan under Grant No. NSC-94-2220-E-007-015, and by the
Ministry of Economic Affairs of Taiwan under Grant No. MOEA-
94-EC-17-A-01-S1-031.

(a) Original routing
(b) One solution to

redundant via
insertion

(c) A best solution
to redundant via
insertion

Single
via

Redundant
via

ME3

VIA2

ME2

VIA1

ME1

ME3

ME2

ME1

algorithm for constructing the conflict graph from a given detailed
routing solution is presented, and then we describe a heuristic
method for solving the maximum independent set problem on the
conflict graph in section IV. In section V, the methods for
increasing the ratio of on-track redundant vias are presented.
Section VI gives experimental results, and we conclude the paper
in section VII.

II. Problem Formulation
A. Technology

We assume that the manufacturing technology used in this paper
consists of 2m+1 layers denoted by ME1, VIA1, ME2, VIA2, …, MEm,
VIAm, MEm+1, where for all i and j, 1 ≤ i ≤ m+1 and 1 ≤ j ≤ m, MEi

and VIAj represent the ith metal layer and the jth via layer,
respectively. A via on VIAi involves the layers MEi, VIAi, and
MEi+1. We also assume that a set of design rules is given, and SP is
the spacing between two metals or cuts1.

B. Double vias
The redundant via insertion process is to add a redundant via

adjacent to a single via without violating any design rule. For
simplicity we name the single via and the inserted redundant via
adjacent to it as a double via. According to the position of a
redundant via, we can categorize a double via into four types, as
shown in Fig. 2; a single via is illustrated in (a) and its position is
defined at its center; (b), (c), (d) and (e) are the illustrations of the
four different double vias, and their types are named DVU, DVD,
DVL, and DVR, respectively. Given a single via i, its double via of
type j (j∈{DVU, DVD, DVL,DVR}) is denoted by dv(i,j). For each
single via, it has four choices to insert a redundant via if they do
not violate any design rule.

Fig. 2. Double via types.

Definition 1. (Feasible double via)
A double via of a single via is said to be feasible if replacing the

single via with the double via will not violate any design rule,
assuming none of the other single vias has a redundant via inserted
in the design; otherwise the double via is defined as an infeasible
one.

C. Post-routing redundant via insertion
With the definition of a double via, the post-routing redundant

via insertion problem is defined as follows.

Problem 1. Given a detailed routing solution, without re-routing
any signal net, the problem asks to replace single vias on signal
nets with double vias as many as possible subject to the following
conditions: First, each single via either remains unchanged or is
replaced by a double via. Second, after double via replacement, no
design rule is violated.

In the next two subsections, we will discuss two possible
formulations, maximum bipartite matching and maximum
independent set, to model Problem 1, and explain why the
formulation of maximum bipartite matching might not work.

C1. Maximum bipartite matching formulation

1 Depending on the technology, the spacing between metals could
be different from the spacing between cuts. Also these space rules
could vary on different layers. Nevertheless, our redundant via
insertion methods presented in this paper can be easily modified to
handle all these cases.

[6] reports that Problem 1 can be easily formulated as a
maximum bipartite matching problem but without giving any
further details. However, we find that either the formulation cannot
capture optimal solutions, or some maximum bipartite matchings
do not satisfy design rules. We use Fig. 3 to explain it.

Fig. 3(a) gives two different nets, and Fig. 3(b) is their 3D
illustrations. Fig. 3(c), (d) and (e) show feasible double vias D1, D3
and D2 for single vias V1, V3 and V2, respectively. Assume that the
double vias D1 and D2 will introduce some design rule violations if
they both exist in the design, and so do the double vias D3 and D2.
However, because D1 and D3 belong to the same net, they can both
exist in the design, as shown in Fig. 3(f).

We now describe how to formulate this example as a maximum
bipartite matching problem. We construct the bipartite graph G =
(V, E) as follows, where V=X Y and there is no edge between any
two vertices in X (or between any two vertices in Y). Each single
via corresponds to a vertex in X. Each feasible double via
corresponds to at least one edge in E. For two feasible double vias
originating from different single vias, if their existence in the
design will violate design rules, their corresponding edges in E will
be incident to the same vertex in Y. Fig. 3(g), (h) and (i) are three
possible bipartite graphs obtained from this formulation. In graph
Fig. 3(g) or (h), the set of bold edges is a maximum bipartite
matching solution. However, neither of them is a legal solution to
this example. On the other hand, the bipartite graph shown in Fig.
3(i) does not include the optimal solution to this example. We are
not aware of any other way to construct the bipartite graph, but at
least the three ones shown in Fig. 3(g), (h) and (i) cannot model
Problem 1 correctly.

(a) (b)

(c) (d)

(e) (f)

V1
C1

V2

V3

C2

V1
C1

V2

V3

C2

V1
C1

V2

V3

C2

V1
C1

V2

V3

C2

V1

V2

V3

C1

V1

V2

V3

C1

(g) (h) (i)
Fig. 3. Limitations with maximum bipartite matching.

C2. Maximum independent set formulation
Before introducing the maximum independent set formulation,

we need to define what a conflict graph is first.

Definition 2. (Conflict graph)
A conflict graph G(V,E) is an undirected graph constructed from

a detailed routing solution. For each single via i on a signal net, if
its double via of type j (i.e., dv(i,j)) is feasible, there exists a vertex
vi,j in V. An edge (vi,j,vi’,j’)∈E if and only if i=i’, or dv(i,j) and

(a) Single via (b) DVU (c) DVD

(e) DVR(d) DVL

D1

D2 D2
D3

D1

D2

D3

D1 D3

D2

D1
D2

D3

Net1 Net2

V1

V3

V2

dv(i’,j’) will cause design rule violations when both exist in the
design.
Lemma 1. Problem 1 can be reduced into the maximum
independent set problem.

Proof. Consider the conflict graph G(V,E) constructed from a
routed design. A maximum independent set MV of G is a maximum
vertex set such that, ∀ vi,j, vi’,j’ ∈ MV, (vi,j, vi’,j’) ∉E. A vertex of G
represents a feasible double via, and if two vertices are the
endpoints of an edge, the corresponding double vias will violate
design rules or they come from the same single via. Hence a
maximum independent set of G is a set having the maximum
number of double vias that can be inserted into the design.

With Lemma 1, Problem 1 can be reduced to the following
problem.
Problem 2. Given a detailed routing solution, the problem asks to
first construct a conflict graph from the design, then find a
maximum independent set of the conflict graph, and finally for each
vertex vi,j in the maximum independent set, replace the single via i
with the double via dv(i, j).

In the following two sections, we will describe how to efficiently
construct a conflict graph and find a maximal independent set of
the conflict graph.

III. Conflict Graph Construction
The construction of a conflict graph can be briefly divided into

the vertex construction step and the edge construction step.
For the vertex construction step, we have to identify the feasible

double vias of each single via. First, under the consideration of
time complexity, we construct an R-tree [7,8,9] for each metal
layer instead of constructing a single R-tree for all metal layers.
An R-tree and its variants are data structures that are similar to a B-
tree, but are used for indexing multi-dimensional information. In
this paper, we use an R-tree for indexing 2-dimensional
information. Typical queries on an R-tree specify a window of
interest and retrieve all data intersecting or contained in the
specified query window.

For a metal layer, the corresponding R-tree consists of the
bounding box2 of each object such as a wire segment, pin, or
obstacle on the layer; besides, the bounding box of the vias on
adjacent via layers are also included in the R-tree.

Definition 3. (DVE)
Suppose the bounding box of a single via i is

Ri=[x11,x12] [y11,y12], where (x11,y11) and (x12,y12) are the
coordinates of the lower left corner and the upper right corner of
the bounding box, respectively (see Fig. 4(a)); suppose the
bounding box of a double via dv(i,j) is Rdv(i,j) =[x21,x22] [y21,y22]
(see Fig. 4(b)). The reduced bounding box of dv(i,j), denoted by
DVE(i,j), is defined as Rdv(i,j)-Ri=[xe1,xe2] [ye1,ye2] (see Fig. 4(c)
for the illustration of DVE(i,DVU)).

Definition 4. (DRW)
Given a double via dv(i,j), suppose the bounding box of the

redundant via contained in dv(i, j) is Rrv=[xr1,xr2] [yr1,yr2]. Then,
the reduced design rule window of dv(i,j) is defined to be DRW(i,j)
=[xr1-SP, xr2+SP] [yr1-SP, yr2+SP]. (See Fig. 4(d) for the
illustration of DRW(i,DVU) which is the region with oblique lines.)

Definition 5. (DRWSET and DVESET)
The DRW set and DVE set of a single via i, denoted by

DRWSET(i) and DVESET(i), are defined to be {DRW(i,j) | dv(i,j) is
a feasible double via} and {DVE(i,j) | dv(i,j) is a feasible double
via}, respectively.

2 The bounding box of an object in the design is the contour of its
2-dimensional structure.

(x11, y11)

(x12, y12)

(xe2, ye2)

(xe1, ye1)

(xr2+SP, yr2+SP)

(x21, y21)

(x22, y22)

SP

(xr1-SP, yr1-SP)

DRW

SP
(xr2, yr2)

(xr1, yr1)

(x11, y11)

(x12, y12)

(x11, y11)

(x12, y12)

(xe2, ye2)

(xe1, ye1)

(xe2, ye2)

(xe1, ye1)(xe1, ye1)

(xr2+SP, yr2+SP)

(x21, y21)

(x22, y22)

SP

(x21, y21)

(x22, y22)

SP

(xr1-SP, yr1-SP)

DRW

SP
(xr2, yr2)

(xr1, yr1)

(xr1-SP, yr1-SP)

DRW

SP
(xr2, yr2)

(xr1, yr1)

 (a) (b) (c) (d)
Fig. 4. Illustration of the DVE and the DRW for DVU.

For the vertex construction step, since a vertex in the conflict
graph corresponds to a feasible double via, we need to check each
double via and decide if it is feasible. In the following, we describe
the details of the vertex construction step.
A. Vertex set construction

For each double via dv(i,j) originating from a single via i on
layer VIAk, we construct DRW(i,j) and use it as a query window to
perform the range query on R-trees of MEk and MEk+1.

If there are any objects intersecting with DRW(i,j), we cannot
replace single via i with dv(i,j), because it will induce design rule
violations. Hence, there will never be a vertex on the conflict graph
for dv(i,j). On the other hand, if there is no object intersecting with
DRW(i,j), we add a vertex vi,j to the conflict graph.

After constructing the vertex set of a conflict graph, we should
start the edge construction step. However, if we construct the edges
of the conflict graph after completing the vertex construction step,
the time complexity will be O(n2), where n is the number of
vertices in the conflict graph. In fact, we can construct the edges
more efficiently by constructing the vertex and edge sets
simultaneously, as detailed in following subsection.
B. Graph construction algorithm

If there is an edge connecting two vertices in a conflict graph,
the two double vias corresponding to the ends of the edge will
belong to the same single via, or induce some design rule violations
if they both exist in the design. Furthermore, a double via may
introduce design rule violations to another one only if their
corresponding single vias locate in nearby grids. Therefore, we first
sort all single vias by their x-coordinates in the non-decreasing
order. We then construct an R-tree for each metal layer, and finally
according to the sorted order of vias (denoted 1, 2, …, n,), we
perform the following four steps (i.e., Step 1 through Step 4) for
each single via to get the conflict graph.

Before stating the details of the graph construction algorithm
(called GCA), we introduce another R-tree named VNC first. VNC
consists of the DVEs of feasible double vias, and initially it is
empty. Once a single via i has been processed, each element of
DVESET(i) will be inserted into VNC. For each element of VNC, if
it will never intersect with any element of DRWSET(j), for those
sigle via j’s that have not been processed, it will be deleted from
VNC. With VNC, we can construct edges efficiently.
Step 1. Suppose i is the single via being under consideration and

xll is the x-coordinate of the lower left corner of the
bounding box of i. If i is located in (xi,yi) and none of the
x-coordinates of single vias 1, 2, …, i-1 is equal to xi, we
retrieve the elements of VNC contained in the range [-∞,
xll SP] [-∞,+∞] and delete them from VNC, since these
elements will never overlap with any element of
DRWSET(j) with j≥ i.

Step 2. We start the vertex construction step for i. For each dv(i,j),
we use DRW(i,j) as the query window to do the range
query on the R-trees of adjacent metal layers (Details are
as described in the previous subsection.). Suppose the set
of added vertices for i is called FV(i).

Step 3. First, we add an edge for each vertex pair of FV(i) to the
conflict graph. Then, we use each element of DRWSET(i)
as the query window to do the range query on VNC. For
each vertex vi,j∈FV(i), we can get a vertex set V’, where
for each vi’,j’∈V’, the corresponding element in VNC, i.e.,
DVE(i’,j’), intersects with DRW(i,j). However, we cannot

single via i

directly add an edge (vi,j,vi’,j’) to the conflict graph,
because vi,j, vi’,j’ may belong to the same net. Therefore,
we need to check each pair (vi,j,vi’,j’) to see if they really
introduce any design rule violation.

Step 4. We insert each element of DVESET(i) to VNC.
Note that in Step 3, we need to check each pair (vi,j,vi’,j’) to see if

they really introduce any design rule violation, because there are
cases where even if DVE(i’,j’) intersects with DRW(i,j), inserting
both double vias dv(i,j) and dv(i’,j’) into the design still will not
violate any design rule. A possible case is depicted in Fig. 5, where
single vias V1 and V2 belong to the same net. In Fig. 5(b), DVE(V1,
DVR) (DVE(V2,DVL), respectively) intersects with DRW(V2,DVL)
(DRW(V1,DVR), respectively). However, they will not violate any
design rule because they belong to the same net.

(a) (b)

Fig. 5. A case where no design rule is violated.
Fig. 6 illustrates how the graph construction algorithm GCA

works. In Fig. 6(a), there are four single vias in the design, and
they are numbered to form the sorted sequence. After processing
via 2, the elements of VNC and the conflict graph are shown in Fig.
6(b). When processing via 3, suppose DVE(1,DVU) and
DVE(1,DVR) are contained in [-∞, x3,ll SP] [-∞,+∞], where x3,ll

is the x-coordinate of the lower left corner of the bounding box of
via 3. Therefore, after Step 1, DVE(1,DVU) and DVE(1,DVR) are
deleted from VNC and the remaining elements in VNC are shown in
Fig. 6(c). Then, after Step 2, the conflict graph gets updated as
shown in Fig. 6(c). Finally, after Steps 3 and 4, VNC and the
conflict graph become those shown in Fig. 6(d). Via 4 will be
processed similarly.

1 2 3

4

1 2 3

4

V1,DVU

DVE(1,DVU)
DVE(1,DVR)

DVE(2, DVU)
DVE(2, DVL)
DVE(2, DVR)

VNC

V1,DVR

V2,DVU

V2,DVL V2,DVR

V1,DVU

DVE(1,DVU)
DVE(1,DVR)

DVE(2, DVU)
DVE(2, DVL)
DVE(2, DVR)

VNC

V1,DVR

V2,DVU

V2,DVL V2,DVR

(a) (b)

VNC
DVE(2, DVU)
DVE(2, DVL)
DVE(2, DVR)

V1,DVU

V1,DVR

V2,DVU

V2,DVL V2,DVR

V3,DVU

V3,DVL

VNC
DVE(2, DVU)
DVE(2, DVL)
DVE(2, DVR)

V1,DVU

V1,DVR

V2,DVU

V2,DVL V2,DVR

V3,DVU

V3,DVL

VNC
DVE(2, DVU)
DVE(2, DVL)
DVE(2, DVR)

DVE(3, DVU)
DVE(3, DVL)

V1,DVU

V1,DVR

V2,DVU

V2,DVL V2,DVR

V3,DVU

V3,DVL

VNC
DVE(2, DVU)
DVE(2, DVL)
DVE(2, DVR)

DVE(3, DVU)
DVE(3, DVL)

V1,DVU

V1,DVR

V2,DVU

V2,DVL V2,DVR

V3,DVU

V3,DVL

(c) (d)
Fig. 6. Illustration of how GCA works.

IV. Heuristic for Solving the MIS Problem
Now we present a heuristic that solves the maximum

independent set (MIS) problem on the conflict graph.
It is well known that the MIS problem is an NP-hard problem, so

it is unlikely that we can get an optimal solution in polynomial time.
Besides, the time complexities of MIS solvers are usually growing
very fast as the numbers of vertices and edges in the graph increase.
Therefore, our heuristic (called H2K) will solve the MIS problem
in an iterative manner. In each iteration, a subgraph of size k
(which specifies the maximum number of vertices in the subgraph
and is a user-specified constant) is extracted from the conflict graph,
a maximal independent set solution to the subgraph is sought and
added to the final solution, and the conflict graph is updated. H2K
will terminate when the conflict graph has no remaining vertices.

Before describing the details of H2K, we define the “feasible
number” for each vertex. The feasible number of each vertex vi,j in
the conflict graph is equal to the number of vertices vi’,j’’s

(excluding vi,j itself) in the conflict graph such that i=i’ (i.e., the
number of the other feasible double vias originating from the same
single via). Initially, the feasible number of each vi,j is equal to
|DVESET(i)|-1, where |DVESET(i)| is the cardinality of DVESET(i).
The feasible number and degree of each vertex will decrease during
the execution of H2K. The detailed steps of H2K are given as
follows.
Step 1. For the conflict graph G(V,E), we construct a priority

queue Q of V by using the feasible number and degree of
a vertex as the first and second keys. We give a vertex a
higher priority if it has smaller feasible number and
degree. In addition, we define a vertex set Vsol to be the
maximal independent set solution to G. Initially Vsol is an
empty set.

Step 2. We extract the set Vsub={v1,v2,…,vk} of the first k vertices
from Q, and construct the graph G’= (Vsub, E’), where
∀ vi, vj ∈ Vsub, (vi ,vj)∈E’ if (vi,vj)∈E.

Step 3. Solve the MIS problem on G’ and get the solution
denoted Vtsol.

Step 4. We set Vsol = Vsol Vtsol and then delete the vertices of
Vtsol and their adjacent vertices from G and Q. Moreover,
each edge incident to any deleted vertex is also removed
from G. Finally, we update the feasible number and
degree of each remaining vertex which is originally
adjacent to some deleted vertex. In addition, Q is also
updated.

Step 5. If V is empty, the vertex set Vsol is our final solution;
otherwise we go back to Step 2.

The rationale behind subgraph extraction (i.e., Step 2) is that if a
vertex with smaller feasible number and degree appears in the
maximal independent set solution to G’, less vertices will be
deleted from the conflict graph in Step 4. Therefore, we prefer
solving the MIS problem on a subgraph containing vertices with
smaller feasible numbers and degrees.

MIS

(1,3)

Priority queue

lowhigh
priority

a
b

c

d

e

f

g
h

i

(1,2)

(1,2)

(1,4)
(1,3)

(1,2)

(1,3)
(1,4)

(1,3)

ab c de f g hi

b

c i

c i
MISMIS

(1,3)

Priority queuePriority queue

lowhigh
priority lowhigh
priority

a
b

c

d

e

f

g
h

i

(1,2)

(1,2)

(1,4)
(1,3)

(1,2)

(1,3)
(1,4)

(1,3)

ab c de f g hi

b

c i

c i

 (a) (b)

Priority queue MIS

high lowpriority

a

e

f

g

(1,2)

(1,1)

(1,2)

(1,2)

fe g a

a

e

g

c i e g
Priority queuePriority queue MISMIS

high lowpriorityhigh lowpriority

a

e

f

g

(1,2)

(1,1)

(1,2)

(1,2)

fe g a

a

e

g

c i e g

(c) (d)
Fig. 7. Illustration of H2K.

Fig. 7 illustrates how our H2K works, where each vertex is
attached with a pair of numbers; the first number is the feasible
number, and the second number is the degree. To simplify the
example, we assume the feasible number of each vertex is equal to
one. In the beginning, the conflict graph G and the priority queue Q
are shown in Fig. 7(a). In Step 2, suppose k is set to 3, and the
extracted subgraph G’ has the vertex set {b, c, i} as shown in Fig. 7
(b). Suppose the maximal independent set solution to G’ found in
Step 3 is {c, i}. Then in Step 4, G and Q are updated by deleting
vertices c, i, and their adjacent vertices; each edge incident to any
deleted vertex is also removed from G. The resultant G and Q are
shown in Fig. 7 (c). At the second iteration, G’ will be the one
shown in Fig. 7 (d) and the maximal independent set solution to G’
is assumed to be {g, e}. After Step 4 is done, G is empty, and hence
the final solution found by H2K will be {c, e, i, g}.

V1

V2

dv(V1, DVR)

dv(V2, DVL)

V. On- and Off-track Redundant Vias
As shown in Fig. 8, a redundant via rv of a single via v is called

an on-track redundant via if rv is inserted on a wire segment
connecting to v; otherwise, rv is called an off-track redundant via.
Since an on-track redundant via takes less routing resource and has
better electrical properties than an off-track redundant via, on-track
redundant vias are more preferable. Therefore, if two solutions
contain the same number of redundant vias, we prefer the one with
more on-track redundant vias.

On-track

redundant via

Off-track

redundant via

On-track

redundant via

Off-track

redundant via

Fig. 8. Illustration of on- and off-track redundant vias.
A double via is said to be on-track if its associated redundant via

is an on-track redundant via; otherwise it is an off-track double via.
We now modify Problem 1 to consider the preference of on-track
redundant vias as well.
Problem 3. Given a detailed routing solution, without re-routing
any signal net, the problem asks to replace single vias on signal
nets with double vias as many as possible, and the ratio of on-track
double vias should be also as high as possible. In addition, two
conditions should be satisfied. First, each single via either remains
unchanged or is replaced by a double via. Second, after double via
replacement, no design rule is violated.

We present two methods to solve Problem 3. The first one is to
modify H2K by adding the third key to each vertex in the priority
queue. If a vertex corresponds to an on-track double via, it will
have a higher priority on this key. With this modification, for
vertices having the same feasible number and degree, on-track ones
will be extracted first, and hence have higher chances to be
included in the maximal independent set solution than off-track
ones. We call this method as H3K.

In addition, we also present a post processing heuristic (called
PPH). Given a redundant via insertion solution, PPH will increase
the amount of on-track double vias as many as possible while at the
same time without decreasing the total number of double vias.
PPH works as follows. It takes a conflict graph G(V,E) and a
redundant via insertion solution RVISorg as the input, and will
generate another vertex set RVISmod as the output. Initially RVISmod
is an empty set. In addition, a Boolean flag IS_DEL is used in PPH.
Without loss of generality, RVISorg is assumed to be a set of
vertices, and we will interchangeably use vertices and double vias.
Each vertex v of RVISorg will be processed by the following four
steps in a random order.
Step 1. Set IS_DEL to FALSE.
Step 2. If v is an on-track double via, go to Step 4. Otherwise, go

to Step 3.
Step 3. Check each adjacent vertex v’ of v in G. If v’ is an on-

track double via and each adjacent vertex of v’ (excluding
v) is not in RVISorg RVISmod, add v’ to RVISmod and set
IS_DEL to TRUE.

Step 4. If IS_DEL is FALSE, v will be moved from RVISorg to
RVISmod. Otherwise, v will be deleted from RVISorg.

VI. Experimental Results
The technology used in our experiment has 5 metal layers. For

simplicity we directly used the R*-tree package [9] for indexing 2-
dimensional information of each metal layer. Moreover, we used
the qualex-ms [10] as our MIS solver; we tried many different sizes
when extracting a subgraph, and found that if we limited the
subgraph to consist of 1500 vertices at most, it could get the best
performance in terms of the number of inserted redundant vias.

Table 1: The experimental results on test cases
C1 Statistics

 Via1 Via2 Via3 Via4 Total CPU(s)
Original 11979 11111 1462 42 24594
Upper 5218 10819 1443 42 17522

CT 2125 10797 1438 42 14402 19
RatC(%) 17.74 97.17 98.36 100 58.56

FNF 5165 10788 1438 42 17433 34
RatF(%) 43.12 97.09 98.36 100 70.88
ImpF(%) 143.06 -0.08 00.00 00.00 21.05

H2K 5175 10803 1441 42 17461 32
Rat2K(%) 43.20 97.23 98.56 100 71.00
Imp2K(%) 143.53 00.06 00.21 00.00 21.24

C2 Statistics
 Via1 Via2 Via3 Via4 Total CPU(s)

Original 17208 18086 4745 1118 41157
Upper 6078 17066 4359 1088 28591

CT 3476 17005 4351 1086 25918 28
RatC(%) 20.20 94.02 91.70 97.14 62.97

FNF 6059 16982 4325 1085 28451 45
RatF(%) 35.21 93.90 91.15 97.05 69.13
ImpF(%) 74.31 -0.14 -0.60 -0.90 09.77

H2K 6069 17011 4341 1086 28507 43
Rat2K(%) 35.27 94.06 91.49 97.14 69.26
Imp2K(%) 74.60 00.04 -0.23 00.00 09.99

C3 Statistics
 Via1 Via2 Via3 Via4 Total CPU(s)

Original 55878 55252 13066 2863 127059
Upper 23755 52780 12407 2785 91727

CT 13179 52506 12365 2777 80827 101
RatC(%) 23.59 95.03 94.63 97.00 63.61

FNF 23634 52539 12358 2784 91315 190
RatF(%) 42.30 95.09 94.58 97.24 71.84
ImpF(%) 79.33 00.06 -0.06 00.25 12.98

H2K 23687 52615 12375 2784 91461 192
Rat2K(%) 42.39 95.23 94.71 97.24 71.98
Imp2K(%) 79.73 00.21 00.08 00.25 13.16

C4 Statistics
 Via1 Via2 Via3 Via4 Total CPU(s)

Original 57216 64879 20864 8953 151912
Upper 14917 61300 17950 8180 102347

CT 4677 60978 17777 8142 91574 120
RatC(%) 08.17 93.99 85.20 90.94 60.28

FNF 14750 60848 17711 8148 101457 201
RatF(%) 25.78 93.79 84.89 91.01 66.79
ImpF(%) 215.37 -0.21 -0.37 00.07 10.79

H2K 14805 61008 17791 8161 101765 203
Rat2K(%) 25.88 94.03 85.27 91.15 66.99
Imp2K(%) 216.55 00.05 00.08 00.23 11.13

C5 Statistics
 Via1 Via2 Via3 Via4 Total CPU(s)

Original 148661 158862 40726 9137 357386
Upper 62312 148592 35729 8668 255301

CT 33216 147781 35505 8640 225142 311
RatC(%) 22.34 93.02 87.18 94.56 63.00

FNF 62033 147757 35453 8656 253899 697
RatF(%) 41.73 93.01 87.05 94.74 71.04
ImpF(%) 86.76 -0.02 -0.15 00.19 12.77

H2K 62174 148063 35535 8656 254428 710
Rat2K(%) 41.82 93.20 87.25 94.74 71.19
Imp2K(%) 87.18 00.19 00.08 00.19 13.01

[6] points out a simple heuristic for redundant via insertion and
its idea is that if there is only one feasible redundant via for a single
via, it adds the redundant via first. However, [6] does not provide
any further details. We also based on the above idea and
implemented a heuristic called FNF for comparative studies. Its
details are as follows. FNF takes a conflict graph as the input, and
creates a priority queue for vertices such that a vertex with smaller
feasible number has a higher priority. FNF iteratively extracts the
vertex with the smallest feasible number from the priority queue,
adds it into the final solution, and updates the priority queue and

v

the conflict graph. When the conflict graph or priority queue is
empty, FNF terminates.

We first compared our approach H2K with a commercial tool
and FNF on five real circuits C1-C5. Our experimental flow is as
follows. We used the commercial tool to generate the routed circuit,
and then inserted redundant vias by its redundant via insertion
feature. Each conflict graph used by H2K and FNF was generated
by our GCA algorithm that took the routed design as the input.
Then, H2K and FNF generated the circuits with inserted redundant
vias. Finally, the results obtained by the commercial tool, H2K and
FNF were verified with the built-in DRC and LVS verifier of the
commercial tool.

The results are shown in Table 1. “Original” gives the number of
single vias on each via layer before performing redundant via
insertion. “Upper” denotes the number of single vias that have at
least one feasible double via. “CT”, “FNF” and “H2K” are the
numbers of redundant vias inserted by the commercial tool, FNF
and H2K, respectively. “RatC(%)”, “RatF(%)” and “Rat2K(%)” are
the ratios of “CT”, “FNF” and “H2K” to “Original”, respectively.
“ImpF(%)” and “Imp2K(%)” represent the improvement rates of
FNF and H2K over the commercial tool, respectively. “CPU(s)”
gives the CPU time in seconds of different approaches. The
commercial tool was executed on a Sun Fire V440 machine with
four CPUs and 8GB memory; H2K, GCA and FNF were
implemented in C++ language running on a Linux based machine
with 2.4G processor and 2GB memory. Because H2K, GCA and
FNF used some Linux based packages, they could not be executed
on a Sun based platform. It should be noted that the CPU times for
the commercial tool only record the redundant via insertion step,
and before this step the design has been loaded into memory. The
CPU times of H2K and FNF include the time spent by GCA.

From Table 1, we can see that our approach H2K can insert
9.99%-21.24% more redundant via than the commercial tool.
Besides, the number of redundant vias inserted on each layer by
H2K is very close to the upper bound in all test cases, but the
number of redundant via inserted on Via1 by the commercial tool is
much smaller than the upper bound. Hence, the redundant vias
inserted by H2K are distributed more uniformly among via layers.
Moreover, the experimental results show that although FNF also
inserts more redundant vias than the commercial tool, its
improvement rate is still less than our approach H2K for each test
case. H2K can insert up to 529 more redundant vias than FNF with
comparable CPU time. In every test case, there is at least one via
layer on which FNF inserts less redundant vias than the
commercial tool. Nevertheless, our approach H2K can always
insert more or the same number of redundant vias among each via
layer than FNF and the commercial tool.

Table 2 shows the results of our approaches H3K and PPH when
considering on-track redundant vias. “FNF+PPH”, “H2K+PPH”
and “H3K+PPH” indicate that PPH was applied after FNF, H2K,
and H3K, respectively. It should be mentioned that although H3K
is design to consider on-track redundant vias directly, we would
like to see if its result still has room to improve, and therefore we
also applied PPH after H3K.

The columns “MISo” and “ONo” show the numbers of double
vias and the on-track double vias from each original solution,
respectively. After running PPH, the numbers of inserted double
vias and on-track double vias are shown in the columns “MISm”
and “ONm”, respectively. The column “Imp(%)” denotes the
improvement rate on the number of on-track double vias achieved
by PPH. “CPU(s)” gives the CPU time of PPH, but for “H3K”, it
represents the total CUP time of H3K.

From Table 2, we can see that even if we prefer on-track
redundant vias, the total number of inserted redundant vias can still
remain the same or even larger while the CPU time spent by PPH
is no more than 3 seconds. Compared to H2K, H3K can increase
the number of on-track double vias by up to 65.31% while almost
having the same number of inserted redundant vias and spending
the same or less CPU time. As for PPH, it helps to increase the
amount of on-track double vias by 19.99%-21.90% and 18.58%-

20.54% for FNF and H2K, respectively. Besides, for some test
cases, PPH can also slightly increase the total number of redundant
vias. Finally, we observe that running H3K alone is always good
enough to beat both “FNF+PHP” and “H2K+PHP” on the number
of on-track redundant vias, although its result can still be improved
by PHP for more than half of the test cases.

Table 2: The experimental results for H3K and PPH.
C1 Statistics

 MISo ONo MISm ONm Imp(%) CPU(s)
FNF+PPH 17433 7128 17433 8553 19.99 <1
H2K+PPH 17461 7167 17461 8552 19.32 <1

H3K 17461 11848 - - - 32
H3K+PPH 17461 11848 17461 11878 00.25 <1

C2 Statistics
 MISo ONo MISm ONm Imp(%) CPU(s)

FNF+PPH 28451 13132 28451 15986 21.73 1
H2K+PPH 28507 13406 28507 16047 19.70 <1

H3K 28506 20508 - - - 43
H3K+PPH 28506 20508 28506 20519 00.05 <1

C3 Statistics
 MISo ONo MISm ONm Imp(%) CPU(s)

FNF+PPH 91315 42084 91318 50551 20.12 1
H2K+PPH 91461 42397 91461 50275 18.58 1

H3K 91461 66205 - - - 190
H3K+PPH 91461 66205 91461 66212 00.01 1

C4 Statistics
 MISo ONo MISm ONm Imp(%) CPU(s)

FNF+PPH 101457 47649 101459 58084 21.90 1
H2K+PPH 101765 48073 101765 57946 20.54 <1

H3K 101765 70696 - - - 201
H3K+PPH 101765 70696 101765 70696 00.00 1

C5 Statistics
 MISo ONo MISm ONm Imp(%) CPU(s)

FNF+PPH 253899 117432 253903 142331 21.20 3
H2K+PPH 254428 118557 254428 142251 19.99 2

H3K 254428 180512 - - - 680
H3K+PPH 254428 180512 254428 180513 00.00 1

VII. Conclusions
In this paper we consider the post-routing redundant via insertion

problem which is formulated as the maximum independent set
problem. We present an efficient graph construction algorithm to
model the problem, and an effective heuristic to solve the
maximum independent set problem. Besides, we also describe how
to modify the MIS heuristic and give a post-processing method to
increase the amount of on-track redundant vias. Promising
experimental results are shown to support all our methods.

VIII. References
[1] L. K. Scheffer, “Physical CAD Changes to Incorporate Design for

Lithography and Manufacturability”, Proc. of ASPDAC, 2004.
[2] TSMC Reference Flow 5.0.
[3] Y. Zorian, D. Gizopoulos, C. Vandenberg and P. Magarshack, “Guest

Editors’ Introduction: Design for Yield and Reliability”, IEEE Trans on
Design & Test of Computers, vol. 21, May 2004.

[4] G. A. Allan, “Targeted Layout Modifications for Semiconductor
Yield/Reliability Enhancement”, IEEE Trans on Semiconductor
Manufacturing, vol. 17, Nov. 2004.

[5] G. Xu, Li-Da Huang, D. Z. Pan and M. D. F. Wong, “Redundant-Via
Enhanced Maze Routing for Yield Improvement”, Proc. of ASPDAC, 2005.

[6] H. Yao, Y. Cai, X. Hong and Q. Zhou, “Improved Multilevel Routing with
Redundant Via Placement for Yield and Reliability”, Proc. of GLSVLSI, 2005.

[7] A. Guttman, “R-Trees: A Dynamic Index Structure for Spatial Searching”,
Proc of SIGMOD, 1984.

[8] M. de Berg, J. Gudmundsson, M. Hammar and M. H. Overmars, “On R-trees
with Low Stabbing Number”, Proc. European Symposium on Algorithms,
2000.

[9] N. Beckmann, H.-P. Kriegel, R. Schneider and B. Seeger, “The R*-Tree: An
Efficient and Robust Access Method for Points and Rectangles”, Proc. of
SIGMOD, 1990.

[10] http://www.busygin.dp.ua/npc.html
[11] P. H. Chen, S. Malkani, C.-M. Peng and J. Lin, “Fixing Antenna Problem by

Dynamic Diode Dropping and Jumper Insertion”, Proc. of ISQED, 2000.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

