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Abstract - Reducing the yield loss due to via failure is one of the 
important problems in design for manufacturability. A well 
known and highly recommended method to improve via 
yield/reliability is to add redundant vias. In this paper we study 
the problem of post-routing redundant via insertion and 
formulate it as a maximum independent set (MIS) problem. We 
present an efficient graph construction algorithm to model the 
problem, and an effective MIS heuristic to solve the problem. 
The experimental results show that our MIS heuristic inserts 
more redundant vias and distributes them more uniformly 
among via layers than a commercial tool and an existing 
method. The number of inserted redundant vias can be 
increased by up to 21.24%. Besides, since redundant vias can 
be classified into on-track and off-track ones, and on-track 
ones have better electrical properties, we also present two 
methods (one is modified from the MIS heuristic, and the other 
is applied as a post processor) to increase the amount of on-
track redundant vias. The experimental results indicate that 
both methods perform very well.

I. Introduction 
With the advent of the very deep submicron (VDSM) 

technologies, the process variations become more and more serious, 
and thus achieving high yield rates on semiconductor chips will be 
more difficult. In order to reduce the burden of manufacturers to 
maintain the manufacturability and high yield rates, a new design 
methodology, design for manufacturability (DFM), is suggested. 
This design methodology proposes that in order to improve the 
manufacturability and yield of a design, the manufacturability 
issues could be considered during the physical design stage [1]. 

In an IC layout, a via provides a connection between two net 
segments from adjacent metal layers. Due to the growing of the 
design scale and/or the jumper-based solution to avoid the antenna 
effect [11], the number of vias could become very large. However, 
due to various reasons such as cut misalignment in a manufacturing 
process, electromigration and thermal stress, a via may fail partially 
or completely. For a partially failed via, the contact resistance and 
the parasitic capacitance will increase and may induce timing 
problems. On the other hand, a complete via failure will leave an 
open net on the circuit. These may heavily impact the functionality 
and yield of a design. Therefore, reducing the yield loss due to via 
failure is one of the most important problems in DFM. 
    A well known and highly recommended method to improve via 
yield is to add a redundant via adjacent to a single via [2,3], 
enabling a single via failure to be tolerated. Therefore, redundant 
vias will improve the reliability of a design. 

Although major EDA vendors have already added the redundant 
via insertion feature to their routers, their results still have space to 
improve. (The details will be discussed in section VI.) The tools 
EYE/PEYE [4] reported in the literature are designed specially to 
insert redundant vias in the post layout stage but the details of how 
they do redundant via addition are not given. Besides, according to 
[4] and the results of the commercial tool used in our experiments, 
redundant vias are not evenly added on via layers. 

[5] is the first work to consider redundant via insertion during 
the routing stage, but it will overcount the number of alive vias 
when all alive vias are critical, and cannot estimate the number of 
free neighbors of alive vias accurately in the general case. (In [5], 

the number of free neighbors of a via is the number of redundant 
vias that can be inserted adjacent to the via without inducing any 
design rule violation; a via with at least one free neighbor is called 
an alive via.) [6] simultaneously considers redundant via insertion 
and via minimization during routing. However, in order to reduce 
the number of vias, the routed wire segments could become longer 
and violate the antenna rules, and thus need to introduce more vias 
to fix antenna problems in the post-routing stage. Besides, post-
routing ECO operations might also change the routing result and 
introduce extra vias into the design. Therefore, no matter whether 
the router considers the redundant via insertion issue or not, it is 
usually necessary to consider redundant via insertion after detailed 
routing to improve yield and reliability. 
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Fig. 1. Illustration of redundant via insertion.

Given a detailed routing solution, because the positions of 
inserted redundant vias will affect the number of redundant vias 
that can be inserted into the design, how to decide the position of 
each inserted redundant via after detail routing is an important 
problem. As shown in Fig. 1, we can see that there are only four 
redundant vias inserted in (b), but as illustrated in (c), all of five 
single vias can be inserted with redundant vias. 

Therefore, in this paper we study the post-routing redundant via 
insertion problem, and our contributions are threefold. First, we 
reduce the problem into the maximum independent set problem. 
All the vias of a circuit are considered simultaneously, and we 
believe that doing this can get better results than considering 
redundant via insertion layer by layer. Second, we present an 
efficient algorithm to construct the conflict graph (to model the 
problem) from a given detailed routing solution, and an effective 
heuristic to find a maximal independent set of the graph. The 
experimental results show that our MIS heuristic not only can 
insert more redundant vias but also can make the inserted 
redundant vias more evenly distributed among via layers, as 
compared to a commercial tool and a method based on [6]. Third, 
since redundant vias can be classified into on-track and off-track 
ones, and on-track ones have better electrical properties, we also 
propose two methods (one is modified from the MIS heuristic, and 
the other is applied as a post processor) to increase the amount of 
on-track redundant vias. The experimental results indicate that both 
methods perform very well. 

The rest of this paper is organized as follows. In section II we 
show that the redundant via insertion problem can be transformed 
into the maximum independent set problem. In section III, an 
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algorithm for constructing the conflict graph from a given detailed 
routing solution is presented, and then we describe a heuristic 
method for solving the maximum independent set problem on the 
conflict graph in section IV. In section V, the methods for 
increasing the ratio of on-track redundant vias are presented. 
Section VI gives experimental results, and we conclude the paper 
in section VII. 

II. Problem Formulation 
A. Technology 

We assume that the manufacturing technology used in this paper 
consists of 2m+1 layers denoted by ME1, VIA1, ME2, VIA2, …, MEm,
VIAm, MEm+1, where for all i and j, 1 ≤ i ≤ m+1 and 1 ≤ j ≤ m, MEi

and VIAj represent the ith metal layer and the jth via layer, 
respectively. A via on VIAi involves the layers MEi, VIAi, and 
MEi+1. We also assume that a set of design rules is given, and SP is 
the spacing between two metals or cuts1.

B. Double vias 
The redundant via insertion process is to add a redundant via 

adjacent to a single via without violating any design rule. For 
simplicity we name the single via and the inserted redundant via 
adjacent to it as a double via. According to the position of a 
redundant via, we can categorize a double via into four types, as 
shown in Fig. 2; a single via is illustrated in (a) and its position is 
defined at its center; (b), (c), (d) and (e) are the illustrations of the 
four different double vias, and their types are named DVU, DVD,
DVL, and DVR, respectively. Given a single via i, its double via of 
type j (j∈{DVU, DVD, DVL,DVR}) is denoted by dv(i,j). For each 
single via, it has four choices to insert a redundant via if they do 
not violate any design rule.

Fig. 2. Double via types. 

Definition 1. (Feasible double via) 
A double via of a single via is said to be feasible if replacing the 

single via with the double via will not violate any design rule, 
assuming none of the other single vias has a redundant via inserted 
in the design; otherwise the double via is defined as an infeasible 
one. 

C. Post-routing redundant via insertion 
With the definition of a double via, the post-routing redundant 

via insertion problem is defined as follows. 

Problem 1. Given a detailed routing solution, without re-routing 
any signal net, the problem asks to replace single vias on signal 
nets with double vias as many as possible subject to the following 
conditions: First, each single via either remains unchanged or is 
replaced by a double via. Second, after double via replacement, no 
design rule is violated. 

In the next two subsections, we will discuss two possible 
formulations, maximum bipartite matching and maximum 
independent set, to model Problem 1, and explain why the 
formulation of maximum bipartite matching might not work. 

C1. Maximum bipartite matching formulation 

                                               
1 Depending on the technology, the spacing between metals could 
be different from the spacing between cuts. Also these space rules 
could vary on different layers. Nevertheless, our redundant via 
insertion methods presented in this paper can be easily modified to 
handle all these cases. 

[6] reports that Problem 1 can be easily formulated as a 
maximum bipartite matching problem but without giving any 
further details. However, we find that either the formulation cannot 
capture optimal solutions, or some maximum bipartite matchings 
do not satisfy design rules. We use Fig. 3 to explain it. 

Fig. 3(a) gives two different nets, and Fig. 3(b) is their 3D 
illustrations. Fig. 3(c), (d) and (e) show feasible double vias D1, D3
and D2 for single vias V1, V3 and V2, respectively. Assume that the 
double vias D1 and D2 will introduce some design rule violations if 
they both exist in the design, and so do the double vias D3 and D2.
However, because D1 and D3 belong to the same net, they can both 
exist in the design, as shown in Fig. 3(f). 

We now describe how to formulate this example as a maximum 
bipartite matching problem. We construct the bipartite graph G =
(V, E) as follows, where V=X Y and there is no edge between any 
two vertices in X (or between any two vertices in Y). Each single 
via corresponds to a vertex in X. Each feasible double via 
corresponds to at least one edge in E. For two feasible double vias 
originating from different single vias, if their existence in the 
design will violate design rules, their corresponding edges in E will 
be incident to the same vertex in Y. Fig. 3(g), (h) and (i) are three 
possible bipartite graphs obtained from this formulation. In graph 
Fig. 3(g) or (h), the set of bold edges is a maximum bipartite 
matching solution. However, neither of them is a legal solution to 
this example. On the other hand, the bipartite graph shown in Fig. 
3(i) does not include the optimal solution to this example. We are 
not aware of any other way to construct the bipartite graph, but at 
least the three ones shown in Fig. 3(g), (h) and (i) cannot model 
Problem 1 correctly.
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Fig. 3. Limitations with maximum bipartite matching. 

C2. Maximum independent set formulation
Before introducing the maximum independent set formulation, 

we need to define what a conflict graph is first. 

Definition 2. (Conflict graph) 
A conflict graph G(V,E) is an undirected graph constructed from 

a detailed routing solution. For each single via i on a signal net, if 
its double via of type j (i.e., dv(i,j)) is feasible, there exists a vertex 
vi,j in V. An edge (vi,j,vi’,j’)∈E if and only if i=i’, or dv(i,j) and 
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dv(i’,j’) will cause design rule violations when both exist in the 
design. 
Lemma 1. Problem 1 can be reduced into the maximum 
independent set problem. 

Proof. Consider the conflict graph G(V,E) constructed from a 
routed design. A maximum independent set MV of G is a maximum 
vertex set such that, ∀ vi,j, vi’,j’ ∈ MV, (vi,j, vi’,j’) ∉E. A vertex of G
represents a feasible double via, and if two vertices are the 
endpoints of an edge, the corresponding double vias will violate 
design rules or they come from the same single via. Hence a 
maximum independent set of G is a set having the maximum 
number of double vias that can be inserted into the design.                                              

With Lemma 1, Problem 1 can be reduced to the following 
problem. 
Problem 2. Given a detailed routing solution, the problem asks to 
first construct a conflict graph from the design, then find a 
maximum independent set of the conflict graph, and finally for each 
vertex vi,j in the maximum independent set, replace the single via i 
with the double via dv(i, j).

In the following two sections, we will describe how to efficiently 
construct a conflict graph and find a maximal independent set of 
the conflict graph. 

III. Conflict Graph Construction 
The construction of a conflict graph can be briefly divided into 

the vertex construction step and the edge construction step. 
For the vertex construction step, we have to identify the feasible 

double vias of each single via. First, under the consideration of 
time complexity, we construct an R-tree [7,8,9] for each metal 
layer instead of constructing a single R-tree for all metal layers.  
An R-tree and its variants are data structures that are similar to a B-
tree, but are used for indexing multi-dimensional information. In 
this paper, we use an R-tree for indexing 2-dimensional 
information. Typical queries on an R-tree specify a window of 
interest and retrieve all data intersecting or contained in the 
specified query window. 

For a metal layer, the corresponding R-tree consists of the 
bounding box2 of each object such as a wire segment, pin, or 
obstacle on the layer; besides, the bounding box of the vias on 
adjacent via layers are also included in the R-tree. 

Definition 3. (DVE) 
Suppose the bounding box of a single via i is 

Ri=[x11,x12] [y11,y12], where (x11,y11) and (x12,y12) are the 
coordinates of the lower left corner and the upper right corner of 
the bounding box, respectively (see Fig. 4(a)); suppose the 
bounding box of a double via dv(i,j) is Rdv(i,j) =[x21,x22] [y21,y22]
(see Fig. 4(b)). The reduced bounding box of dv(i,j), denoted by 
DVE(i,j), is defined as Rdv(i,j)-Ri=[xe1,xe2] [ye1,ye2] (see Fig. 4(c) 
for the illustration of DVE(i,DVU)). 

Definition 4. (DRW) 
Given a double via dv(i,j), suppose the bounding box of the 

redundant via contained in dv(i, j) is Rrv=[xr1,xr2] [yr1,yr2]. Then, 
the reduced design rule window of dv(i,j) is defined to be DRW(i,j) 
=[xr1-SP, xr2+SP] [yr1-SP, yr2+SP]. (See Fig. 4(d) for the 
illustration of DRW(i,DVU) which is the region with oblique lines.)  

Definition 5. (DRWSET and DVESET) 
The DRW set and DVE set of a single via i, denoted by 

DRWSET(i) and DVESET(i), are defined to be {DRW(i,j) | dv(i,j) is 
a feasible double via} and {DVE(i,j) | dv(i,j) is a feasible double 
via}, respectively. 

                                               
2 The bounding box of an object in the design is the contour of its 
2-dimensional structure.
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Fig. 4. Illustration of the DVE and the DRW for DVU. 

For the vertex construction step, since a vertex in the conflict 
graph corresponds to a feasible double via, we need to check each 
double via and decide if it is feasible. In the following, we describe 
the details of the vertex construction step. 
A. Vertex set construction 

For each double via dv(i,j) originating from a single via i on 
layer VIAk, we construct DRW(i,j) and use it as a query window to 
perform the range query on R-trees of MEk and MEk+1.

If there are any objects intersecting with DRW(i,j), we cannot 
replace single via i with dv(i,j), because it will induce design rule 
violations. Hence, there will never be a vertex on the conflict graph 
for dv(i,j). On the other hand, if there is no object intersecting with 
DRW(i,j), we add a vertex vi,j to the conflict graph. 

After constructing the vertex set of a conflict graph, we should 
start the edge construction step. However, if we construct the edges 
of the conflict graph after completing the vertex construction step, 
the time complexity will be O(n2), where n is the number of 
vertices in the conflict graph. In fact, we can construct the edges 
more efficiently by constructing the vertex and edge sets 
simultaneously, as detailed in following subsection. 
B. Graph construction algorithm 

If there is an edge connecting two vertices in a conflict graph, 
the two double vias corresponding to the ends of the edge will 
belong to the same single via, or induce some design rule violations 
if they both exist in the design. Furthermore, a double via may 
introduce design rule violations to another one only if their 
corresponding single vias locate in nearby grids. Therefore, we first 
sort all single vias by their x-coordinates in the non-decreasing 
order. We then construct an R-tree for each metal layer, and finally 
according to the sorted order of vias (denoted 1, 2, …, n,), we 
perform the following four steps (i.e., Step 1 through Step 4) for 
each single via to get the conflict graph. 

Before stating the details of the graph construction algorithm 
(called GCA), we introduce another R-tree named VNC first. VNC
consists of the DVEs of feasible double vias, and initially it is 
empty. Once a single via i has been processed, each element of 
DVESET(i) will be inserted into VNC. For each element of VNC, if 
it will never intersect with any element of DRWSET(j), for those 
sigle via j’s that have not been processed, it will be deleted from 
VNC. With VNC, we can construct edges efficiently.  
Step 1. Suppose i is the single via being under consideration and 

xll is the x-coordinate of the lower left corner of the 
bounding box of i. If i is located in (xi,yi) and none of the 
x-coordinates of single vias 1, 2, …, i-1 is equal to xi, we 
retrieve the elements of VNC contained in the range [-∞,
xll SP] [-∞,+∞] and delete them from VNC, since these 
elements will never overlap with any element of 
DRWSET(j) with j≥ i.

Step 2. We start the vertex construction step for i. For each dv(i,j),
we use DRW(i,j) as the query window to do the range 
query on the R-trees of adjacent metal layers (Details are 
as described in the previous subsection.). Suppose the set 
of added vertices for i is called FV(i). 

Step 3. First, we add an edge for each vertex pair of FV(i) to the 
conflict graph. Then, we use each element of DRWSET(i)
as the query window to do the range query on VNC. For 
each vertex vi,j∈FV(i), we can get a vertex set V’, where 
for each vi’,j’∈V’, the corresponding element in VNC, i.e., 
DVE(i’,j’), intersects with DRW(i,j). However, we cannot 

single via i



directly add an edge (vi,j,vi’,j’) to the conflict graph, 
because vi,j, vi’,j’ may belong to the same net. Therefore, 
we need to check each pair (vi,j,vi’,j’) to see if they really 
introduce any design rule violation. 

Step 4. We insert each element of DVESET(i) to VNC.
Note that in Step 3, we need to check each pair (vi,j,vi’,j’) to see if 

they really introduce any design rule violation, because there are  
cases where even if DVE(i’,j’) intersects with DRW(i,j), inserting 
both double vias dv(i,j) and dv(i’,j’) into the design still will not 
violate any design rule. A possible case is depicted in Fig. 5, where 
single vias V1 and V2 belong to the same net. In Fig. 5(b), DVE(V1,
DVR) (DVE(V2,DVL), respectively) intersects with DRW(V2,DVL)
(DRW(V1,DVR), respectively). However, they will not violate any 
design rule because they belong to the same net. 

                            
(a)                                                         (b) 

Fig. 5. A case where no design rule is violated. 
Fig. 6 illustrates how the graph construction algorithm GCA 

works. In Fig. 6(a), there are four single vias in the design, and 
they are numbered to form the sorted sequence. After processing 
via 2, the elements of VNC and the conflict graph are shown in Fig. 
6(b). When processing via 3, suppose DVE(1,DVU) and 
DVE(1,DVR) are contained in [-∞, x3,ll SP] [-∞,+∞], where x3,ll

is the x-coordinate of the lower left corner of the bounding box of 
via 3. Therefore, after Step 1, DVE(1,DVU) and DVE(1,DVR) are 
deleted from VNC and the remaining elements in VNC are shown in 
Fig. 6(c). Then, after Step 2, the conflict graph gets updated as 
shown in Fig. 6(c). Finally, after Steps 3 and 4, VNC and the 
conflict graph become those shown in Fig. 6(d). Via 4 will be 
processed similarly. 
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Fig. 6. Illustration of how GCA works.

IV. Heuristic for Solving the MIS Problem 
Now we present a heuristic that solves the maximum 

independent set (MIS) problem on the conflict graph. 
It is well known that the MIS problem is an NP-hard problem, so 

it is unlikely that we can get an optimal solution in polynomial time. 
Besides, the time complexities of MIS solvers are usually growing 
very fast as the numbers of vertices and edges in the graph increase. 
Therefore, our heuristic (called H2K) will solve the MIS problem 
in an iterative manner. In each iteration, a subgraph of size k
(which specifies the maximum number of vertices in the subgraph 
and is a user-specified constant) is extracted from the conflict graph, 
a maximal independent set solution to the subgraph is sought and 
added to the final solution, and the conflict graph is updated. H2K
will terminate when the conflict graph has no remaining vertices. 

Before describing the details of H2K, we define the “feasible 
number” for each vertex. The feasible number of each vertex vi,j in 
the conflict graph is equal to the number of vertices vi’,j’’s 

(excluding vi,j itself) in the conflict graph such that i=i’ (i.e., the 
number of the other feasible double vias originating from the same 
single via). Initially, the feasible number of each vi,j is equal to 
|DVESET(i)|-1, where |DVESET(i)| is the cardinality of DVESET(i). 
The feasible number and degree of each vertex will decrease during 
the execution of H2K. The detailed steps of H2K are given as 
follows. 
Step 1. For the conflict graph G(V,E), we construct a priority 

queue Q of V by using the feasible number and degree of 
a vertex as the first and second keys. We give a vertex a 
higher priority if it has smaller feasible number and 
degree. In addition, we define a vertex set Vsol to be the 
maximal independent set solution to G. Initially Vsol is an 
empty set.   

Step 2. We extract the set Vsub={v1,v2,…,vk} of the first k vertices 
from Q, and construct the graph G’= (Vsub, E’), where 
∀ vi, vj ∈ Vsub, (vi ,vj)∈E’ if (vi,vj)∈E.

Step 3. Solve the MIS problem on G’ and get the solution 
denoted Vtsol.

Step 4. We set Vsol = Vsol Vtsol and then delete the vertices of 
Vtsol and their adjacent vertices from G and Q. Moreover,
each edge incident to any deleted vertex is also removed 
from G. Finally, we update the feasible number and 
degree of each remaining vertex which is originally 
adjacent to some deleted vertex. In addition, Q is also 
updated. 

Step 5. If V is empty, the vertex set Vsol is our final solution; 
otherwise we go back to Step 2. 

The rationale behind subgraph extraction (i.e., Step 2) is that if a 
vertex with smaller feasible number and degree appears in the 
maximal independent set solution to G’, less vertices will be 
deleted from the conflict graph in Step 4. Therefore, we prefer 
solving the MIS problem on a subgraph containing vertices with 
smaller feasible numbers and degrees. 
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Fig. 7. Illustration of H2K.

Fig. 7 illustrates how our H2K works, where each vertex is 
attached with a pair of numbers; the first number is the feasible 
number, and the second number is the degree. To simplify the 
example, we assume the feasible number of each vertex is equal to 
one. In the beginning, the conflict graph G and the priority queue Q
are shown in Fig. 7(a). In Step 2, suppose k is set to 3, and the 
extracted subgraph G’ has the vertex set {b, c, i} as shown in Fig. 7 
(b). Suppose the maximal independent set solution to G’ found in 
Step 3 is {c, i}. Then in Step 4, G and Q are updated by deleting 
vertices c, i, and their adjacent vertices; each edge incident to any 
deleted vertex is also removed from G. The resultant G and Q are 
shown in Fig. 7 (c). At the second iteration, G’ will be the one 
shown in Fig. 7 (d) and the maximal independent set solution to G’
is assumed to be {g, e}. After Step 4 is done, G is empty, and hence 
the final solution found by H2K will be {c, e, i, g}. 

V1

V2

dv(V1, DVR)

dv(V2, DVL) 



V. On- and Off-track Redundant Vias 
As shown in Fig. 8, a redundant via rv of a single via v is called 

an on-track redundant via if rv is inserted on a wire segment 
connecting to v; otherwise, rv is called an off-track redundant via. 
Since an on-track redundant via takes less routing resource and has 
better electrical properties than an off-track redundant via, on-track 
redundant vias are more preferable. Therefore, if two solutions 
contain the same number of redundant vias, we prefer the one with 
more on-track redundant vias. 

On-track

redundant via

Off-track

redundant via

On-track

redundant via

Off-track

redundant via

Fig. 8. Illustration of on- and off-track redundant vias. 
A double via is said to be on-track if its associated redundant via 

is an on-track redundant via; otherwise it is an off-track double via. 
We now modify Problem 1 to consider the preference of on-track 
redundant vias as well. 
Problem 3. Given a detailed routing solution, without re-routing 
any signal net, the problem asks to replace single vias on signal 
nets with double vias as many as possible, and the ratio of on-track 
double vias should be also as high as possible. In addition, two 
conditions should be satisfied. First, each single via either remains 
unchanged or is replaced by a double via. Second, after double via 
replacement, no design rule is violated. 

We present two methods to solve Problem 3. The first one is to 
modify H2K by adding the third key to each vertex in the priority 
queue. If a vertex corresponds to an on-track double via, it will 
have a higher priority on this key. With this modification, for 
vertices having the same feasible number and degree, on-track ones 
will be extracted first, and hence have higher chances to be 
included in the maximal independent set solution than off-track 
ones. We call this method as H3K.

In addition, we also present a post processing heuristic (called 
PPH). Given a redundant via insertion solution, PPH will increase 
the amount of on-track double vias as many as possible while at the 
same time without decreasing the total number of double vias. 
PPH works as follows. It takes a conflict graph G(V,E) and a 
redundant via insertion solution RVISorg as the input, and will 
generate another vertex set RVISmod as the output. Initially RVISmod
is an empty set. In addition, a Boolean flag IS_DEL is used in PPH.
Without loss of generality, RVISorg is assumed to be a set of 
vertices, and we will interchangeably use vertices and double vias.  
Each vertex v of RVISorg will be processed by the following four 
steps in a random order. 
Step 1. Set IS_DEL to FALSE.
Step 2. If v is an on-track double via, go to Step 4. Otherwise, go 

to Step 3. 
Step 3. Check each adjacent vertex v’ of v in G. If v’ is an on-

track double via and each adjacent vertex of v’ (excluding 
v) is not in RVISorg RVISmod, add v’ to RVISmod and set 
IS_DEL to TRUE.

Step 4. If IS_DEL is FALSE, v will be moved from RVISorg to 
RVISmod. Otherwise, v will be deleted from RVISorg.

VI. Experimental Results 
The technology used in our experiment has 5 metal layers. For 

simplicity we directly used the R*-tree package [9] for indexing 2-
dimensional information of each metal layer. Moreover, we used 
the qualex-ms [10] as our MIS solver; we tried many different sizes 
when extracting a subgraph, and found that if we limited the 
subgraph to consist of 1500 vertices at most, it could get the best 
performance in terms of the number of inserted redundant vias. 

Table 1: The experimental results on test cases 
C1 Statistics 

 Via1 Via2 Via3 Via4 Total  CPU(s) 
Original 11979 11111 1462 42 24594  
Upper 5218 10819 1443 42 17522  

CT 2125 10797 1438 42 14402 19 
RatC(%) 17.74 97.17 98.36 100 58.56  

FNF 5165 10788 1438 42 17433 34 
RatF(%) 43.12 97.09 98.36 100 70.88  
ImpF(%) 143.06 -0.08 00.00 00.00 21.05  

H2K 5175 10803 1441 42 17461 32 
Rat2K(%) 43.20 97.23 98.56 100 71.00  
Imp2K(%) 143.53 00.06 00.21 00.00 21.24  

C2 Statistics 
 Via1 Via2 Via3 Via4 Total  CPU(s) 

Original 17208 18086 4745 1118 41157  
Upper 6078 17066 4359 1088 28591  

CT 3476 17005 4351 1086 25918 28 
RatC(%) 20.20 94.02 91.70 97.14 62.97  

FNF 6059 16982 4325 1085 28451 45 
RatF(%) 35.21 93.90 91.15 97.05 69.13  
ImpF(%) 74.31 -0.14 -0.60 -0.90 09.77  

H2K 6069 17011 4341 1086 28507 43 
Rat2K(%) 35.27 94.06 91.49 97.14 69.26  
Imp2K(%) 74.60 00.04 -0.23 00.00 09.99  

C3 Statistics 
 Via1 Via2 Via3 Via4 Total CPU(s) 

Original 55878 55252 13066 2863 127059  
Upper 23755 52780 12407 2785 91727  

CT 13179 52506 12365 2777 80827 101 
RatC(%) 23.59 95.03 94.63 97.00 63.61  

FNF 23634 52539 12358 2784 91315 190 
RatF(%) 42.30 95.09 94.58 97.24 71.84  
ImpF(%) 79.33 00.06 -0.06 00.25 12.98  

H2K 23687 52615 12375 2784 91461 192 
Rat2K(%) 42.39 95.23 94.71 97.24 71.98  
Imp2K(%) 79.73 00.21 00.08 00.25 13.16  

C4 Statistics 
 Via1 Via2 Via3 Via4 Total  CPU(s) 

Original 57216 64879 20864 8953 151912  
Upper 14917 61300 17950 8180 102347  

CT 4677 60978 17777 8142 91574 120 
RatC(%) 08.17 93.99 85.20 90.94 60.28  

FNF 14750 60848 17711 8148 101457 201 
RatF(%) 25.78 93.79 84.89 91.01 66.79  
ImpF(%) 215.37 -0.21 -0.37 00.07 10.79  

H2K 14805 61008 17791 8161 101765 203 
Rat2K(%) 25.88 94.03 85.27 91.15 66.99  
Imp2K(%) 216.55 00.05 00.08 00.23 11.13  

C5 Statistics 
 Via1 Via2 Via3 Via4 Total CPU(s) 

Original 148661 158862 40726 9137 357386  
Upper 62312 148592 35729 8668 255301  

CT 33216 147781 35505 8640 225142 311 
RatC(%) 22.34 93.02 87.18 94.56 63.00  

FNF 62033 147757 35453 8656 253899 697 
RatF(%) 41.73 93.01 87.05 94.74 71.04  
ImpF(%) 86.76 -0.02 -0.15 00.19 12.77  

H2K 62174 148063 35535 8656 254428 710 
Rat2K(%) 41.82 93.20 87.25 94.74 71.19  
Imp2K(%) 87.18 00.19 00.08 00.19 13.01  

[6] points out a simple heuristic for redundant via insertion and 
its idea is that if there is only one feasible redundant via for a single 
via, it adds the redundant via first. However, [6] does not provide 
any further details. We also based on the above idea and 
implemented a heuristic called FNF for comparative studies. Its 
details are as follows. FNF takes a conflict graph as the input, and 
creates a priority queue for vertices such that a vertex with smaller 
feasible number has a higher priority. FNF iteratively extracts the 
vertex with the smallest feasible number from the priority queue, 
adds it into the final solution, and updates the priority queue and 

v



the conflict graph. When the conflict graph or priority queue is 
empty, FNF terminates. 

We first compared our approach H2K with a commercial tool 
and FNF on five real circuits C1-C5. Our experimental flow is as 
follows. We used the commercial tool to generate the routed circuit, 
and then inserted redundant vias by its redundant via insertion 
feature. Each conflict graph used by H2K and FNF was generated 
by our GCA algorithm that took the routed design as the input. 
Then, H2K and FNF generated the circuits with inserted redundant 
vias. Finally, the results obtained by the commercial tool, H2K and 
FNF were verified with the built-in DRC and LVS verifier of the 
commercial tool. 

The results are shown in Table 1. “Original” gives the number of 
single vias on each via layer before performing redundant via 
insertion. “Upper” denotes the number of single vias that have at 
least one feasible double via. “CT”, “FNF” and “H2K” are the 
numbers of redundant vias inserted by the commercial tool, FNF
and H2K, respectively. “RatC(%)”, “RatF(%)” and “Rat2K(%)” are 
the ratios of “CT”, “FNF” and “H2K” to “Original”, respectively. 
“ImpF(%)” and “Imp2K(%)” represent the improvement rates of 
FNF and H2K over the commercial tool, respectively. “CPU(s)” 
gives the CPU time in seconds of different approaches. The 
commercial tool was executed on a Sun Fire V440 machine with 
four CPUs and 8GB memory; H2K, GCA and FNF were 
implemented in C++ language running on a Linux based machine 
with 2.4G processor and 2GB memory. Because H2K, GCA and 
FNF used some Linux based packages, they could not be executed 
on a Sun based platform. It should be noted that the CPU times for 
the commercial tool only record the redundant via insertion step, 
and before this step the design has been loaded into memory. The 
CPU times of H2K and FNF include the time spent by GCA.

From Table 1, we can see that our approach H2K can insert 
9.99%-21.24% more redundant via than the commercial tool. 
Besides, the number of redundant vias inserted on each layer by 
H2K is very close to the upper bound in all test cases, but the 
number of redundant via inserted on Via1 by the commercial tool is 
much smaller than the upper bound. Hence, the redundant vias 
inserted by H2K are distributed more uniformly among via layers. 
Moreover, the experimental results show that although FNF also 
inserts more redundant vias than the commercial tool, its 
improvement rate is still less than our approach H2K for each test 
case. H2K can insert up to 529 more redundant vias than FNF with 
comparable CPU time. In every test case, there is at least one via 
layer on which FNF inserts less redundant vias than the 
commercial tool. Nevertheless, our approach H2K can always 
insert more or the same number of redundant vias among each via 
layer than FNF and the commercial tool. 

Table 2 shows the results of our approaches H3K and PPH when 
considering on-track redundant vias. “FNF+PPH”, “H2K+PPH” 
and “H3K+PPH” indicate that PPH was applied after FNF, H2K,
and H3K, respectively. It should be mentioned that although H3K
is design to consider on-track redundant vias directly, we would 
like to see if its result still has room to improve, and therefore we 
also applied PPH after H3K.

The columns “MISo” and “ONo” show the numbers of double 
vias and the on-track double vias from each original solution, 
respectively. After running PPH, the numbers of inserted double 
vias and on-track double vias are shown in the columns “MISm” 
and “ONm”, respectively. The column “Imp(%)” denotes the 
improvement rate on the number of on-track double vias achieved 
by PPH. “CPU(s)” gives the CPU time of PPH, but for “H3K”, it 
represents the total CUP time of H3K.

From Table 2, we can see that even if we prefer on-track 
redundant vias, the total number of inserted redundant vias can still 
remain the same or even larger while the CPU time spent by PPH
is no more than 3 seconds. Compared to H2K, H3K can increase 
the number of on-track double vias by up to 65.31% while almost 
having the same number of inserted redundant vias and spending 
the same or less CPU time. As for PPH, it helps to increase the 
amount of on-track double vias by 19.99%-21.90% and 18.58%-

20.54% for FNF and H2K, respectively. Besides, for some test 
cases, PPH can also slightly increase the total number of redundant 
vias. Finally, we observe that running H3K alone is always good 
enough to beat both “FNF+PHP” and “H2K+PHP” on the number 
of on-track redundant vias, although its result can still be improved 
by PHP for more than half of the test cases.

Table 2: The experimental results for H3K and PPH.
C1 Statistics 

 MISo ONo MISm ONm Imp(%) CPU(s) 
FNF+PPH 17433 7128 17433 8553 19.99 <1 
H2K+PPH 17461 7167 17461 8552 19.32 <1 

H3K 17461 11848 - - - 32 
H3K+PPH 17461 11848 17461 11878 00.25 <1 

C2 Statistics 
 MISo ONo MISm ONm Imp(%) CPU(s) 

FNF+PPH 28451 13132 28451 15986 21.73 1 
H2K+PPH 28507 13406 28507 16047 19.70 <1 

H3K 28506 20508 - - - 43 
H3K+PPH 28506 20508 28506 20519 00.05 <1 

C3 Statistics 
 MISo ONo MISm ONm Imp(%) CPU(s) 

FNF+PPH 91315 42084 91318 50551 20.12 1 
H2K+PPH 91461 42397 91461 50275 18.58 1 

H3K 91461 66205 - - - 190 
H3K+PPH 91461 66205 91461 66212 00.01 1 

C4 Statistics 
 MISo ONo MISm ONm Imp(%) CPU(s) 

FNF+PPH 101457 47649 101459 58084 21.90 1 
H2K+PPH 101765 48073 101765 57946 20.54 <1 

H3K 101765 70696 - - - 201 
H3K+PPH 101765 70696 101765 70696 00.00 1 

C5 Statistics 
 MISo ONo MISm ONm Imp(%) CPU(s) 

FNF+PPH 253899 117432 253903 142331 21.20 3 
H2K+PPH 254428 118557 254428 142251 19.99 2 

H3K 254428 180512 - - - 680 
H3K+PPH 254428 180512 254428 180513 00.00 1 

VII. Conclusions 
In this paper we consider the post-routing redundant via insertion 

problem which is formulated as the maximum independent set 
problem. We present an efficient graph construction algorithm to 
model the problem, and an effective heuristic to solve the 
maximum independent set problem. Besides, we also describe how 
to modify the MIS heuristic and give a post-processing method to 
increase the amount of on-track redundant vias. Promising 
experimental results are shown to support all our methods.  
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