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Abstract— A new algorithm is proposed to reduce

the number of intermediate registers of a pipelined

circuit using a combination of multi-clock cycle paths

and clock scheduling. The algorithm analyzes the

pipelined circuit and determines the intermediate reg-

isters that can be removed. An efficient subsidiary al-

gorithm is presented that computes the minimum fea-

sible clock period of a circuit containing multi-clock

cycle paths. Experiments with a pipelined adder and

multiplier verify that the proposed algorithm can re-

duce the number of intermediate registers without de-

grading performance, even when delay variations ex-

ist.

I. Introduction

The sustained progress of VLSI technology has led to
increasing wire delays, shrinking clock period and grow-
ing chip size. Circuit pipelining is one technique that has
been used in order to shrink the clock period. Pipelin-
ing is a method in which a circuit is divided into a small
number of stages and intermediate registers are inserted
between stages to store the intermediate data. With this
method, extra circuit area is required to situate the addi-
tional intermediate registers and the size of the clock tree
is also increased.

Recently, to overcome this problem, several studies have
been carried out on wave pipelining [1], which is a method
of speeding up the circuit without the insertion of interme-
diate registers. However, wave pipelining requires tighter
timing constraints. In wave pipelining, there may exist a
number of ‘waves’ of data in a circuit at any given time.
Therefore, to avoid data collisions, delay balancing is re-
quired, which increases the circuit area.

This paper presents a new algorithm to reduce the num-
ber of intermediate registers of a pipelined circuit by us-
ing a combination of multi-clock cycle paths and clock
scheduling. A multi-clock cycle path is a path from reg-
ister to register where data transmission takes more than
one clock period. Note that in wave pipelining, all paths
are multi-clock cycle paths. Introducing a multi-clock cy-
cle path into a pipelined circuit allows some intermediate
registers to be removed. However, as mentioned above,
certain timing constraints must be satisfied. Therefore,
there is a tradeoff between area reduction from register
removal and area increase from delay balancing. Clock
scheduling is a technique in which the clock skew of a
register is intentionally introduced to improve circuit per-
formance by relaxing the timing constraints. Using clock
scheduling, more intermediate registers can be removed,

without the need for delay balancing.

The minimum feasible clock period in terms of clock
scheduling is obtained by linear programming [2], by
graph-theoretic approaches with binary search [3, 4], or
by graph-theoretic approaches without binary search [5].
Graph-theoretic approaches are based on construction of a
constraint graph that represents various constraints and
which can handle a circuit of practical size. The con-
straints are feasible if and only if the constraint graph
contains no negative cycle. In graph-theoretic approaches
with binary search [4], the Bellman-Ford shortest path
algorithm is used to decide whether the graph contains
a negative cycle and a simple negative cycle detection
method is employed to increase speed. The algorithm
proposed in [4] is for a circuit that contains single-clock
cycle paths only. However, when the algorithm [4] is ap-
plied to a circuit containing multi-clock cycle paths, there
are some cases for which the minimum feasible clock pe-
riod cannot be determined. The clock period for such a
circuit is bounded above, unlike the situation for a cir-
cuit containing only single-clock cycle paths. This range
of feasible clock periods has to be taken into account in
clock-schedule design.

In this paper, we initially discuss the constraints on
a circuit containing multi-clock cycle paths. These con-
straints take into account the range of feasible clock pe-
riods required to make the circuit tolerant of clock jitter.
Using the constraints, we enhance the algorithm in [4] to
find the minimum feasible clock period of a circuit that
contains multi-clock cycle paths. The enhanced minimum
clock-period algorithm uses the existence of a negative cy-
cle to narrow the binary search interval efficiently. A neg-
ative cycle exists whenever the constraints are infeasible.
Then, we propose an algorithm to reduce the number of
intermediate registers of a pipelined circuit by introducing
multi-clock cycle paths with clock scheduling. In the pro-
posed algorithm, all intermediate registers of the pipelined
circuit are initially removed. Then the minimum feasible
clock period of the resulting circuit is computed by the
proposed minimum clock-period algorithm. If this value
is too high, i.e. greater than the target minimum clock
period, then intermediate registers are repeatedly inserted
into the multi-clock cycle paths until the minimum feasi-
ble clock period has been sufficiently reduced.

Experiments with a pipelined adder and multiplier ver-
ify that, given a particular target clock-period range, the
proposed algorithm can reduce the number of intermedi-
ate registers, even when delay variations are present.



II. Preliminaries

We consider a circuit with a single clock consisting of
registers linked by combinatorial circuits. The clock tim-
ing s(v) of register v is the difference in clock signal arrival
time between v and an arbitrarily chosen (perhaps hypo-
thetical) reference register. The set of clock timings is
called a clock-schedule.

We make the basic assumption that a circuit works cor-
rectly if the following two types of constraint are satisfied
for each register pair with signal propagation [2, 6]:

Setup Constraint

s(u) − s(v) ≤ βu,vT − dmax(u, v) (1)

Hold Constraint

s(v) − s(u) ≤ dmin(u, v) − αu,vT (2)

where T is the clock period, dmax(u, v) (dmin(u, v)) is the
maximum (minimum) propagation delay from register u
to register v along a combinatorial circuit, and βu,v and
αu,v are given constants (βu,v > αu,v ≥ 0). Note that
for a pair of registers with a single-clock cycle path, βu,v

and αu,v are given by 1 and 0, respectively. This formu-
lation is sufficiently general to deal with multi-clock cycle
paths, a mixture of positive-edge and negative-edge reg-
isters, latch based circuitry, and multi-clocks that have
different periods.

If αu,v is 0 for every pair, the feasible clock period has
no upper bound, i. e. if the clock period T is feasible then
any T

′

( where T
′

≥ T ) is feasible. However, the feasible
clock period is bounded above if αu,v is not 0 for some
pair (u, v).

From the above constraints, when the clock schedule
and the signal propagation delay are known, the mini-
mum and maximum feasible clock period, Tmin and Tmax,
can be determined from the setup and hold constraints,
respectively.

If the clock timing is not fixed, then Tmin and Tmax

depend on each other. Tmin has to be minimized under
the constraint that the circuit works correctly throughout
a certain clock-period range, in order for the circuit to
tolerate clock jitter. The above constraints become:

Setup Constraint

s(u) − s(v) ≤ βu,vTmin − dmax(u, v) (3)

Hold Constraint

s(v) − s(u) ≤ dmin(u, v) − αu,vTmin − αu,vδ (4)

where δ is the clock-period range, i.e. δ = Tmax − Tmin.
Therefore if δ is given, then, by using the above con-
straints, clock timings can be determined so that the cir-
cuit works correctly for a clock period between Tmin and
Tmin + δ. In the following, our target is to minimize Tmin

under the constraint that the circuit is feasible through-
out the given clock-period range, i.e. that constraints (3)
and (4) hold.

These constraints are represented by the constraint
graph G(V, E) of the circuit, which is defined as follows:
a vertex v ∈ V corresponds to a register; a directed edge
(u, v) ∈ E corresponds to either type of constraint; an
edge (u, v) corresponding to the setup (hold) constraint
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Fig. 1. (a) Constraint graph G1. (b) Circuit graph CG1

(containing multi-clock cycle paths). (c) Min clock-period
computation by the algorithm shown in [4]. (d) Min clock-period
computation by proposed algorithm.

is called a Z-edge (D-edge), and the weight w(u, v) of
(u, v) is βu,vT − dmax(u, v)(dmin(u, v) − αu,vδ − αu,vT ).
The constraint graph G corresponding to clock period t
is denoted by Gt.

In a constraint graph G, for any cycle C, the cycle
weight w(C) is the sum of edge weights over the cycle.
The cycle weight can be expressed as kT + w, where T is
the clock period and k and w are constants.

Definition 1 In the constraint graph G, a cycle C for
which w(C) = kT + w is said to be of type 0, type P, or
type M, as k = 0, k > 0, or k < 0, respectively.

Theorem 1 Let C be a negative cycle in the constraint

graph Gt. If C is of type 0, then for any t
′

, there exists
a negative cycle in the constraint graph Gt′ .

Theorem 2 Let C be a cycle in the constraint graph G
such that w(C) = kT + w. If C is of type P, then for
any t < w/k, there exists a negative cycle in the constraint
graph Gt, whereas, if C is of type M, then for any t >
−w/k, there exists a negative cycle in the constraint graph
Gt.

Definition 2 Let C be a cycle in the constraint graph G
such that w(C) = kT +w. Then Bound(C) = w/k,−w/k,
or ∞, according to whether C is of type P, type M, or
type 0, respectively.

Example: For the constraint graph G1 shown in
Fig. 1 (a), the cycle C1 = (u, w2, v2, u) with w(C1) =
4T − 20 is of type P and Bound(C1) = 5. The cycle
C2 = (u, v1, w1, u) with w(C2) = −T + 6 is of type M
and Bound(C2) = 6.

Note that, in a constraint graph of a circuit that con-
tains just single-clock cycle paths, only type P and type
0 cycles can exist, whereas in a constraint graph of a cir-
cuit that contains multi-clock cycle paths, all three cycle
types can be present.

III. Minimum Feasible Clock Period

A. A circuit that contains just single-clock cycle paths

The minimum feasible clock period of a circuit that
contains just single-clock cycle paths can be determined
by graph-theoretic approach with binary search [4]. The
maximum signal propagation delay from a register to the
same register gives a lower bound of feasible clock period.
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Fig. 2. (a) Constraint graph G2. (b) Circuit graph CG2

(containing just single-clock cycle paths). (c) Min clock-period
computation by the algorithm shown in [4].

The difference of the maximum and minimum signal prop-
agation delay from a register to another register gives also
a lower bound of feasible clock period. They adopt the
larger of these two lower bounds as an initial lower bound
L of the binary search. They adopt the maximum signal
propagation delay between registers as an initial upper
bound U since it gives a feasible clock period even in zero
clock-skew framework.

In the algorithm [4], the initial lower bound L and up-
per bound U are initially checked. If L is feasible the
algorithm is stopped and output L as the minimum fea-
sible clock period. While, if L is infeasible, U is checked
to confirm there is no negative cycle of type 0. If there
exists a negative cycle of type 0, the circuit is infeasi-
ble and the algorithm is stopped. If U is feasible, the
algorithm does binary search by adjusting the lower and
upper bounds to determine the minimum feasible clock
period.

Using the algorithm shown in [4] let us determine the
minimum feasible clock period of the circuit shown in
Fig. 2 (b). Note that, throughout this paper, the preci-
sion used is 1. In this example, initial lower bound L = 2
and initial upper bound U = 6. So, the algorithm does
binary search between 2 and 6 as follows:

Check L(L = 2): G2
2 is infeasible, cycle C1 = (u, w, v, u)

with w(C1) = 3T − 10 is negative, so next step is
check U .

Check U(U = 6): G2
6 is feasible, so next step is check

M = (U + L/2).

Check M(M = 4 = (6 + 2/2)): G2
4 is feasible, so 4 be-

comes new upper bound U .

Check M(M = 3 = (4 + 2/2)): G2
3 is infeasible, cycle

C1 = (u, w, v, u) with w(C1) = 3T − 10 is negative.
Since U − L = 1, output 4 as the minimum feasible
clock period T .

The flow when we apply the algorithm is shown in
Fig. 2 (c).

B. A circuit that contains multi-clock cycle paths

For a circuit that contains just single-clock cycle paths,
if the circuit is feasible then the circuit is feasible at the
initial upper bound U , otherwise the circuit is infeasi-
ble. However, for a circuit that contains multi-clock cy-
cle paths, even if the circuit is infeasible at initial upper
bound U , there are some possibilities that the circuit is
feasible at clock period t (t < Uor t > U).

Input: circuit graph CG, target clock-period range δ.

Output: minimum feasible clock period T .

1. Construct constraint graph G by CG and δ.

2. Lself := max(u,u)∈Ehold
dmax(u, u).

Ldiff := max(u,v)∈Ehold
(dmax(u, v) − dmin(u, v)).

L := max{Lself , Ldiff}.
U := max(u,v)∈Ehold

{(dmax(u, v) + s(u) − s(v))/βu,v}.

3. Check whether GL is feasible.
if there is no negative cycle in GL return L.
else if there exists a negative cycle C of type 0 or type M return
∞.

4. Check whether GU is feasible.
if there exists a negative cycle C

case C is of type 0 return ∞.
case C is of type P then repeat the following

L := Bound(C).
if there is no negative cycle in GL return L.

else if there exists a negative cycle C
′

if C
′

is of type 0 or type M return ∞.

else C ← C
′

.
case C is of type M then U := Bound(C) and if U < L return

∞.

5. While (U − L > ε) do
M := (U + L)/2.
check whether GM is feasible.
if there is no negative cycle in GM then U := M .
else let C be the negative cycle.

case C is of type 0 return ∞.
case C is of type P then

L := Bound(C).
if there is no negative cycle in GL return L.

else if there exists a negative cycle C
′

of type 0 or type M
return ∞.

case C is of type M then U := Bound(C).
endwhile.

6. T := U . return T .

Fig. 3. Minimum feasible clock period algorithm of the circuit
that contains multi-clock cycle paths.

When the initial upper bound U is infeasible, the al-
gorithm [4] concludes that the circuit is infeasible at any
clock period and stop. For example, let us determine
the minimum feasible clock period of the circuit shown
in Fig. 1 (b). Initial lower bound L = 4 and initial up-
per bound U = 8. So, the algorithm does binary search
between 4 and 8 as follows:

Check L(L = 4): G1
4 is infeasible, cycle C1 =

(u, w2, v2, u) with w(C1) = 4T − 20 is negative, so
next step is check U .

Check U(U = 8): G1
8 is infeasible, cycle C2 =

(u, v1, w1, u) with w(C2) = −T + 6 is negative
and the algorithm is stopped.

The flow when we apply the algorithm is shown in
Fig. 1 (c). As you can see from the above example, the
algorithm [4] is stopped after checking the initial upper
bound U and concludes that the circuit is infeasible at
any clock period.

However as we mentioned earlier, the conclusion is cor-
rect for a circuit that contains just single-clock cycle
paths, while for the circuit that contains multi-clock cycle
paths the conclusion might be incorrect. Therefore, the
above approach might miss the minimum feasible clock
period. In fact, in this case, the algorithm cannot deter-
mine the minimum feasible clock period which is 5.

We enhance the algorithm that has been introduced
in [4] to determine the minimum feasible clock period of
a circuit that contains multi-clock cycle paths. The algo-
rithm does binary search between lower and upper bounds
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same as in the algorithm shown in [4]. We extend the al-
gorithm [4] by introducing checking the type of cycle when
there exists a negative cycle in the constraint graph. If
the circuit is infeasible at given clock period, there exists a
negative cycle. The lower and upper bounds are adjusted
based on the type of negative cycle and the Bound value.

The new algorithm to determine the minimum feasible
clock period of a circuit that contains multi-clock cycle
paths is shown in Fig. 3.

For the initial value of lower bound L and upper bound
U of the binary search, we adopt the same approach as in
the algorithm shown in [4]. Initial lower bound L will be
checked whether it is feasible or not, if L is feasible, then
output L as the minimum feasible clock period. Other-
wise, there exists a negative cycle C. If C is of type 0
or type M, the circuit is infeasible and the algorithm is
stopped. While, if C is of type P then an initial upper
bound U will be checked whether it is feasible or not.

If the initial upper bound U is feasible, then the al-
gorithm does binary search to determine the minimum
feasible clock period. Otherwise, there exists a negative
cycle C. In case C is of type 0, the circuit is infeasi-
ble and the algorithm is stopped. In case C is of type P,
Bound(C) is our new lower bound L and L will be checked
whether it is feasible or not. If our new lower bound L
is feasible then output L as the minimum feasible clock
period. Otherwise, repeat until L is feasible or C is of
type 0 or type M, where the circuit is infeasible and the
algorithm is stopped. In case C is of type M, Bound(C)
is our new upper bound U and the algorithm will check
whether U < L or not. If U < L, then the circuit is
infeasible and the algorithm is stopped. Otherwise, our
algorithm does binary search by adjusting the lower and
upper bounds to determine the minimum feasible clock
period.

In binary search, the algorithm will check whether the
constraint graph GM (M = (U + L)/2) containing any
negative cycle or not. If there are no negative cycles in
GM , then M is our new upper bound U and continue do
binary search. Otherwise, if there exists a negative cycle
in GM then the algorithm will check the type of it. In case
C is of type 0, the circuit is infeasible and the algorithm
is stopped. From Theorem 2, in case C is of type P
then Bound(C) is our new lower bound L and L will be
checked whether it is feasible or not (Refer Fig. 4 (a)).
If our new lower bound L is feasible then output L as
the minimum feasible clock period, otherwise, continue
do binary search. In case C is of type M then Bound(C)
is our new upper bound U (Refer Fig. 4 (b)), and continue
do binary search.

Using the proposed algorithm, let us find the minimum
feasible clock period of the circuit shown in Fig. 1 (b).
Our target clock-period range δ is 0. Initial lower bound
L = 4 and initial upper bound U = 8. So, the algorithm

does binary search between 4 and 8 as follows:

Check L(L = 4): G1
4 is infeasible, cycle C1 =

(u, w2, v2, u) with w(C1) = 4T − 20 is negative
and of type P. So next step is check U .

Check U(U = 8): G1
8 is infeasible, cycle C2 =

(u, v1, w1, u) with w(C2) = −T + 6 is negative
and of type M and Bound(C2) = 6, therefore 6 is
our new U .

Check M(M = 5 = (6 + 4/2)): G1
5 is feasible. Since U−

L = 1, output 5 as the minimum feasible clock period
T .

The flow when we apply the algorithm is shown in
Fig. 1 (d). The algorithm can determine the minimum
feasible clock period of the circuit which is 5.

IV. Reduction on the number of intermediate

registers

In this paper we consider a problem on how to reduce
the number of intermediate registers of a pipelined circuit,
subject to the minimum feasible clock period is lower than
or equal to the original circuit and works at target clock-
period range

In the proposed algorithm, all intermediate registers
of the pipelined circuit are initially removed. Then the
minimum feasible clock period is computed using the al-
gorithm shown in Fig. 3. When the intermediate regis-
ters are removed, the minimum delay is reduced compared
with the original circuit. Therefore, the hold constraints
which correspond to the D-edges in the cycles become
tight. If the circuit is infeasible at any clock period, there
exists a negative cycle in the constraint graph. As we
mentioned earlier, the hold constraints are the reason why
the timing constraints become tight. Therefore to make
the circuit feasible at target clock-period range, an inter-
mediate register which corresponds to a D-edge contained
in the negative cycle is inserted to the multi-clock cycle
path.

Our target is to get a circuit, where the minimum feasi-
ble clock period is lower than or equal to the original cir-
cuit. If the minimum feasible clock period of the obtained
circuit is higher than the original circuit, the minimum
feasible clock period needs to be reduced. Our proposed
algorithm find a critical cycle in the constraint graph that
decide the minimum feasible clock period of the obtained
circuit. Then, in order to reduce the minimum feasible
clock period, an intermediate register which corresponds
to a D-edge contained in the critical cycle is inserted to
the multi-clock cycle path. The details of our proposed
algorithm is omitted here due to the space constraint.

To explain the behavior of the algorithm, we imple-
mented the algorithm to the pipelined circuit shown in
Fig. 5. In this example, the timing of each I/O pin is
fixed at 0, while the timing of each register is scheduled.
We also assume that Setup and Hold Time for registers
are 0 and the minimum and maximum delay of the in-
termediate registers are 1 and 2, respectively. Our target
clock-period range δ is 4. Note that in the constraint
graph, vertices In and Out are the same vertex because
we fix the timings of I/O pins to 0. In the figure, vertices
In and Out are draw in different vertex to make it easy
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to understand. For the original circuit with zero clock-
skew, the minimum feasible clock period Tmin(Gin) is 10.
The circuit after removing the intermediate registers v0,
v1, v2 is shown in Fig. 6. Note that the D-edge weight
of the multi-clock cycle paths in the constraint graph is
reduced 4 compared with the corresponds minimum delay
in the circuit because δ is 4. When the minimum clock
period of constraint graph G0 is computed, there exists a
negative cycle C0 = (in, u1, w1, out) which is of type M
in the constraint graph G0

9. The minimum clock period
algorithm concludes that it is infeasible. This means that
the circuit works at clock period 6 but δ is not secured.
Since path (u1, w1) is a D-edge which is multi-clock cycle
path, intermediate register v1 is inserted. The circuit after
inserting the intermediate register v1 is shown in Fig. 7.
Tmin(G1) = 11 > Tmin(G

in), therefore the minimum fea-
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TABLE I
Statistics of adder and multiplier

Circuit delay [ps]

circuit # FF 1st stage 2nd stage

min max min max

4bitadd 32 588 2454 588 2840

8bitadd 60 598 4079 598 4474

16bitadd 116 598 7239 598 7634

16bitmul 120 757 5075 373 4050

sible clock period of the obtained circuit need to be re-
duced. The critical cycle C1 = (u2, w2, v1, u2) is found in
the constraint graph G1

11. Since path (u2, w2) is a D-edge
which is multi-clock cycle path, intermediate register v2

is inserted. The circuit after inserting the intermediate
register v2 is shown in Fig. 8. Tmin(G2) = 7 < Tmin(Gin),
so the algorithm stop and output the circuit and clock
timings as shown in Fig. 8.

V. Experiments
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Fig. 9. Relation between Tmin(ps) and # Int. FF of a 16 bit
multiplier. δ = 500ps. Delay variation = 0%.

The proposed algorithms were written in C++ and
implemented on a Pentium 4 (CPU 3GHz, memory
513764kb). Since there are no benchmark examples of
pipelined circuits, two simple examples, briefly described
below, were constructed for our experiments.



TABLE II
Experimental Results

Delay variation = 0% Delay variation = 20%

Circuit δ Tmin Int. FF Tmin Int. FF

(ps) (ps) (%)a # (%) (ps) (%)a (%)b # (%)

4bit Ori. 2840 (100) 10 (100) 3093 (110) (100) 10 (100)

add 0 1422 (50) 0 (0) 2047 (72) (66) 0 (0)

100 1522 (54) 0 (0) 2147 (76) (69) 0 (0)

200 1622 (57) 0 (0) 2247 (79) (73) 0 (0)

300 1722 (61) 0 (0) 2347 (83) (76) 0 (0)

400 1822 (64) 0 (0) 2447 (86) (79) 0 (0)

500 1922 (68) 0 (0) 2547 (90) (82) 0 (0)

8bit Ori. 4474 (100) 18 (100) 4890 (110) (100) 18 (100)

add 0 1702 (38) 0 (0) 2629 (59) (54) 0 (0)

100 1802 (40) 0 (0) 2729 (61) (56) 0 (0)

200 1902 (43) 0 (0) 2829 (63) (58) 0 (0)

300 2002 (45) 0 (0) 2929 (66) (60) 0 (0)

400 2102 (47) 0 (0) 3029 (68) (62) 0 (0)

500 2202 (49) 0 (0) 3129 (70) (64) 0 (0)

16bit Ori. 7634 (100) 34 (100) 8366 (110) (100) 34 (100)

add 0 3024 (40) 0 (0) 4533 (59) (54) 0 (0)

100 3124 (41) 0 (0) 4633 (61) (55) 0 (0)

200 3224 (42) 0 (0) 4733 (62) (57) 0 (0)

300 3324 (44) 0 (0) 4833 (63) (58) 0 (0)

400 3424 (45) 0 (0) 4933 (65) (59) 0 (0)

500 3524 (46) 0 (0) 5033 (66) (60) 0 (0)

16bit Ori. 5075 (100) 56 (100) 5551 (110) (100) 56 (100)

mul 0 4722 (93) 48 (86) 3590 (71) (65) 49 (88)

100 4822 (95) 48 (86) 3590 (71) (65) 49 (88)

200 4922 (97) 48 (86) 3590 (71) (65) 49 (88)

300 5022 (99) 48 (86) 3590 (71) (65) 49 (88)

400 3086 (61) 49 (88) 3670 (72) (66) 49 (88)

500 3086 (61) 49 (88) 3770 (74) (68) 49 (88)

bCompared with original circuit with zero clock-skew and delay
variation = 20%.

aCompared with original circuit with zero clock-skew and delay
variation = 0%.

• n-bit (n = 4, 8, 16) add: A 2-stage adder that added
four n-bit numbers (A, B, C and D) [7]. The first
stage computed the partial sum A + B and C + D
and the second stage computed the final sum. Each
adder was of ripple-carry type.

• 16-bit mul: A 2-stage multiplier that multiplied two
16-bit numbers. The first stage used a carry-save
adder with Wallace tree structure [8] and the second
stage used a carry-look-ahead adder.

The statistics of the circuits are shown in Table I. The
ROHM 0.35 process library was used for these experi-
ments. The timing of each I/O pin was scheduled as well
as the timing for each register.

Table II shows the results when the algorithm shown in
section IV was implemented. Ori. is the original circuit
containing the intermediate registers and with the clock
timing of all registers fixed at 0 (zero clock-skew). “δ” and
“Tmin(ps)” are the target clock-period range and output

minimum feasible clock period, respectively. “Int. FF
(#)” is the number of intermediate registers, and “Int.
FF (%)’ is the percentage of the number of intermediate
registers present compared with the total in the original
circuit. Delay variation was 20%, i.e. the delay variation
for each gate and register was set at ±10%.

The results show that by a combination of multi-clock
cycles and clock scheduling, the number of intermediate
registers and the minimum feasible clock period can be
reduced, even in the presence of delay variations in gates
and registers.

The relation between the minimum feasible clock pe-
riod and the number of intermediate registers of the 16
bit multiplier is shown in Fig. 9. In the graph, the la-
bel “Algorithm” indicates results using the proposed al-
gorithm for insertion of the intermediate registers, while
“Random1-4” labels indicate results when the interme-
diate registers are inserted randomly. The graph shows
that the proposed algorithm can construct an equivalent
circuit using fewer registers and with a smaller minimum
feasible clock period.

VI. Conclusion

It has been shown that the number of intermediate reg-
isters of a pipelined circuit can be reduced by implement-
ing a multi-clock cycle path technique together with clock
scheduling. The proposed algorithm inserts intermedi-
ate registers without considering delay balancing in order
to make the circuit work correctly throughout the tar-
get clock-period range. We believe that by using delay
balancing together with intermediate register insertion,
circuit area can be further reduced. This is a topic for
future investigation.
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