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Abstract
Commonly used pattern sources in simulation-based verifi-

cation include random, guided random, or design verification
patterns. Although these patterns may help bring the design
to those hard-to-reach states for activating the errors and for
propagating them to observation points, they tend to be very
long, which complicates the subsequent diagnosis process. As
a key step in reducing the overall diagnosis complexity, we
propose a method of generating a shorter error-sequence based
on a given long error-sequence. We formulate the problem as a
satisfiability problem and employ a SAT solver as the underly-
ing engine for this task. By heuristically selecting an interme-
diate state Si which is reachable by the given long sequence,
the task of finding the transfer sequence from the initial state
to the target state can be divided into two easier tasks - finding
a transfer sequence from the initial state to Si and one from
Si to the target state. Our preliminary experimental results
on public benchmark circuits show that the proposed method
can achieve significant reduction in the length of the error se-
quences.

1 Introduction
Constrained or guided random patterns are still heavily

used to detect errors in a modern design, although recent im-
provements in formal methods such as bounded model check-
ing (BMC) have made it possible to verify certain properties
and generate counter-examples for large industrial designs.
The counter-examples are often too complex to be manually
inspected by the designers. In [11], Ravi and Somenzi pro-
pose to guide the bounded model checker to minimize the
sizes of counter-examples. However, in current practice, most
of the counter-examples are primarily found by simulation-
based verification instead of formal methods. Thus, both man-
ual debugging and automatic design-error diagnosis for a se-
quential circuit often relies on a set of sequences, called error
sequences, which reveal erroneous responses at the primary
outputs. In general, longer error sequences imply higher com-
plexity for diagnosis. An unnecessarily long error sequence
(e.g. visiting a state multiple times, not taking the shortest

path from the initial state to the required state for activating
and propagating the error, etc.) generally degrades the diag-
nosis resolution. In contrast, short error sequences minimize
the complexity and maximize the resolution of the diagnosis
process.

D’Souza and Hsiao in [6] extended the region-based tech-
nique proposed in [3] for diagnosing sequential circuits. It
attempts to identify the first cycle in which an error appears
at either a flip-flop or a primary output to avoid re-simulating
the entire sequence. After such a cycle is identified, a shorter
sequence can be found for region-based diagnosis. Region-
based diagnosis proposed in [3, 6] relaxes the single-error as-
sumption and does not use any specific error models origi-
nally proposed in [1]. However, the knowledge of the ex-
pected value at each register in each cycle, which is required
for these methods, is not typically available in the debugging
phase. Usually the expected values are available only for the
primary outputs. Therefore, we cannot accurately determine
the cycle at which the state of the erroneous circuit first devi-
ates from that of the good circuit.

In [5], the authors propose to eliminate redundant states
in an error trace. A new trace can then be found by identi-
fying the shortest path among the remaining unique states in
the trace. One main problem with the method is that the new
trace may not activate and propagate any errors to the primary
outputs. This is because the process of identifying the redun-
dant states in the original error trace and finding the shortest
path for the remaining unique states is not based on a ”golden
model” of the design. Instead, it is based on the design model
which contains bugs. Therefore, the new trace may not be a
valid error trace. These simulation based techniques have been
greatly enhanced in [4].

In this paper, we address the problem of generating a
shorter error sequence from a given longer one. Error se-
quences are often identified by examining the simulation re-
sults of the erroneous designs on either functional or random
patterns. We focus on formulating this test-generation prob-
lem as a satisfiability problem and employ a modern SAT
solver [8], for this optimization. By selecting an intermediate



state Si, which is reachable by the given long sequence, the
task of finding the transfer sequence from the initial state and
the state which reveals the error at the outputs can be divided
into two sub-tasks - finding a transfer sequence from the initial
state to Si and one from Si to the target state. This strategy can
be recursively applied until every subproblem becomes solv-
able by the SAT solver. However, if the transfer sequences
are derived this way and then cascaded together to form the
final transfer sequence, we may get a ”false” sequence that
cannot activate the errors or propagate them to the outputs.
This could happen if the circuit model used by the SAT solver
is erroneous (because it is derived from the circuit under di-
agnosis). Therefore, each error sequence generated must be
simulated to verify the matching. If the generated sequence
does not result in the erroneous responses at the outputs, the
procedure needs to be called again to generate a new trans-
fer sequence. We propose an algorithm to select states with
higher probability of exciting and/or propagating errors as the
intermediate states for finding the transfer sequence. The ex-
perimental results on ISCAS89 and ITC99 benchmark circuits
show that the proposed method can achieve a reduction rate as
high as 99.94% in test length.

The rest of the paper is organized as follows. Section 2
gives a detailed statement of the problem. Sections 3 and 4
present the proposed method for generating a shorter test se-
quence. Section 5 shows the experimental results, and con-
cluding remarks are given in Section 6.

2 Problem Formulation
There often exist multiple transfer sequences between any

pair of states; some are significantly shorter than others. In
addition, some states visited by an error sequence are not rel-
evant for activating and for propagating errors to the outputs.
Figure 1 shows the state diagram of a sequential circuit under
diagnosis. Note that our method needs neither the construc-
tion nor the use of the state diagram. Our method takes the
boolean netlist of the sequential circuit as the input and works
primarily at the structural level. The example is mainly used
for illustration of the concept. Suppose the transition function
from state F to state B is erroneous and the states traversed by
the error sequence is A–C–C–D–E–F–B. Our objective is to
find a shorter sequence that can transfer the circuit from A to
B and also propagate errors to the primary outputs. Because
transitions A–C and C–D are not relevant for activating and
propagating the error, states C and D need not be visited. A
shorter sequence such as the one traversing states A–E–F–B
would be a better sequence for diagnosis.

We can classify the states traversed by the error sequence
into irrelevant states (such as states C and D) and relevant
states (such as states E and F ). The objective is to find a new
error sequence that will visit all relevant states and avoid ir-
relevant states. However, because the knowledge of correct
values at registers in each clock cycle is not available, we can-
not determine precisely whether a state visited by the error
sequence is relevant or not. Therefore, we need to simulate
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Figure 1: An example of the error sequence, A–C–C–D–E–
F–B, where the state transition, F–B, is erroneous.

the generated sequence to verify whether it indeed activates
and propagates the error to the primary outputs.

3 Overview of the Method
For a given error sequence, the initial state SI and the final

state SF of a circuit C could be derived by simulation. Since
our objective is to find a shorter error sequence from SI to
SF rather than to search for all possible shorter sequences, a
modern SAT solver becomes a more attractive method than the
BDD-based techniques. We can apply a sequential SAT solver
to find the shortest transfer sequence T

′
(SI , SF ) between SI

and SF . However, a sequential SAT solver [8, 9] usually can-
not find the shortest solution. In order to find the shortest
sequence, one strategy is to follow the principle of bounded
model checking. We attempt to find a solution within i time
frames where i is initially set to 1. If no solution exists, i is
then increased by 1 for another run of the SAT solving. This
iterative process continues until a solution is found. Without
the exact information of relevant states, the sequence derived
this way may be a ”false” sequence that cannot activate and
propagate the error to the outputs. By selecting intermedi-
ate states derived from the simulation results of an erroneous
circuit, the SAT solving will be guided to generate a sequence
that will visit relevant states. Also, the task of finding a shorter
sequence from SI to SF can be divided into two sub-tasks that
are more amenable to the SAT solving.

The proposed algorithm is shown in Figure 2. In Line 4,
we select intermediate states, Stargets derived from the simu-
lation result of an erroneous circuit C on a given long error se-
quence V , as candidates to divide V into two sub-sequences,
T (SI , Si) and T (Si, SF ) where Si ∈ Stargets. The detail
of the state selection will be explained in Section 4. Then,
we use a SAT solver to find the shortest transfer sequence,
T

′
(SI , Si), to replace T (SI , Si) (Line 5). Note that in find-

ing the shortest sequence from SI to every Si ∈ Stargets, the
learned conflict clauses generated in solving one target can
be accumulated and reused in finding the sequences for other
targets. However, T

′
(SI , Si) alone may not be able to acti-

vate and propagate errors to primary outputs, since errors in
the given sequence may only be activated and propagated to
primary outputs by T (Si, SF ). Thus, in Line 9–10, for each
Si ∈ Stargets, a new test sequence V

′
is generated by cascad-
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ing T
′
(SI , Si) and T (Si, SF ) followed by re-simulation. If no

error appears at the observation points, the new sequence V
′

is discarded and the shortest transfer sequence from SI to the
next Si ∈ Stargets is used to form the next test sequence for
simulation and verification of its validity. On the other hand,
if V

′
successfully produces errors at primary outputs, a valid

new sequence has been found. We then continue to shorten
the second part of the sequence, T (Si, SF ). This can be done
by setting Si as the initial state SI (Line 13) before calling the
process again (Line 3–12). This process continues (by itera-
tively setting new SI ’s) until no reduction can be made.

0 # C: Circuit, V : Error Sequence
1 # SI : Initial State, SF : Final State
2 push SF into Stargets.
3 while Stargets is not empty
4 Select intermediates states into Stargets.
5 Apply the sequential SAT solver [8]
6 Sort Stargets in a reverse chronological order, S

′
targets

7 for each target Si ∈ S
′
targets

8 if solution of Si exists
9 V

′
= Cascade Sequences(T

′
(SI , Si), T (Si, SF )).

10 ErrorObserved = Simulate(V
′
).

11 if ErrorObserved == TRUE
12 break
13 set SI = Si.

Figure 2: Algorithm for error sequence
generation/minimization.

In order to achieve a higher reduction rate in test length,
we process the state Si ∈ Stargets in a reverse chronological
order. That is, the first Si selected for transfer sequence gen-
eration is the farthest state Si in Stargets from SI . If the re-
sulting sequence cannot reveal the errors at observation points,
then the next farthest target is selected as the target for transfer
sequence generation.

4 Intermediate State Selection
Selection of intermediate states in Figure 2 affects the re-

duction rate of the test length. Consider the example in Fig-
ure 1. If states B and D are selected as the intermediate states
to optimize the transfer sequence from state A to state B, then
A–E–B and A–C–D–E–B, will be found as the shortest state
sequences respectively. However, neither sequence can ac-
tivate error (because the assumption was that the error only
corrupted the transition from F to B). Therefore, both se-
quences will be rejected and no test length reduction will be
achieved. On the other hand, if we select state F as the in-
termediate state, the valid sequence A–E–F–B will be found
which could activate and propagate the error to the outputs.
In the following, we propose a heuristic for identifying states
with higher probabilities of successful activation and/or prop-
agation of the errors to either primary outputs or registers in
the next clock cycle. These states are preferred intermediate
states for transfer sequence generation.

Starting from the erroneous outputs E, we trace backwards
to find the fan-in registers of E. By analyzing the states vis-
ited by the error sequence V , we develop a metric to identify
which fan-in registers, denoted as F1, are irrelevant for activat-
ing or propagating the error to E, and which registers, denoted
as F2, are essential for error activation and propagation. For
fi to be in F2, one of the following two cases must apply :
(1) an erroneous value already exists in fi, or (2) the value in
fi is error-free but is essential for error activation or propa-
gation. Starting from the registers in F2, we continue to trace
backwards for one more cycle to identify their fan-in registers,
which are essential for error activation or propagation. The it-
erative process continues until every state reached by the error
sequence has been analyzed. Throughout this process, we can
calculate the cycles in which a register is classified as an es-
sential one (i.e. belonging to F2). Suppose that, in M cycles,
a register fi is classified as F2. Among these M cycles, as-
sume fi is at 0(1) for m1(m2) cycles. If m1 > m2, we would
guess that fi being 0 is more likely to excite and/or propagate
the errors than fi being 1. Therefore, we would prefer to se-
lect an intermediate state with fi being 0 rather than with fi

being 1. Likewise, if m2 > m1, we would prefer to select an
intermediate state with fi being 1.

As shown in Figure 3, for a given error sequence, the out-
puts with erroneous responses are set as the initial error candi-
dates, E (Line 1). In this algorithm, E contains either outputs
or registers that might have erroneous values. In Line 3, we
trace backwards to find the fan-in registers F of signals in E.
In order to determine whether fi ∈ F belongs to either cat-
egory F1 or category F2 in each cycle, we complement the
value in fi (and keep value in all other inputs and registers
intact - Line 5) and check whether the change can be propa-
gated to E (Line 6). If any value of ei ∈ E is changed, we
classify fi as a category F2 register. Then, we push fi into
Enext as a source for back-tracing in the next iteration (Line
12). In Line 8–11, we increment α1

i by 1 if the original value
of fi is 1; otherwise, α0

i is incremented by 1. αk
i is the num-

ber of cycles that fi ∈ F being at value k has been classified
as a category F2 register. For a register whose α0

i is larger
than α1

i , heuristically, fi being 0 has a higher probability to
excite and/or propagate the error than that being 1. The whole
process (Line 3–11) repeats until all states visited by the er-
ror sequence have been examined. After the calculation of αk

i

for each register is completed, the relevance βj of a state Sj

for error activation/propagation can be approximated by sum-
ming up the αk

i of register fi ∈ Sj based on the value of fi

in Sj (Lines 15 – 20). Then, we sort the states based on their
βj from the highest to the lowest (Line 21). In Line 22, the
states S

′
are selected from the sorted states in a chronologi-

cal order. The selected states are returned for finding shorter
transfer sequences (Line 23).

5 Experimental Results
We implemented our algorithm in the C++ language and

tested it on some public benchmark circuits including IS-
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# every αk
i and βi is initialized to 0.

# S: the simulation result of a given error sequence
1 Identify erroneous outputs as error candidates E.
2 repeat
3 Trace back from E to get their fan-in registers F .
4 for each register fi ∈ F .
5 Invert the value of fi and keep the others.
6 Simulate the circuit.
7 if any value of ei ∈ E is changed.
8 if value(fi) == 1
9 Increase α1

i by 1.
10 else if value(fi) == 0
11 Increase α0

i by 1.
12 Push fi into Enext.
13 set E = Enext.
14 until Empty(E) == TRUE.
15 for each state Sj ∈ S .
16 for each register fi ∈ Sj

17 if value(fi) == 1
18 βj += α1

i .
19 else
20 βj += α0

i .
21 Sort S based on βi (from the highest to the lowest).
22 Select states S

′
from the sorted states in chronological order.

23 return S
′
.

Figure 3: Selection of intermediate states with higher proba-
bilities of activation and/or propagation of the errors.

Ckt. Name Num. of Registers
s9234 211
s38417 1636

b14 245
b20 490
b21 490
b22 703
or1k 1860

Table 1: Number of registers for each circuit

CAS89, ITC99, and the OpenRisc 1000 (a microprocessor)
from the OpenCores organization [10]. The number of reg-
isters of each tested circuit is shown in Table 1 where or1k
denotes the OpenRisc 1000. In this paper, we do not spec-
ulate about what kind of errors will be easier to detect by
simulation-based or formal verification methods. Our objec-
tive is to show the effectiveness of our method to reduce the
error sequence found by simulation. We generated several er-
roneous circuits from each benchmark circuit listed in Table 1
by randomly replacing several gates with different types of
gates. Then, we used the Candence TestBuilder [13] as our
random pattern generator to generate input sequences and used
Mentor Graphics ModelSim to simulate the erroneous circuits.
After a long error sequence had been identified, we applied the
proposed method to generate a new shorter error sequence.

As discussed in Section 4, selection of intermediate states
is critical to the test generation quality. As shown in Table 2,

we compare our method with the method Select(k) for which
the state of every k cycles is selected as an intermediate state.
For example, method Select(20) means the reached states in
every 20 cycles, starting from the initial state, will be included
as the intermediate states. Len denotes the length of the er-
ror sequence found by simulation. The numbers before and
after ”/” in Columns 3, 4, and 5 denote the length of derived
test sequence and the reduction rate in percentages with re-
spect to the original test length. For the method Select(k), if
each time we fail to generate a transfer sequence for a target
intermediate state Si, the next target intermediate state would
be the state reached k cycle earlier, Si−k, under the original
error sequence. Even if the transfer sequence for the new
target is successfully found, the final error sequence will in-
clude T (Si−k, SF ) which is k patterns longer than T (Si, SF ).
Therefore, the length of the final sequence would be increased
by k. As shown in Column 4, since the method could not
find a short error sequence from the initial state to the final
state at which the erroneous responses are present at primary
outputs for every single circuit in our experiment, the lengths
of sequences for the method Select(100) are always at least
100. In general, the reduction rate of Select(k) can be im-
proved by reducing k. Experimentally, changing k from 100
to 20 increases the reduction rate from 71.32% to 76.68%.
In comparison to Select(k), our method achieves average
higher average reduction rate (78.49%) than both Select(100)
(71.32%) and Select(20) (76.68%). For most cases, the im-
provement rate is much better than the average. Note that,
for some circuits, such as or1k [1,2], the results of Select(20)
are worse than those of Select(100). The reason is that there
are more targets for SAT solving for Method Selct(20) than
Method Select(100). The sequential SAT solver simply can-
not find enough solutions for selected targets to reduce test
length within the time limit when time limit for each iteration
is set to 1800 seconds.

The reduction rates for all tested circuits are shown in Ta-
ble 3, where Len, Len

′
, Rate, Ite., and Time denote the length

of the original error sequence, the length of generated shorter
sequence, the reduction rate in test length, the number of itera-
tions for transfer sequence generation, and the average runtime
for SAT solving in each iteration, respectively. As shown in
Column 4 of Table 3, the proposed method can achieve more
than 80% reduction rate in 20 out of the 36 cases, and the high-
est reduction rate is 99.94% on b14 9. The average reduction
rate is 59.4%. There are 6 out of the 36 cases whose reduction
rates are below 10%. One explanation for the low reduction
rate is that there may be counters in the circuits, and specific
values in the counters are required for activating and propagat-
ing the errors to the outputs. For counters, it is unlikely that
any shorter sequences exist to reach a specific state.

6 Concluding Remarks
Although long test sequences may help bring the design

to those hard-to-reach states for activating the errors and for
propagating them to observation points, these sequences com-
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Ckt. Len Ours Select(100) Select(20)
b14 1 369 21/94.31% 115/68.83% 13/96.48%
b14 2 693 77/88.89% 115/83.41% 75/89.18%
b14 3 874 24/97.25% 114/86.96% 32/96.34%
b14 4 2347 29/98.76% 111/95.27% 23/99.02%
b14 5 22796 110/99.52% 112/99.51% 46/99.80%
b14 6 30960 18/99.94% 114/99.63% 46/99.85%
b14 7 4634 24/99.48% 114/97.54% 32/99.31%
b20 1 645 505/21.71% 609/5.58% 127/80.31%
b20 2 1013 163/83.91% 215/78.78% 105/89.63%

s38417 1 1041 103/90.11% 193/81.46% 109/89.53%
s38417 2 2759 457/83.44% 244/91.56% 188/93.19%
s38417 3 1629 53/96.75% 132/91.90% 55/96.62%
s38417 4 1541 83/94.61% 167/89.16% 99/93.58%
s38417 5 2223 99/95.55% 206/90.73% 132/94.06%
s38417 6 1082 86/92.05% 165/84.75% 89/91.77%

or1k 1 2982 246/91.75% 252/91.55% 2865/3.92%
or1k 2 1230 21/98.29% 125/89.84% 360/70.73%
or1k 3 1183 1130/4.48% 1183/0.00% 1183/0.00%
or1k 4 4262 3070/27.97% 4262/0.00% 2661/37.56%
or1k 5 4931 4385/11.07% 4931/0.00% 4400/10.77%

Average - -/78.49% -/71.32% -/76.68%

Table 2: Comparison of three intermediate state selection
methods.

plicate the subsequent diagnosis process. To reduce the com-
plexity of diagnosis, we have proposed a method to generate a
shorter error sequence, based on a known error sequence iden-
tified by simulation. We have further proposed to simplify the
task of generating such a sequence, which brings the circuit
from the initial state to the state that reveals the error at the
primary outputs. This is accomplished by identifying an inter-
mediate state Si so that the final sequence is formed by two
sub-sequences - one from the initial state to Si and the other
from Si to the final state. The task of generating each sub-
sequence is substantially simpler than the longer original task.
We have developed a heuristic to select intermediate states
which are more likely to lead to successful generation of error
sequences. A sequential SAT solver was used as the underly-
ing engine for finding these sub-sequences. The experimental
results on ISCAS89 and ITC99 benchmark circuits show that
the proposed method can achieve a very significant reduction
rate in test length.
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