
High Level Equivalence Symmetric Input Identification 

Ming-Hong Su   Chun-Yao Wang 

Department of Computer Science 
National Tsing Hua University, HsinChu, Taiwan, R.O.C 

{harrysu, wcyao}@cs.nthu.edu.tw 

Abstract Symmetric input identification is an important 
technique in logic synthesis. Previous approaches deal with 
this problem by building BDDs and developing algorithms 
to determine symmetric inputs. For the design whose 
corresponding BDDs cannot be built, BDD-based 
approaches cannot be applied on this problem. To avoid the 
limitations of BDD-based approaches, simulation-based 
methods have been proposed. It is applicable to designs 
described in arbitrary level, especially to high-level and 
black box designs. Previous simulation-based approaches 
focus on determining the inputs of nonequivalence 
symmetry. In this paper, we propose a simulation-based 
approach to identify equivalence symmetric inputs. The 
experimental results on a set of ISCAS-85 and MCNC 
benchmarks are also presented.

I. INTRODUCTION 

Symmetry input identification is to find the symmetric 
relation of all inputs. Symmetric input sets are the subsets 
of inputs. Grouping symmetric inputs to form symmetric 
input sets and thus any permutations of the inputs within a 
subset leave the function invariant. The problem to find the 
maximal symmetric inputs sets has been formulated in [3] 
[4]: Given a function ( )f x , find maximal subsets of 
inputs 1 2,  ,...,  Xnx x x , such that 1 2  ... Xnx x x
and the inputs in every ix  can be permuted in any fashion 
without changing the functionality. 

Method to finding the maximal symmetric input sets is 
based on finding all pairs of symmetric inputs and then take 
the unions of all the pairs having nonempty intersection. 
Previous approaches [2[3][6] are based on checking the 
equality of cofactors of the function. The maximal 
symmetric input sets could be computed after checking all 
symmetric pairs. However, those approaches are very 
time-consuming and not feasible for large functions. While 
the number of inputs is large, representing functions using 
BDDs will improve the efficiency of cofactor computation. 
A simple symmetry test is to check whether the BDD 
representations of two cofactor functions are isomorphic or 
not. This can be seen in Figure 1. However, computing 
multiple cofactor pairs is still expensive for large functions. 
This is because the repeated computation leads to create 
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and delete a large number of intermediate BDD nodes. 
Previous approaches based on BDDs and Boolean 
functions are summarized as follows. [6] avoids redundant 
cofactor computation by some criterions and thus speed up 
the computation process. An efficient algorithm without 
computing cofactors is proposed in [2]. [10] uses a 
K-Disjointness Paradigm which can compute disjoint 
situations with Hamming distance K between Boolean 
function to find the maximum symmetries. [11] formulates 
symmetry identification as an equation without using 
cofactor computation and equivalence checking. 

(a)      (b) 

Figure 1: a) Nonequivalence Symmetry 
b) Equivalence Symmetry 

In addition to BDD-based and Boolean function-based 
methods, simulation-based approaches were applied to 
circuits without having compact BDDs or Boolean 
functions representation. [5] establishes two stages to 
accomplish the symmetric input identification and using a 
simulation-based method as the first stage of its two-stage 
algorithm. 

Most of previous works focus on determining 
nonequivalence (NE) symmetry. For NE symmetry, 
symmetric pair is an equivalence relation. However, this is 
not true for equivalence (E) symmetry. For example, three 
inputs { ix , jx , kx } could be distinguished as NE 
symmetric inputs by any two symmetric pairs are held 
because of transitivity. But for E symmetry, three pairs of 
inputs have to be symmetric simultaneously. Consequently, 
determining E symmetry needs more efforts than 
determining NE symmetry. This paper proposes a 
simulation-based approach to determining E symmetry. 

The remainder of the paper is organized as follows. In 
the next section we briefly overview different types of 
symmetries and introduce the representation of maximal 
symmetric input sets. Our algorithm will be presented in 
Section 3. The experimental results of E symmetry are 
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presented in Section 4. Finally, Section 5 concludes the 
paper. 

II. PRELIMINARIES 

This section reviews different types of symmetries at 
first. Then, we introduce a representation for maximal 
symmetric input sets. Finally, we show the naïve approach 
to identifying symmetric inputs. 

A. Overview of Symmetries 

A cofactor of a function ( )f x with respect to variables 

ix and jx is the function resulting from the substitution 
into ( )f x of specific values for ix and jx . For example, the 
cofactor of ( )f x  with respect to 0ix and 1jx is 

1( ,  ...,  0,  ...,  1,  ...,  ),nf x x which is denoted as 
i jx x

f [8].
For any pairs of variables ix and jx , there are four 

cofactors, which are ,  ,  ,  and  .
i ji j i jj i

x xx x x x x x
f f f f Different 

categories of symmetries can be defined according to the 
equality of two cofactors among them. A function ( )f x
exhibits a nonequivalence (NE) symmetry in inputs 

ix and jx , if 
i jj ix x x x

f f . When
i jx x

f =
i jx xf , the function is 

said to exhibit equivalence (E) symmetry with respect 
to ix and jx . The illustrations of NE and E symmetries are 
shown in Figure 2 and Figure 3, respectively. 

Figure 2: Illustration of nonequivalence symmetry 

 Figure 3: Illustration of equivalence symmetry 

B. Symmetric-ASymmetric Inputs (SASIs) Representation 

For an N-input circuit, there are 2
NC  symmetric pairs of 

all inputs. The maximal symmetric input sets could be 
computed after checking all symmetric pairs. A naïve way 
to presenting the result is to construct an N N triangular 
matrix for an N-input circuit. Each entry in the triangular 
matrix shows the symmetry of the corresponding inputs ix
and jx  except the diagonal entries. This representation is 
very simple but hard to understand globally. Therefore, we 
use Symmetric -ASymmetric Inputs (SASIs) [9][1], which is 
an implicit representation to present the maximal 

symmetric input sets. By the SASIs, if any two inputs are 
not in the same group, then they are asymmetric inputs. 
Otherwise they are “possibly” symmetric. For an N-input 
circuit, we number the inputs from 1 to N. Initially, we can 
assume that all inputs are possibly symmetric, so the SASIs 
representation is (1 2 3 …. N). If we can confirm that input 
i is asymmetric to the other inputs, the SASIs 
representation is (i) (1 2 …. i-1 i+1 N). The following 
example demonstrates the details of the SASIs 
representation.

Example 2.1: Given a 10-input circuit, the inputs are 
numbered from 1 to 10. Initially, we assume all inputs are 
possibly symmetric and thus the corresponding SASIs 
representation is (1 2 3 4 5 6 7 8 9 10). While the SASIs 
representation is (1 2 3 4 5) (6 7 8) (9) (10), it indicates that 
input 9 and input 10 are asymmetric to the other inputs. If 
SASIs representation could be divided into ten groups, then 
we claim that all inputs are asymmetric inputs. 

C. Naïve Approach 

A pair of patterns whose assignments are identical except 
on inputs ix and jx , and ix = jx (00 or 11) in each pattern, 
is capable of distinguishing whether ix  and jx are E 
symmetric or not. These pairs of patterns are called legal 
pattern pairs.

There are 22N  legal pattern pairs for any two inputs in 
an N-input circuit. Two inputs are E symmetric while the 
outputs of each legal pattern pair are identical. Otherwise 
they are E asymmetric inputs. We illustrate it using the 
following example. 

Example 2.2: For a 5-input circuit, if we want to 
recognize whether input 1 and input 2 are E symmetric 
inputs or not. We have to exhaustively simulate 5 22 8
legal pattern pairs, which are {(00000, 11000), (00100, 
11100), (00010, 11010), (00001, 110001), (00110, 11110), 
(00101, 11101), (00011, 11011), (00111, 11111)}. If the 
outputs of each legal pattern pairs are identical, input 1 and 
input 2 are symmetric. Otherwise they are asymmetric.

It is clear that to identify two inputs are E asymmetric is 
easier than to identify they are E symmetric. Thus, our 
approach will target at the identification of asymmetric 
inputs.

Definition 2.1: A pair of inputs ix  and jx  is denoted 
as VP ( ix , jx ) if they have not been recognized as 
symmetric or asymmetric. 

The naïve approach is an exhaustive approach. It 
simulates all legal pattern pairs to recognize whether the 
targeted VP is asymmetric or not. If there exits one legal 
pattern pair with different outputs, then the process to 
recognizing the targeted VP would cease. 

III. EQUIVALENCE SYMMETRY 
IDENTIFICATION ALGORITHM 

Since the naïve approach needs a great number of 
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patterns and comparisons to identify symmetric inputs. A 
heuristic which applies two sets of patterns to recognize all 
VPs simultaneously is investigated.

Definition 3.1 [1]: For an N-input combination circuit, 
the set consists of all patterns with m 1s and (N-m) 0s is 
denoted as N

m , where m [0, 1, 2, …, N-1, N ]. The size 
of N

m  is the number of patterns in N
m  and is denoted as 

| N
m | and | N

m | equals N
mC , where 

!

( )!  !
N
m

N
C

N m m

Following equations represent the relations of N
m  for 

different m and N:

1

1

| |   | |   {1,  2,....,  ( -1) / 2 }

| |   | |   { ( 1) / 2  ,....,  -1}

N N
m m

N N
m m

for m N

for m N N      

Theorem 3.1: For any two pattern sets { N
i , 2

N
i }, those 

two pattern sets can be used to recognize all VPs. 
However, this heuristic is infeasible while i increases. 

For example, considering two pattern sets { 100
1 , 100

3 },
there are 100

1C =100 patterns in 100
1 , and 100

3C =161,700 
patterns in 100

3 . It conducts 100 161,700 = 16,170,000 
comparisons for identifying E symmetry.  

The heuristic approach fails due to a great number of 
patterns and comparisons have to be generated and 
conducted. The number of patterns in a pattern set depends 
on two factors, one is the length of a pattern, i.e., the 
number of inputs. The other is the number of 1s in a pattern 
of the pattern set. Since the pattern set is determined by the 
number of 1s, it seems difficult in reducing this factor. 
Therefore, we attempt to divide inputs into as many groups 
as possible. Therefore, an improved approach is introduced. 

Definition 3.2[1]: A multiple element group (MEG) is a 
group that contains more than one element in the SASIs 
representation. A single element group (SEG) is a group 
that contains only one element. 

The improved approach aims at each MEG and generates 
the corresponding pattern sets for each MEG. While the 
size of MEG is reduced, the number of pattern in a pattern 
set could also be reduced. 

Example 3.1: For a 10-input circuit and assume the 
SASIs representation is (1 2 3 4 5) (6 7 8 9 10) after 
generating { 10

1 , 10
3 }. The second step is to generate 

{ 10
2 , 10

4 } and we have to generate ( 10
2C + 10

4C ) = 255 
patterns and conduct ( 10

2C 10
4C ) = 9,450 comparisons by 

using the heuristic approach. But in considering the 
improved approach, for the MEG (1 2 3 4 5), it only 
generates { 5

2 , 5
4 }. It is the same to the MEG (6 7 8 9 10). 

The total number of patterns and comparisons by using the 
improved approach are ( 5

2C + 5
4C ) 2 = 30 and 

( 5
2C 5

4C ) 2 = 100, respectively. As compared with the 
heuristic approach, the improved approach is effective in 
diminishing the total number of patterns and comparisons. 

If the size of MEG is large, the number of patterns to be 

generated is still large. Thus, next we will propose an 
algorithm that systematically generates smaller number of 
patterns to distinguish as many E-asymmetric inputs as 
possible.  

Definition 3.3: The distance of VP( ix , jx ) in an MEG is 
the difference of relative position of ix  and jx .

Theorem 3.2: For an MEG with K elements, the number 
of VPs with distance i is (K - i) and the maximal distance 
among all VPs is (K - 1). 

Example 3.2: For an MEG (2 3 5 6 7 8 9), we number the 
position from left to right as 1 to 7. Please note the distance 
of a VP is the difference of relative position. While the 
initial position (position number is 1) or the allocation of 
elements in an MEG is changed, the distance of VPs would 
also be changed. All VPs in the MEG are listed by their 
distances in Table I. 

Table I The distance of VPs 
Distance VP |VP| 

1
2
3
4
5
6

(2,3),(3,5),(5,6),6,7),(7,8),(8,9) 
(2,5),(3,6),(5,7),(6,8), (7,9) 

(2,6),(3,7),(5,8),(6,9) 
(2,7),(3,8),(5,9) 

(2,8),(3,9) 
(2,9)

6
5
4
3
2
1

Definition 3.4: For an N-input circuit, circular pattern 
set for an MEG with K elements is the set that consists of 
all patterns which satisfy following conditions in N

m  and 
is denoted as ,

K
m i .

1). Initial position is circularly set in each element of the 
MEG. 

2). The distance of elements assigned value 1 is 1 except 
on the last two elements. The distance of the last two 
elements assigned value 1 is i.

3). If m=1, then i is 1. 
Example 3.3: For a 10-input circuit, there is an MEG 

with 7 elements and assume the SASIs representation is (2 
3 5 6 7 8 9). The circular pattern set 7

3,1 is {0110100000, 
0010110000, 0000111000, 0000011100, 0000001110, 
0100000110, 0110000010}. To represent the patterns 
concisely, a simple representation that indicates which 
inputs are assigned 1 is used. Hence the simple 
representation of 7

3,1 is {(2,3,5), (3,5,6), (5,6,7), (6,7,8), 
(7,8,9), (8,9,2), (9,2,3)}. The circular pattern set 7

3,2 is
{0110010000,  0010101000, 0000110100, 0000011010, 
0100001100, 0010000110, 0100100010} and the 
corresponding simple representation is {(2,3,6), (3,5,7), 
(5,6,8), (6,7,9), (7,8,2), (8,9,3), (9,2,5)}. 

Theorem 3.3: For an MEG with K elements, a couple of 
circular pattern sets { ,1 2,,K K

m m i } can be used to recognize 
VPs with distance i and (K - i).

Proof: The distances of patterns in ,1
N
m is 1, hence the 

distance sequence is 1 2 1( 1,  1,...,  1)ix x x  for all 
patterns in ,1

N
m . The patterns in 2,

N
m i  with the distance 

sequence 1 2 1 1( 1,  1,  ...,  1,  1,  )i i ix x x x x i and the 
patterns in ,1

N
m  could be used to recognize VPs with 

distance i. Since i represent the distance of last two critical 
1s and we regards the distance as circular, VPs with 



distance (N - i) could be treated as i. Therefore, 
{ ,1 2,,N N

m m i } could be used to recognize VPs with 
distance i and (N - i).

Now, we will explain how to utilize circular pattern set 
to recognize symmetric inputs. Considering an MEG with 
K elements, there are 2

KC  VPs and could be divided into 
(K-1) sets by the distance. Since a couple of { ,1

K
m 2,

K
m i }

could be used to recognize VPs with distance i and (K - i), 
and the possible distance of all VPs is from 1 to (K - 1), we 
apply the following rules to recognize all VPs. 

Rule 1: Choosing circular pattern set ,1
K
m  in N

m .
Rule 2: Choosing circular pattern sets 2,

K
m i  in 2

N
m

where, i =1, 2,…, ( 1) / 2N in 2
N
m .

Example 3.4: For a 10-input circuit and we assume the 
SASIs representation is (2 3 5 6 7 8 9)(1)(4)(10) after 
generating and comparing { 10

0 , 10
2 }. Next we choose 

circular pattern set 7
1,1  in 10

1  and 7
3,1  in 10

3 for the 
MEG ( 2 3 5 6 7 8 9). Those two circular pattern sets can be 
used to recognize VPs with distance 1 and 6. This can be 
seen in Figure 4. Similarly, circular pattern set 

7
3,2 and 7

3,3 could be used to recognize VPs with distance 2 
and 5 as well as 3 and 4 as comparing 7

1,1 , respectively. 
Those two illustrations could be seen in Figure 5 and 
Figure 6. It is obvious that those three circular pattern sets 
can cover all distances of all VPs. 

Figure 4: Comparing ( 7
1,1 , 7

3,1 ) covers VPs with distance 
1 and 6

Figure 5: Comparing ( 7
1,1 , 7

3,2 ) covers VPs with distance 
2 and 5 

Figure 6: Comparing ( 7
1,1 , 7

3,3 ) covers VPs with distance 
3 and 4

Figure 7 shows the flow chart that we proposed for 
finding maximal symmetric inputs sets. Our approach reads 
a design with arbitrary levels and generates patterns. The 
results of patterns provide information to the remaining 
VPs. Grouping all remaining VPs to from the updated 
SASIs. Then further heuristic patterns are generated and 
simulated again by the updated SASIs in the next iteration. 
If all inputs are recognized as asymmetric or the iterations 
are over the bound, our approach will be terminated and the 
maximal symmetric input sets will be returned. 

Figure 7: The flow chart of our approach 

IV. EXPERIMENTAL RESULTS 

We have implemented the proposed algorithm in Verilog 
HDL. Experiments are conducted over a set of ISCAS-85 
and MCNC benchmarks which are described in Verilog 
HDL.  

We compare the experimental results with [10]. [10] is 
an BDD-based approach for E symmetry identification. It 
claims that all VPs can be identified exactly. 

Table II summarizes the experimental results of [10] and 
ours. The first column shows the name of each benchmark 
and the following two columns #in and #out represent the 
number of inputs and outputs. The following columns show 
the CPU time measured in second and the results. In [10], 
the time for building BDDs was not listed. We construct the 
BDDs for each benchmark by CUDD package [7] without 
using any reordering technique and its time is shown in the 
“reading” column on a “SUN SPARC II” workstation 
measured in second. The last column shows the number of 
variable pairs that cannot be recognized as asymmetric 
inputs by [10] and our approach. According to Table II, our 
CPU time is less than that of [10] with including the time of 
BDD construction, and our results are the same with [10] 
for most benchmarks. In c2670 and c7552, however, our 
approach returns more VPs that cannot be recognized as 
asymmetric than [10], but the CPU time is less than that of 
[10]. Note that our approach is applicable to the designs 

Start 

All asymmetric 
or i > bound

Simulate Patterns

Update SASIs 

Stop 

No Yes

 = 0i

i
Generate Patterns

7
1,1    7

3,1       VPs  Distance

2  2 3 5   (3, 5)     1 
3  3 5 6   (5, 6)     1 
5  5 6 7   (6, 7)     1 
6  6 7 8   (7, 8)     1 
7  7 8 9   (8, 9)     1 
8  8 9 2   (9, 2)     6 
9  9 2 3   (2, 3)     1

7
1,1

7
3,2         VPs  Distance

2  2 3 6   (3, 6)     2 
3  3 5 7   (5, 7)     2 
5  5 6 8   (6, 8)     2 
6  6 7 9   (7, 9)     2 
7  7 8 2   (8, 2)     5 
8  8 9 3   (9, 3)     5 
9  9 2 5   (2, 5)     2

7
1,1    7

3,3            VPs  Distance

2  2 3 7   (3, 7)     3 
3  3 5 8   (5, 8)     3 
5  5 6 9   (6, 9)     3 
6  6 7 2   (7, 2)     4 
7  7 8 3   (8, 3)     4 
8  8 9 5   (9, 5)     4 
9  9 2 6   (2, 6)     3 



whose compact BDDs cannot be built. For example, c6288 
is a multiplier design, one cannot have an efficient BDD 
representation for it. Hence, the proposed approach is a 
robust approach to some degree. 

V. CONCLUSIONS 

Random simulation could also find some asymmetric 
VPs. But it may generate redundant patterns for some 
recognized asymmetric VPs. Thus, simulation with 
randomly generated patterns is inefficient. In this paper, we 
propose a systematic patterns search algorithm for 
computing maximal symmetric inputs sets. It is applicable 
to designs described in arbitrary level, especially to 
high-level and black box designs. Experimental results on 
ISCAS-85 and MCNC benchmarks demonstrate the 
effectiveness and efficiency of our approach. 
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Experimental results of the equivalence symmetric input 
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pair circuit #in #out
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c880

c1355

c1908
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c3540
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c2670

c7552
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rot 
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33
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233
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32
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135

9

14
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7
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8
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