
High Level Equivalence Symmetric Input Identification

Ming-Hong Su Chun-Yao Wang

Department of Computer Science
National Tsing Hua University, HsinChu, Taiwan, R.O.C

{harrysu, wcyao}@cs.nthu.edu.tw

Abstract Symmetric input identification is an important
technique in logic synthesis. Previous approaches deal with
this problem by building BDDs and developing algorithms
to determine symmetric inputs. For the design whose
corresponding BDDs cannot be built, BDD-based
approaches cannot be applied on this problem. To avoid the
limitations of BDD-based approaches, simulation-based
methods have been proposed. It is applicable to designs
described in arbitrary level, especially to high-level and
black box designs. Previous simulation-based approaches
focus on determining the inputs of nonequivalence
symmetry. In this paper, we propose a simulation-based
approach to identify equivalence symmetric inputs. The
experimental results on a set of ISCAS-85 and MCNC
benchmarks are also presented.

I. INTRODUCTION

Symmetry input identification is to find the symmetric
relation of all inputs. Symmetric input sets are the subsets
of inputs. Grouping symmetric inputs to form symmetric
input sets and thus any permutations of the inputs within a
subset leave the function invariant. The problem to find the
maximal symmetric inputs sets has been formulated in [3]
[4]: Given a function ()f x , find maximal subsets of
inputs 1 2, ,..., Xnx x x , such that 1 2 ... Xnx x x
and the inputs in every ix can be permuted in any fashion
without changing the functionality.

Method to finding the maximal symmetric input sets is
based on finding all pairs of symmetric inputs and then take
the unions of all the pairs having nonempty intersection.
Previous approaches [2[3][6] are based on checking the
equality of cofactors of the function. The maximal
symmetric input sets could be computed after checking all
symmetric pairs. However, those approaches are very
time-consuming and not feasible for large functions. While
the number of inputs is large, representing functions using
BDDs will improve the efficiency of cofactor computation.
A simple symmetry test is to check whether the BDD
representations of two cofactor functions are isomorphic or
not. This can be seen in Figure 1. However, computing
multiple cofactor pairs is still expensive for large functions.
This is because the repeated computation leads to create

This work was supported in part by the National Science
Council of R.O.C. under Grant NSC94-2220-E-007-041.

and delete a large number of intermediate BDD nodes.
Previous approaches based on BDDs and Boolean
functions are summarized as follows. [6] avoids redundant
cofactor computation by some criterions and thus speed up
the computation process. An efficient algorithm without
computing cofactors is proposed in [2]. [10] uses a
K-Disjointness Paradigm which can compute disjoint
situations with Hamming distance K between Boolean
function to find the maximum symmetries. [11] formulates
symmetry identification as an equation without using
cofactor computation and equivalence checking.

(a) (b)

Figure 1: a) Nonequivalence Symmetry
b) Equivalence Symmetry

In addition to BDD-based and Boolean function-based
methods, simulation-based approaches were applied to
circuits without having compact BDDs or Boolean
functions representation. [5] establishes two stages to
accomplish the symmetric input identification and using a
simulation-based method as the first stage of its two-stage
algorithm.

Most of previous works focus on determining
nonequivalence (NE) symmetry. For NE symmetry,
symmetric pair is an equivalence relation. However, this is
not true for equivalence (E) symmetry. For example, three
inputs { ix , jx , kx } could be distinguished as NE
symmetric inputs by any two symmetric pairs are held
because of transitivity. But for E symmetry, three pairs of
inputs have to be symmetric simultaneously. Consequently,
determining E symmetry needs more efforts than
determining NE symmetry. This paper proposes a
simulation-based approach to determining E symmetry.

The remainder of the paper is organized as follows. In
the next section we briefly overview different types of
symmetries and introduce the representation of maximal
symmetric input sets. Our algorithm will be presented in
Section 3. The experimental results of E symmetry are

0 1

1 10

0 1

0 01 10

ix

jx

ix

jx

presented in Section 4. Finally, Section 5 concludes the
paper.

II. PRELIMINARIES

This section reviews different types of symmetries at
first. Then, we introduce a representation for maximal
symmetric input sets. Finally, we show the naïve approach
to identifying symmetric inputs.

A. Overview of Symmetries

A cofactor of a function ()f x with respect to variables

ix and jx is the function resulting from the substitution
into ()f x of specific values for ix and jx . For example, the
cofactor of ()f x with respect to 0ix and 1jx is

1(, ..., 0, ..., 1, ...,),nf x x which is denoted as
i jx x

f [8].
For any pairs of variables ix and jx , there are four

cofactors, which are , , , and .
i ji j i jj i

x xx x x x x x
f f f f Different

categories of symmetries can be defined according to the
equality of two cofactors among them. A function ()f x
exhibits a nonequivalence (NE) symmetry in inputs

ix and jx , if
i jj ix x x x

f f . When
i jx x

f =
i jx xf , the function is

said to exhibit equivalence (E) symmetry with respect
to ix and jx . The illustrations of NE and E symmetries are
shown in Figure 2 and Figure 3, respectively.

Figure 2: Illustration of nonequivalence symmetry

 Figure 3: Illustration of equivalence symmetry

B. Symmetric-ASymmetric Inputs (SASIs) Representation

For an N-input circuit, there are 2
NC symmetric pairs of

all inputs. The maximal symmetric input sets could be
computed after checking all symmetric pairs. A naïve way
to presenting the result is to construct an N N triangular
matrix for an N-input circuit. Each entry in the triangular
matrix shows the symmetry of the corresponding inputs ix
and jx except the diagonal entries. This representation is
very simple but hard to understand globally. Therefore, we
use Symmetric -ASymmetric Inputs (SASIs) [9][1], which is
an implicit representation to present the maximal

symmetric input sets. By the SASIs, if any two inputs are
not in the same group, then they are asymmetric inputs.
Otherwise they are “possibly” symmetric. For an N-input
circuit, we number the inputs from 1 to N. Initially, we can
assume that all inputs are possibly symmetric, so the SASIs
representation is (1 2 3 …. N). If we can confirm that input
i is asymmetric to the other inputs, the SASIs
representation is (i) (1 2 …. i-1 i+1 N). The following
example demonstrates the details of the SASIs
representation.

Example 2.1: Given a 10-input circuit, the inputs are
numbered from 1 to 10. Initially, we assume all inputs are
possibly symmetric and thus the corresponding SASIs
representation is (1 2 3 4 5 6 7 8 9 10). While the SASIs
representation is (1 2 3 4 5) (6 7 8) (9) (10), it indicates that
input 9 and input 10 are asymmetric to the other inputs. If
SASIs representation could be divided into ten groups, then
we claim that all inputs are asymmetric inputs.

C. Naïve Approach

A pair of patterns whose assignments are identical except
on inputs ix and jx , and ix = jx (00 or 11) in each pattern,
is capable of distinguishing whether ix and jx are E
symmetric or not. These pairs of patterns are called legal
pattern pairs.

There are 22N legal pattern pairs for any two inputs in
an N-input circuit. Two inputs are E symmetric while the
outputs of each legal pattern pair are identical. Otherwise
they are E asymmetric inputs. We illustrate it using the
following example.

Example 2.2: For a 5-input circuit, if we want to
recognize whether input 1 and input 2 are E symmetric
inputs or not. We have to exhaustively simulate 5 22 8
legal pattern pairs, which are {(00000, 11000), (00100,
11100), (00010, 11010), (00001, 110001), (00110, 11110),
(00101, 11101), (00011, 11011), (00111, 11111)}. If the
outputs of each legal pattern pairs are identical, input 1 and
input 2 are symmetric. Otherwise they are asymmetric.

It is clear that to identify two inputs are E asymmetric is
easier than to identify they are E symmetric. Thus, our
approach will target at the identification of asymmetric
inputs.

Definition 2.1: A pair of inputs ix and jx is denoted
as VP (ix , jx) if they have not been recognized as
symmetric or asymmetric.

The naïve approach is an exhaustive approach. It
simulates all legal pattern pairs to recognize whether the
targeted VP is asymmetric or not. If there exits one legal
pattern pair with different outputs, then the process to
recognizing the targeted VP would cease.

III. EQUIVALENCE SYMMETRY
IDENTIFICATION ALGORITHM

Since the naïve approach needs a great number of

=
1x

2x

3x

1x

2x

3x
1 2 3F(, ,)x x x

1 2 3F(, ,)x x x

=
1x

2x

3x

1x

2x

3x
1 2 3F(, ,)x x x

1 2 3F(, ,)x x x

patterns and comparisons to identify symmetric inputs. A
heuristic which applies two sets of patterns to recognize all
VPs simultaneously is investigated.

Definition 3.1 [1]: For an N-input combination circuit,
the set consists of all patterns with m 1s and (N-m) 0s is
denoted as N

m , where m [0, 1, 2, …, N-1, N]. The size
of N

m is the number of patterns in N
m and is denoted as

| N
m | and | N

m | equals N
mC , where

!

()! !
N
m

N
C

N m m

Following equations represent the relations of N
m for

different m and N:

1

1

| | | | {1, 2,...., (-1) / 2 }

| | | | { (1) / 2 ,...., -1}

N N
m m

N N
m m

for m N

for m N N

Theorem 3.1: For any two pattern sets { N
i , 2

N
i }, those

two pattern sets can be used to recognize all VPs.
However, this heuristic is infeasible while i increases.

For example, considering two pattern sets { 100
1 , 100

3 },
there are 100

1C =100 patterns in 100
1 , and 100

3C =161,700
patterns in 100

3 . It conducts 100 161,700 = 16,170,000
comparisons for identifying E symmetry.

The heuristic approach fails due to a great number of
patterns and comparisons have to be generated and
conducted. The number of patterns in a pattern set depends
on two factors, one is the length of a pattern, i.e., the
number of inputs. The other is the number of 1s in a pattern
of the pattern set. Since the pattern set is determined by the
number of 1s, it seems difficult in reducing this factor.
Therefore, we attempt to divide inputs into as many groups
as possible. Therefore, an improved approach is introduced.

Definition 3.2[1]: A multiple element group (MEG) is a
group that contains more than one element in the SASIs
representation. A single element group (SEG) is a group
that contains only one element.

The improved approach aims at each MEG and generates
the corresponding pattern sets for each MEG. While the
size of MEG is reduced, the number of pattern in a pattern
set could also be reduced.

Example 3.1: For a 10-input circuit and assume the
SASIs representation is (1 2 3 4 5) (6 7 8 9 10) after
generating { 10

1 , 10
3 }. The second step is to generate

{ 10
2 , 10

4 } and we have to generate (10
2C + 10

4C) = 255
patterns and conduct (10

2C 10
4C) = 9,450 comparisons by

using the heuristic approach. But in considering the
improved approach, for the MEG (1 2 3 4 5), it only
generates { 5

2 , 5
4 }. It is the same to the MEG (6 7 8 9 10).

The total number of patterns and comparisons by using the
improved approach are (5

2C + 5
4C) 2 = 30 and

(5
2C 5

4C) 2 = 100, respectively. As compared with the
heuristic approach, the improved approach is effective in
diminishing the total number of patterns and comparisons.

If the size of MEG is large, the number of patterns to be

generated is still large. Thus, next we will propose an
algorithm that systematically generates smaller number of
patterns to distinguish as many E-asymmetric inputs as
possible.

Definition 3.3: The distance of VP(ix , jx) in an MEG is
the difference of relative position of ix and jx .

Theorem 3.2: For an MEG with K elements, the number
of VPs with distance i is (K - i) and the maximal distance
among all VPs is (K - 1).

Example 3.2: For an MEG (2 3 5 6 7 8 9), we number the
position from left to right as 1 to 7. Please note the distance
of a VP is the difference of relative position. While the
initial position (position number is 1) or the allocation of
elements in an MEG is changed, the distance of VPs would
also be changed. All VPs in the MEG are listed by their
distances in Table I.

Table I The distance of VPs
Distance VP |VP|

1
2
3
4
5
6

(2,3),(3,5),(5,6),6,7),(7,8),(8,9)
(2,5),(3,6),(5,7),(6,8), (7,9)

(2,6),(3,7),(5,8),(6,9)
(2,7),(3,8),(5,9)

(2,8),(3,9)
(2,9)

6
5
4
3
2
1

Definition 3.4: For an N-input circuit, circular pattern
set for an MEG with K elements is the set that consists of
all patterns which satisfy following conditions in N

m and
is denoted as ,

K
m i .

1). Initial position is circularly set in each element of the
MEG.

2). The distance of elements assigned value 1 is 1 except
on the last two elements. The distance of the last two
elements assigned value 1 is i.

3). If m=1, then i is 1.
Example 3.3: For a 10-input circuit, there is an MEG

with 7 elements and assume the SASIs representation is (2
3 5 6 7 8 9). The circular pattern set 7

3,1 is {0110100000,
0010110000, 0000111000, 0000011100, 0000001110,
0100000110, 0110000010}. To represent the patterns
concisely, a simple representation that indicates which
inputs are assigned 1 is used. Hence the simple
representation of 7

3,1 is {(2,3,5), (3,5,6), (5,6,7), (6,7,8),
(7,8,9), (8,9,2), (9,2,3)}. The circular pattern set 7

3,2 is
{0110010000, 0010101000, 0000110100, 0000011010,
0100001100, 0010000110, 0100100010} and the
corresponding simple representation is {(2,3,6), (3,5,7),
(5,6,8), (6,7,9), (7,8,2), (8,9,3), (9,2,5)}.

Theorem 3.3: For an MEG with K elements, a couple of
circular pattern sets { ,1 2,,K K

m m i } can be used to recognize
VPs with distance i and (K - i).

Proof: The distances of patterns in ,1
N
m is 1, hence the

distance sequence is 1 2 1(1, 1,..., 1)ix x x for all
patterns in ,1

N
m . The patterns in 2,

N
m i with the distance

sequence 1 2 1 1(1, 1, ..., 1, 1,)i i ix x x x x i and the
patterns in ,1

N
m could be used to recognize VPs with

distance i. Since i represent the distance of last two critical
1s and we regards the distance as circular, VPs with

distance (N - i) could be treated as i. Therefore,
{ ,1 2,,N N

m m i } could be used to recognize VPs with
distance i and (N - i).

Now, we will explain how to utilize circular pattern set
to recognize symmetric inputs. Considering an MEG with
K elements, there are 2

KC VPs and could be divided into
(K-1) sets by the distance. Since a couple of { ,1

K
m 2,

K
m i }

could be used to recognize VPs with distance i and (K - i),
and the possible distance of all VPs is from 1 to (K - 1), we
apply the following rules to recognize all VPs.

Rule 1: Choosing circular pattern set ,1
K
m in N

m .
Rule 2: Choosing circular pattern sets 2,

K
m i in 2

N
m

where, i =1, 2,…, (1) / 2N in 2
N
m .

Example 3.4: For a 10-input circuit and we assume the
SASIs representation is (2 3 5 6 7 8 9)(1)(4)(10) after
generating and comparing { 10

0 , 10
2 }. Next we choose

circular pattern set 7
1,1 in 10

1 and 7
3,1 in 10

3 for the
MEG (2 3 5 6 7 8 9). Those two circular pattern sets can be
used to recognize VPs with distance 1 and 6. This can be
seen in Figure 4. Similarly, circular pattern set

7
3,2 and 7

3,3 could be used to recognize VPs with distance 2
and 5 as well as 3 and 4 as comparing 7

1,1 , respectively.
Those two illustrations could be seen in Figure 5 and
Figure 6. It is obvious that those three circular pattern sets
can cover all distances of all VPs.

Figure 4: Comparing (7
1,1 , 7

3,1) covers VPs with distance
1 and 6

Figure 5: Comparing (7
1,1 , 7

3,2) covers VPs with distance
2 and 5

Figure 6: Comparing (7
1,1 , 7

3,3) covers VPs with distance
3 and 4

Figure 7 shows the flow chart that we proposed for
finding maximal symmetric inputs sets. Our approach reads
a design with arbitrary levels and generates patterns. The
results of patterns provide information to the remaining
VPs. Grouping all remaining VPs to from the updated
SASIs. Then further heuristic patterns are generated and
simulated again by the updated SASIs in the next iteration.
If all inputs are recognized as asymmetric or the iterations
are over the bound, our approach will be terminated and the
maximal symmetric input sets will be returned.

Figure 7: The flow chart of our approach

IV. EXPERIMENTAL RESULTS

We have implemented the proposed algorithm in Verilog
HDL. Experiments are conducted over a set of ISCAS-85
and MCNC benchmarks which are described in Verilog
HDL.

We compare the experimental results with [10]. [10] is
an BDD-based approach for E symmetry identification. It
claims that all VPs can be identified exactly.

Table II summarizes the experimental results of [10] and
ours. The first column shows the name of each benchmark
and the following two columns #in and #out represent the
number of inputs and outputs. The following columns show
the CPU time measured in second and the results. In [10],
the time for building BDDs was not listed. We construct the
BDDs for each benchmark by CUDD package [7] without
using any reordering technique and its time is shown in the
“reading” column on a “SUN SPARC II” workstation
measured in second. The last column shows the number of
variable pairs that cannot be recognized as asymmetric
inputs by [10] and our approach. According to Table II, our
CPU time is less than that of [10] with including the time of
BDD construction, and our results are the same with [10]
for most benchmarks. In c2670 and c7552, however, our
approach returns more VPs that cannot be recognized as
asymmetric than [10], but the CPU time is less than that of
[10]. Note that our approach is applicable to the designs

Start

All asymmetric
or i > bound

Simulate Patterns

Update SASIs

Stop

No Yes

 = 0i

i
Generate Patterns

7
1,1 7

3,1 VPs Distance

2 2 3 5 (3, 5) 1
3 3 5 6 (5, 6) 1
5 5 6 7 (6, 7) 1
6 6 7 8 (7, 8) 1
7 7 8 9 (8, 9) 1
8 8 9 2 (9, 2) 6
9 9 2 3 (2, 3) 1

7
1,1

7
3,2 VPs Distance

2 2 3 6 (3, 6) 2
3 3 5 7 (5, 7) 2
5 5 6 8 (6, 8) 2
6 6 7 9 (7, 9) 2
7 7 8 2 (8, 2) 5
8 8 9 3 (9, 3) 5
9 9 2 5 (2, 5) 2

7
1,1 7

3,3 VPs Distance

2 2 3 7 (3, 7) 3
3 3 5 8 (5, 8) 3
5 5 6 9 (6, 9) 3
6 6 7 2 (7, 2) 4
7 7 8 3 (8, 3) 4
8 8 9 5 (9, 5) 4
9 9 2 6 (2, 6) 3

whose compact BDDs cannot be built. For example, c6288
is a multiplier design, one cannot have an efficient BDD
representation for it. Hence, the proposed approach is a
robust approach to some degree.

V. CONCLUSIONS

Random simulation could also find some asymmetric
VPs. But it may generate redundant patterns for some
recognized asymmetric VPs. Thus, simulation with
randomly generated patterns is inefficient. In this paper, we
propose a systematic patterns search algorithm for
computing maximal symmetric inputs sets. It is applicable
to designs described in arbitrary level, especially to
high-level and black box designs. Experimental results on
ISCAS-85 and MCNC benchmarks demonstrate the
effectiveness and efficiency of our approach.

REFERENCES

[1] C.-L Chou, C.-Y Wang, G.-W Lee, and J.-Y Jou, “Graph
automorphism-based algorithm for determining symmetric
inputs,” in Proceedings of IEEE International Conference
on Computer Design, pp. 417-419, 2004.

[2] A. Mishchenko, “Fast computation of symmetries in
Boolean functions,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 22, pp.
1588-1593, Nov. 2003.

[3] E. J. McCluskey, “Detection of group invariance or total
symmetry of a Boolean function,” Bell System Technology
Journal, pp. 1445-1453, Nov. 1956.

[4] E. J. McCluskey, Logic Design Principles with Emphasis
on Testable Semicustom Circuits, Prentice-Hall, 1986.

[5] I. Pomeranz and S. M. Reddy, “On determining symmetries
in inputs of logic circuits,” in Proceedings of IEEE
International Conference on Computer-Aided Design, pp.
500-507, 1993.

[6] C. Scholl, D. Moller, and P. Molitor, “BDD minimization
using symmetries,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 18, pp.
81-100, Feb. 1999.

[7] F. Somenzi, “CUDD: CU Decision Diagram Package,
Release 2.3.1,” University of Colorado at Boulder, 2001.

[8] C.-C. Tsai and M. Marek-Sadowska, “Generalized
Reed-Muller forms as a tool to detect symmetries,” IEEE
Transactions of Computers, vol. 45, pp. 33-40, Jan. 1996.

[9] C.-Y Wang, S.-W Tung, and J.-Y Jou, "On Automatic
Verification Pattern Generation for SoC with Port Order
Fault Model", IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 21, pp.
466-479, Apr. 2002.

[10] K.-H. Wang and J.-H. Chen, “Symmetry Detection for
Incompletely Specified Functions with K-Disjointness
Paradigm,” in Proceedings of the IEEE Asia and South
Pacific Design Automation Conference, vol. 2, pp. 994-997,
2005.

[11] K.-H. Wang and J.-H. Chen, “Symmetry detection for
incompletely specified functions,” in Proceedings of IEEE
Design Automation Conference, pp. 434-437, 2004.

Table II
Experimental results of the equivalence symmetric input

identification

time (s)
 symmetry

pair circuit #in #out

reading [10] ours [10] ours

c880

c1355

c1908

c432

c499

c3540

c5315

c2670

c7552

c6288

des

rot

9sym

alu4

cordic

t481

60

41

33

36

41

50

178

233

207

32

256

135

9

14

23

16

26

32

25

7

32

22

123

140

108

32

245

107

1

8

2

1

11.57

1.30

--

--

1.17

18.96

>1hr

>1hr

>1hr

--

3.42

3.08

--

--

--

--

0.03

0.05

--

--

0.05

0.08

0.02

0.08

0.17

--

0.03

0.07

--

--

--

--

1.75

0.68

0.28

0.19

0.66

2.42

49.38

593.04

633.61

0.25

14.36

26.31

0.46

0.71

2.89

0.98

0

0

--

--

0

0

0

28

6

--

0

1

--

--

--

--

0

0

0

0

0

0

0

227

160

0

0

1

0

0

0

0

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

