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Abstract— Detecting symmetries is crucial to logic synthesis,
technology mapping, detecting function equivalence under un-
known input correspondence, and ROBDD minimization. State-
of-the-art is represented by Mishchenko’s algorithm. In this pa-
per we present an efficient anytime algorithm for detecting sym-
metries in Boolean functions represented as ROBDDs, that out-
put pairs of symmetric variables until a prescribed time bound
is exceeded. The algorithm is complete in that given sufficient
time it is guaranteed to find all symmetric pairs. The complex-
ity of this algorithm is in O(n4 + n|G| + |G|3) where n is the
number of variables and |G| the number of nodes in the ROBDD,
and it is thus competitive with Mishchenko’s O(|G|3) algorithm in
the worst-case since n � |G|. However, our algorithm performs
significantly better because the anytime approach only requires
lightweight data structure support and it offers unique opportu-
nities for optimization.

I. INTRODUCTION

Symmetry detection has been important since the days of Shan-
non [1] who observed that symmetric functions have particularly ef-
ficient switch network implementations. Symmetry detection is no
less important these days and knowledge of symmetric variables has
many applications in logic synthesis [2,3], technology mapping [4,5],
ROBDD minimization [6, 7] and detecting equivalence of Boolean
functions for which input correspondence is unknown [8, 9].

The challenge in symmetry detection is to find efficient algo-
rithms for detecting all symmetric variables pairs (xi, xj) of a given
Boolean function f(x1 . . . xn), that is, find all pairs (xi, xj) such that
f(. . . , xi, . . . , xj , . . .) = f(. . . , xj , . . . , xi, . . .). The intuition be-
ing that f remains unchanged under the switching of the variables xi

and xj . This symmetry is formally known as the first-order classical
symmetry, or the non-skew non-equivalence symmetry [10]. It can
be shown from Boole’s expansion theorem [11] this is equivalent to
checking equality of the co-factor pair f|xi←0,xj←1 = f|xi←1,xj←0.
This formulation shows that it is possible to find the set of all sym-
metric pairs by calling the co-factoring operation no more than n2−n
times, where n is the number of variables. Early work on detecting
symmetric variables in Boolean functions has focussed on the com-
putation of these co-factor pairs and symmetry detected by checking
their equivalence [12]. The use of ROBDDs to represent Boolean
functions enables co-factor equivalence to be checked in constant
time, however, repeated co-factoring involves the creation and dele-
tion of many intermediate ROBDD nodes and for very large ROBDDs
this overhead can be prohibitive. This method is often referred to as
the naı̈ve method [12]. Möller, Mohnke and Weber [12] thus advocate
the use of two preprocessing algorithms — two sieves — that detect
pairs of asymmetric variables. These linear-time sieves significantly
reduce the number of co-factor pairs that need to be computed. In
general, however, the method still requires naı̈ve co-factor computa-
tion, that is, calls to the standard co-factoring algorithm the complex-
ity of which is in O(|G| lg |G|) [13]. Methods that rely on asymmetry
sieves, such as those proposed in [7,12], are said to be based upon the
so-called negative-thinking paradigm [14]. That is, they obtain the
symmetric variable pairs from the set of all variables pairs by system-
atically removing all asymmetric variable pairs.

Because of the cost of repeated co-factoring, many symmetry
detection methods endeavor to avoid naı̈ve co-factor computation.
Möller et al. [12] and Panda el al. [6] detect all symmetries between
variables adjacent in the variable order with an algorithm in O(|G|).
Rudell’s dynamic variable reordering algorithm [15] has also been
used to detect symmetries, although the aim is not symmetry detec-
tion per se, but ROBDD minimization. Rudell’s algorithm consid-
ers each variable in turn moving it up and down in the variable or-
dering (subject to complexity limits) so as to minimize the ROBDD.
Panda et al. [6] modify Rudell’s algorithm to detect symmetries be-
tween variables that become adjacent when one of the variables is
repositioned in the ROBDD variable ordering. Symmetric variables
are then grouped, and any subsequent reordering that is applied is re-
quired to preserve a contiguous variable ordering within each group.
This approach to symmetry detection does not require naı̈ve co-factor
computation, but there is no guarantee that all symmetries will be
found. State-of-the-art is represented by Mishchenko’s algorithm [14]
that detects all symmetric variable pairs in a ROBDD in O(|G|3).
(Note that this algorithm is parameterized by the underlying set rep-
resentation that is used to store the variable pairs, and therefore this
complexity result does not consider the complexity of the set oper-
ations themselves. Most conservatively, assuming all set operations
are linear, the overall running time is at least O(n2|G|3) since each
set contains potentially O(n2) elements). Algorithms such as those
of Mishchenko [14] and Panda et al. [6] are based on the so-called
positive-thinking paradigm [14]. That is they compute variable pairs
that are symmetric, and in the case of Mishchenko’s algorithm, be-
cause of its completeness, those pairs not found to be symmetric are
then known to be asymmetric.

The problem with existing symmetry detection methods is that they
are either monolithic, inefficient, or incomplete. A monolithic algo-
rithm has to be run to completion before it can return any answer;
the value of such an algorithm is compromised if the running time is
prohibitive. Mishchenko’s [14] algorithm falls into this class. Prac-
tically all engineering tasks (and logic synthesis is no exception) re-
quire an acceptable answer to be found in a reasonable amount of time
rather than the optimal answer in an exorbitant amount of time. This
is relevant in the context of symmetry detection because the running
time of the state-of-the-art algorithm [14] can exceed 12 hours on
some ROBDDs of less than a million nodes (actually this was bench-
mark simp12). This motivates the need for a so-called anytime al-
gorithm that will incrementally detect pairs of symmetric variables
until some given time bound is exceeded. Symmetry detection algo-
rithms [7,12] based on naı̈ve co-factor computation can be considered
to be incremental but, alas, this approach is inefficient. The algorithm
of Panda et al. [6] is an interesting example of an incremental algo-
rithm that does not require co-factor computation but, unfortunately,
the algorithm is incomplete for the purposes of symmetry detection.

In this paper we present a novel anytime algorithm for symmetry
detection based on the negative-thinking paradigm, whose efficiency
compares very favorably against that of Mishchenko in the case when
all the pairs require to be enumerated. The algorithm demonstrates
that, with careful construction, it is possible to detect symmetries in-
crementally without compromising efficiency. Our anytime algorithm
is inspired by that of Mishchenko, but the correctness of our algo-
rithm is surprisingly subtle in that it depends on paths not passing
through given nodes in the ROBDD. For pedagogical purposes, two



versions of the algorithm are presented: a simple version that contains
a minimal number of components to ensure correctness; and a refined
version that demonstrates how an incremental algorithm has compu-
tational advantages over a comparable monolithic algorithm. These
two algorithms are respectively presented in Sections III and IV. An
intriguing aspect of the anytime approach is that it permits transitivity
to be fully exploited. It is well-known that if (xi, xj), (xj , xk) are
symmetric then so is (xi, xk) [16, 17], but this observation has had
scant consideration in the symmetry detection literature. Möller et
al. [12, p 681] state that “we also use the fact that if {xi, xj} and
{xj , xk} are pairs of symmetric variables, then {xi, xk} is a pair
of symmetric variables as well”, seemingly missing the fact that if
(xi, xj) are symmetric and (xi, xk) are asymmetric then (xj , xk) are
asymmetric. Due to the way our anytime algorithm decomposes sym-
metry detection into a series of passes, one for each variable, we are
free to apply asymmetry/symmetry propagation between each of these
passes to reduce the expected cost of each pass. This is discussed in
Section IV-C. Sections IV-A and IV-B show how the algorithm can
be accelerated using more well-known techniques that relate to adja-
cent symmetries [12] and positive satisfy counts [8]. Extensive exper-
imental results that are given in Section V demonstrate the value of
these refinements, compare the algorithm against of that Mishchenko
and demonstrate the anytime nature of the algorithm. The remainder
of this paper is organized as follows: Section II presents definitions
used within the paper and Section VI presents the concluding discus-
sion. For clarity, we summarize our contributions as follows:

• The paper presents a novel incremental, anytime algorithm for
symmetry detection based on the negative-thinking paradigm.

• In theory, the algorithm is in O(n4 + n|G| + |G|3) where
n � |G| (even considering the complexity of all set operations)
which compares favorably against state-of-the-art [14].

• The paper shows that an anytime algorithm can put low com-
putational demands on the underlying data-structures that repre-
sent pairs of symmetric variables. Thus anytime generality does
not have to sacrifice efficiency, indeed the converse is true.

• The paper explains how an incremental anytime approach of-
fers special opportunities for optimization, in that classical as-
symetry/symmetry sieves can precede the algorithm and as-
symetry/symmetry propagation techniques can be inserted into
the main loop of the algorithm.

• The paper also reports a hitherto overlooked subtlety of symme-
try detection: it seems that at least O(n|G|) preprocessing steps
must be performed before incremental symmetry detection may
commence. Rather surprisingly, the correctness of our algorithm
critically depends upon an O(n|G|) asymmetry sieve [12], that
relates to paths that can arise within an ROBDD in the presence
of symmetries. (As a consequence, we conjecture that there is
no way to construct an incremental, complete symmetry detec-
tion algorithm without first applying preprocessing).

II. PRELIMINARIES

In this paper we consider completely specified Boolean functions
f : {0, 1}n → {0, 1} that are conventionally written as Boolean
formulae defined over a variable set X = {x1, . . . , xn}. The
satisfy-count of an n-ary Boolean function f is defined as ‖f‖ =
|{(b1, . . . , bn) | f(b1, . . . , bn) = 1}| [13]. The (Shannon) co-factor
of a function f w.r.t a variable xi and a Boolean constant b is defined
by f|xi←b = f(x1, . . . , xi−1, b, xi+1, . . . , xn). Multiple variable
co-factors can be defined inductively as f0 = f , fi = fi−1|xi←bi

and f|x1←b1,...,xn←bn = fn. A function f over X is symmetric in a
pair of variables (xi, xj) iff f|xi←0,xj←1 = f|xi←1,xj←0, otherwise
it is asymmetric in (xi, xj).

ROBDDs are obtained by inducing a total-order on X . A BDD is a
rooted directed acyclic graph where each internal node is labeled with
a Boolean variable. Each internal node has one successor node con-
nected via an edge labeled 0, and another successor connected via an

edge labeled 1. Each external (leaf) node is either 0 or 1. The Boolean
function represented by a BDD can be evaluated for a given variable
assignment by traversing the graph from the root, taking the 1 edge
at a node when the variable is assigned to 1 and the 0 edge when the
variable is assigned to 0. The external node reached in this traversal
indicates the value of the Boolean function for the assignment. An
OBDD is a BDD with the restriction that the label of a node is always
less than the label of any internal node reachable via its successors.
An ROBDD is an OBDD with the additional constraint that the suc-
cessors of any internal node do not represent the same Boolean func-
tion. Note that any internal node of an ROBDD is itself the root of an
ROBDD. An ROBDD f is symmetric in a pair of variables (xi, xj) iff
the Boolean function it represents is symmetric in (xi, xj). Finally,
let |G| denote the number of internal nodes in a ROBDD G.

III. ANYTIME SYMMETRY DETECTION ALGORITHM

In this section we propose a novel, anytime approach to symme-
try detection. The algorithm presented in Algorithm 1 contains the
minimum number of components required so as to ensure correct-
ness. The algorithm takes as input an ROBDD f and returns the set S
of symmetric variable pairs. The algorithm is composed of two dis-
tinct procedures. ComputeAsymmetry(f ) performs two depth-first
search (dfs) traversals over the ROBDD f , to detect pairs of variables
that are asymmetric (in the particular sense that is described in Sec-
tion III-A). RemoveAsymmetry(f, i, C) filters a set of variables C
whose symmetry relationship with variable xi is unknown to return
the set C′ ⊆ C of variables that are symmetric with xi (this proce-
dure is detailed in Section III-B).

Algorithm 1 ComputeSymmetricPairs(f )
A ← ComputeAsymmetry(f)
S ← ∅
for i = 1 to n − 1 do

C ← { j | (i, j) �∈ (S ∪ A) ∧ i < j}
D ← RemoveAsymmetry(f, i, C)
S ← S ∪ {(i, k), (k, i) | k ∈ D}
A ← A ∪ {(i, l), (l, i) | l ∈ C \ D}

return S

The call to ComputeAsymmetry initializes the set of asymmetric
variable pairs A; S is initially empty. The remainder of the algo-
rithm considers each of the n variables in turn. Firstly, a set C is
constructed that contains all variables whose symmetry relation with
xi has not yet been ascertained. Secondly, the set of symmetric vari-
ables D returned from RemoveAsymmetry is used to extend S and
A. Observe that the sets S and A can be augmented in O(n) time
when C and D are represented as arrays. Furthermore, observe that
C can be constructed in O(n) time when the sets of pairs S and A are
represented as adjacency matrices. Finally, observe that actually only
n − 1 iterations of the loop are required because of the structure of
C. Further details of these two procedures are given in Sections III-A
and III-B.

A. Computing Asymmetries

The algorithm that initializes A is constructed from lemmas
that detail how symmetric variables place structural constraints on
ROBDDs [12]. For completeness, we state these lemmas below:

Lemma 1. If an ROBDD f over a set of variables X = {x1, . . . , xn}
is symmetric in the pair (xi, xj) and i < j, then every ROBDD rooted
at a node labeled xi must contain a node labeled xj .

Lemma 2. If an ROBDD f over a set of variables X = {x1, . . . , xn}
is symmetric in the pair (xi, xj) and i < j, then every path from the
root of f to a node labeled xj must visit a node labeled xi.
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Fig. 1. The ROBDD g for the propositional formula (x1 ∧ x2) ∨ x3

Lemma 1 and Lemma 2 provide two conditions under which asymme-
try can be observed. For any given node labeled xi we can compute
the set of all variables xj that appear in a ROBDD that is rooted at that
node, and any variable not appearing in this set is necessarily asym-
metric with xi. Furthermore, for any given node labeled xj , we can
compute the set of all variables xi that appear on all paths from the
root of the ROBDD to the node, and any variable not appearing in this
set is asymmetric with xj . The asymmetry conditions of Lemma 1
and Lemma 2 can be checked in two dfs traversals of the ROBDD,
each traversal taking O(n|G|) time.

Each iteration of the loop in Algorithm 1 considers a variable xi

and forms the set C from those variables whose symmetry relation-
ship with variable xi is not yet known. The validity of this decompo-
sition into multiple passes, is justified by the proposition which itself
is a consequence of the following lemma [12]:

Lemma 3. A Boolean function f over a set of variables
X = {x1, . . . , xn} is symmetric in the pair (xi, xj) iff both co-
factors f|xk←0 and f|xk←1 are symmetric in the pair (xi, xj).

Proposition 1. If an ROBDD f over a set of variables
X={x1, . . . , xn} is symmetric in the pair (xi, xj) and i < j iff

• every ROBDD rooted at a node labeled xi is symmetric in
(xi, xj) and,

• every path from the root to a node labeled xj passes through a
node labeled xi.

Proof. The proposition follows by applying the lemma inductively
on the variables xi−1, . . . , x1, though for brevity we consider only
the first inductive step. Consider an ROBDD g whose root node is
labeled with xi−1. There are four cases to consider. First, the roots of
both co-factors g|xi−1←0 and g|xi−1←1 are labeled xi. By Lemma 3,
g is symmetric in (xi, xj) iff g|xi−1←0 and g|xi−1←1 are symmetric
in (xi, xj). Observe that every path from the root of g to xj passes
through a node labeled xi. Second, the root of g|xi−1←0 is labeled
with xi whereas g|xi−1←1 is not. Again, g is symmetric in (xi, xj) iff
g|xi−1←0 and g|xi−1←1 are symmetric in (xi, xj). Observe g|xi−1←1

is symmetric in (xi, xj) iff g|xi−1←1 contains no node labeled xj , or
equivalently, every path from the root of g to xj passes through a node
labeled xi. The third and fourth cases are respectively analogous and
similar to the second.

The proposition allows exhaustive checking to be decomposed into
a series of passes; one pass for each variable xi. The crucial point
is that when the loop is entered, we have already removed all pairs
of variables (xi, xj) such that there exists a path from the root to
a node labeled xj which does not pass through a node labeled xi.
Hence, for correctness, the body of the loop in Algorithm 2, must
only check the first condition of the proposition. The counterexam-
ple given in Figure 1 illustrates the necessity of the second condi-
tion in the proposition, or put another way, it shows that correctness

is compromised if the preprocessing is omitted from the algorithm.
Observe that in Figure 1 that the variable pair (x2, x3) is symmet-
ric in the ROBDD rooted at x2, however (x2, x3) are asymmetric in
the ROBDD g since there exists a path from the root of g (x1) to
the node x3 that does not visit a node labeled x2. In fact, disabling
the preprocessing gives the following asymmetry and symmetry sets
Ai and Si after i iterations of the loop: A0 = S0 = ∅, A1 =
{(x1, x3), (x3, x1)},S1 = {(x1, x2), (x2, x1)}, A2 = A1, S2 =
S1 ∪ {(x2, x3), (x3, x2)}. Observe the erroneous pair (x2, x3) con-
tained within S2.

B. Removing Asymmetries

After the initial preprocessing, incremental symmetry detection
can commence. The procedure given below takes as input an ROBDD
f , a variable index i, and a set C of variable indices corresponding to
those variables whose symmetry relation with variable i is unknown.

Algorithm 2 RemoveAsymmetry(f, i, C)
if C = ∅ then

return ∅
j ← index(f)
if j > i ∨ f = true ∨ f = false then

return C

if j = i then
return RemoveAsymmetryVar(f|0, f|1, C)

else
C ← RemoveAsymmetry(f|0, i, C)
return RemoveAsymmetry(f|1, i, C)

The function index(f) returns the index of the root node of f , that
is, i if the root is labeled xi. The test j > i implements a form
of early termination: if the test is satisfied then the ROBDD f can
contain no node labeled xi. The external nodes true and false also
trigger early termination. At the heart of RemoveAsymmetry is a
call to RemoveAsymmetryVar which encapsulates the logic to co-
factor f0 and f1 so as to perform the symmetry check. The pseudo-
code for this procedure is given in Algorithm 3. Whenever the call
RemoveAsymmetryVar is reached, it examines the co-factors of
f to remove variables from C that are asymmetric w.r.t xi. First,
consider the case when both root nodes of f0 and f1 are labeled with
the same variable xj . In this case we compute f0|xj←1 and f1|xj←0

and check for equivalence. Second, when f0 is labeled with xj and f1

is labeled with xk where j < k, the check reduces to f0|xj←1 = f1.
Third, the k < j case is analogous to the second. The recursive calls
follow the co-factor check because it is necessary to check symmetry
across all variable assignments. Note that both RemoveAsymmetry
and RemoveAsymmetryVar terminate as soon as C = ∅.

When C is implemented as an array, the complexity of a sin-
gle call to RemoveAsymmetryVar is O(|G|2). This follows
since co-factor comparison and C \ {l} are in O(1), as is the test
C = ∅ when C is augmented with a counter to record |C|. Over-
all, RemoveAsymmetryVar can only be invoked a total of |G|
times from within Algorithm 1, thus RemoveAsymmetryVar con-
tributes O(|G|3) to the overall running time. The n − 1 calls to
RemoveAsymmetry cumulatively cost O(n|G|).

IV. OPTIMIZED ANYTIME SYMMETRY DETECTION

ALGORITHM

In this section we propose a series of optimizations for Al-
gorithm 1. This refined algorithm retains the incremental nature
of the original algorithm, and in fact shows how this can be ex-
ploited by several optimizations. These optimizations seek to re-
duce the size of the set C, and hence the running time of the call



Algorithm 3 RemoveAsymmetryVar(f0, f1, C)
if C = ∅ then

return ∅
if (f0 = true ∨ f0 = false) ∧ (f1 = true ∨ f1 = false) then

return C

j ← index(f0)
k ← index(f1)
if j = k then

(l, f00, f01, f10, f11) ← (j, f0|j←0, f0|j←1, f1|k←0, f1|k←1)
else if j < k then

(l, f00, f01, f10, f11) ← (j, f0|j←0, f0|j←1, f1, f1)
else

(l, f00, f01, f10, f11) ← (k, f0, f0, f1|k←0, f1|k←1)

if f01 �= f10 then
C ← C \ {l}

C ← RemoveAsymmetryVar(f00, f10, C)
return RemoveAsymmetryVar(f01, f11, C)

RemoveAsymmetry(f, i, C), by enriching the sets A and S on-
the-fly before, and between, iterations of the main loop. The sym-
metry sieve algorithms presented by [7, 12] give a way to refine the
sets A and S before the loop is entered. When the loop is entered,
it is possible to take advantage of the transitivity of the symme-
try relation to add further pairs to A and S. The optimized sym-
metry detection algorithm presented in Algorithm 4 takes as input
an ROBDD f and returns the set S of symmetric variable pairs.
The new algorithm includes three additional procedures, namely,
ComputeSatisfyCounts(f ), ComputeAdjSymmetry(f ) and
SymmetryClosure(A, S) which are detailed in Sections IV-A and
IV-B, IV-C respectively.

Algorithm 4 OptimizedSymmetricPairs(f )
A ← ComputeAsymmetry(f)
M ← ComputeSatisfyCounts(f)
for i = 1 to n do

for j = i + 1 to n do
if M(i) �= M(j) then

A ← A ∪ {(i, j), (j, i)}
S ← ComputeAdjSymmetry(f)
for i = 1 to n − 2 do

(A, S) ← SymmetryClosure(A, S)
C ← { j | (i, j) �∈ (S ∪ A) ∧ i + 1 < j}
D ← RemoveAsymmetry(f, i, C)
S ← S ∪ {(i, k), (k, i) | k ∈ D}
A ← A ∪ {(i, l), (l, i) | l ∈ C \ D}

return S

ComputeSatisfyCounts(f ) returns a mapping M from vari-
able indices to a natural number that can be used to distinguish pairs
of asymmetric variables, that is, if M(i) �= M(j) then (xi, xj) are
asymmetric. ComputeAdjSymmetry(f ) returns the set of sym-
metric variable pairs for those pairs that are adjacent in the ROBDD
ordering (which permits the number of loop iterations to be relaxed to
n − 2). Finally, SymmetryClosure(A, S) takes as input two sets
A and S of variable pairs known to be asymmetric and symmetric
respectively. Two new sets A′ ⊇ A and S′ ⊇ S are output that are
derived by exploiting the transitivity of symmetry.

A. Positive Satisfy-Counts

A consequence of symmetry, which can also be used to detect
asymmetry [8], relates to the satisfy count of one positive co-factor
of a variable to the satisfy count of another:

Lemma 4. If a Boolean function f over a set of vari-
ables X = {x1, . . . , xn} is symmetric in the pair (xi, xj), then
‖f|xi←1‖ = ‖f|xj←1‖.

Computing the satisfy counts of all co-factors can be realized using a
single dfs traversal of the ROBDD in O(n|G|) time [8]. Finding the
resultant asymmetries requires n2 comparisons in Algorithm 4, and
thus the overall complexity of this phase is O(n2 + n|G|).

B. Adjacent Symmetries

The following lemma details a special case of symmetry, which
relates to variables that are adjacent in the ROBDD ordering:

Lemma 5. If a ROBDD f over a set of variables X = {x1, . . . , xn}
is symmetric in the pair (xi, xi+1) iff g|xi←0,xi+1←1 =
g|xi←1,xi+1←0 holds for each ROBDD g that is rooted at a node la-
beled xi

This lemma leads to an O(|G|) time algorithm that can detect all sym-
metry and asymmetry relationships between adjacent variables [12].
(In fact the algorithm of Möller et al. can be improved to detect asym-
metry for a pair of non-adjacent variables, that is, a pair (xi, xk) is
asymmetric if there exists a node g labeled xi with successor nodes la-
beled xk and xl where i+1<k≤ l and g|xi←0,xk←1 �= g|xi←1,xk←0.)

C. Symmetry Propagation

The final lemma can be obtained by recalling that a function f
remains unchanged under the switching of any symmetric variables:

Lemma 6. If a Boolean function f over a set of variables
X = {x1, . . . , xn} is symmetric in the pairs (xi, xj) and (xj , xk)
then f is also symmetric in the pair (xi, xk).

This transitivity result provides a way of enriching the set S, that is,
if (xi, xj), (xj , xk) ∈ S then it follows that (xi, xk) is also a sym-
metric pair. Further, given (xi, xj) ∈ S, (xi, xk) ∈ A then it follows
that the pair (xj , xk) is asymmetric, that is, A can possibly be en-
riched too. This follows since if (xj , xk) is symmetric then by the
lemma it follows that (xi, xk) is symmetric, which is a contradiction.
Adding those variable pairs to A and S which can be inferred through
transitivity is not dissimilar to computing the transitive closure of a
binary relation. This motivates adapting the Floyd-Warshall [18, 19]
all-pairs-shortest-path algorithm to this task by representing the sets
of pairs A and S as an adjacency matrix of n2 size. The pseudo-code
for this algorithm is given in Algorithm 5.

Algorithm 5 SymmetryClosure(A,S)
for i = 1 to n do

for j = i + 1 to n do
for k = 1 to n do

if (k, i) ∈ S ∧ (k, j) ∈ S then
S ← S ∪ {(j, i), (i, j)}

else if (k, i) ∈ A ∧ (k, j) ∈ S then
A ← A ∪ {(j, i), (i, j)}

else if (k, i) ∈ S ∧ (k, j) ∈ A then
A ← A ∪ {(j, i), (i, j)}

return (A, S)

The complexity of Algorithm 5 is in O(n3) since membership check
and single element insertion can be performed in O(1) time for an
adjacency matrix representation. Note that although the worst-case
running time is not dependent on the number of symmetries present,
larger symmetry sets induce more propagation which reduces the
overall running time.



TABLE I
EXPERIMENTAL RESULTS

Circuit # In # Out Σ|G| |S| read naı̈ve [14] § III A A+B A+B+C

pair 173 137 118066 1910 0.20 132.46 6.62 2.37 2.18 2.16 2.08
s4863 153 104 126988 547 2.63 20.60 5.30 1.41 1.08 1.01 0.82
s9234.1 247 250 4434504 3454 20.14 >7200 1407.20 183.84 158.36 145.94 141.26
s38584.1 1464 1730 150554 15629 3.70 337.59 16.70 3.12 3.04 3.01 2.80
C880 60 26 600998 262 8.29 704.54 13.90 7.75 6.84 5.63 5.20
C3540 50 22 4618194 81 21.80 >7200 132.72 71.64 68.23 66.08 65.04
simp10 105 1 722074 19 58.45 >7200 661.70 65.28 47.53 43.90 40.88
simp12 117 1 758330 23 76.23 >7200 >7200 105.67 61.94 59.87 57.59
simp14 120 1 562326 36 70.38 >7200 1114.29 75.75 38.48 36.17 30.63
hom06 104 1 1176845 20 65.22 >7200 274.90 115.66 91.70 88.31 81.50
hom08 95 1 893312 16 56.48 >7200 135.79 67.79 54.99 50.89 49.00
hom10 130 1 309221 29 29.98 >7200 1510.32 35.85 33.39 31.61 31.21
ca004 53 1 782640 2 5.40 >7200 147.97 31.35 12.33 12.33 12.10
ca008 96 1 682617 16 20.40 >7200 326.92 53.54 44.69 43.05 42.78
ca016 107 1 861209 26 60.10 >7200 305.11 72.68 59.96 50.90 50.80
urquhart2 25 48 1 722657 5 3.06 >7200 70.50 26.22 20.23 20.21 17.95
urquhart3 25 62 1 1771025 24 6.22 >7200 >7200 82.98 81.14 76.97 72.80
urquhart4 25 68 1 1736705 27 5.96 >7200 >7200 83.44 81.84 76.48 72.02
rope 0002 54 1 634914 3 3.06 >7200 192.77 22.48 18.53 18.47 18.50
rope 0004 62 1 1052214 10 4.73 >7200 487.26 41.71 39.70 37.90 37.82
rope 0006 61 1 759039 13 3.14 >7200 657.74 35.78 30.76 30.64 30.68
ferry8 111 1 290127 30 78.35 >7200 95.15 30.10 29.56 23.21 22.99
ferry10 116 1 539419 38 88.08 >7200 1866.62 70.34 69.84 54.19 53.42
ferry12 123 1 277291 36 47.96 >7200 142.10 37.63 37.50 30.98 30.95
gripper10 125 1 393485 28 69.08 >7200 261.32 52.97 50.53 45.38 44.74
gripper12 129 1 667877 43 50.95 >7200 368.50 106.32 102.87 85.43 84.90
gripper14 118 1 767735 40 47.29 >7200 415.57 111.49 110.40 73.48 71.34

V. EXPERIMENTAL RESULTS

To assess the efficiency of the anytime approach, the algo-
rithm, complete with all its refinements was implemented using
the CUDD [20] Decision Diagram package. The rationale for this
choice of library was that the Extra DD library [21], which im-
plements Mishchenko’s algorithm, also uses CUDD. Experiments
were performed on an UltraSPARC IIIi 900MHz based system with
16GB RAM under the Solaris 9 Operating System. All programs —
the CUDD package, the Extra library, and our algorithm — were com-
piled with the GNU C Compiler version 3.3.0 with -O3 enabled. The
algorithms were run against a range of MCNC and ISCAS benchmark
circuits of varying size [22], as well as several other benchmarks de-
rived from the SAT literature. All timings were averaged over four
runs and are given in seconds. Table I presents the results of these
tests, the first four columns of Table I give the circuit name, number
of inputs, outputs and the total number of nodes over all outputs re-
spectively. Column five indicates the total number of all symmetric
pairs found over each of the outputs of the circuit. Column six gives
the time in seconds to read in the benchmark circuit and construct
the ROBDD applying variable sifting. The remaining six columns
give the runtimes required to compute all symmetric and asymmet-
ric pairs. The first of these is the naı̈ve method for computing all
co-factor pairs. The second is Mishchenko’s implementation of his
own algorithm [21]. The third column is the unoptimized algorithm
presented in Section III. The remaining three columns relate to the
refinements presented in Section IV, that is, with the optimizations of
Sections IV-A, IV-B and IV-C cumulatively enabled. The rationale
for implementing the naı̈ve method was to verify the implementation
of our algorithm and Mishchenko’s; the performance numbers are in-
cluded to quantify the value of Mishchenko’s algorithm. Note, that
these figures present Mishchenko’s algorithm in best light since when
garbage collection is enabled the performance of Mishchenko’s im-
plementation can degrade, presumably because of its extensive use of

ZDDs [23] to represent sets. For example, the circuit pair requires
33.40s compared to 6.62s with garbage collection disabled. Enabling
garbage collection has no perceivable impact on our algorithm.

Figure 2 illustrates the outcome of some experiments designed to
explore the anytime nature of the algorithm. In these experiments, the
optimized algorithm was stopped after progressively larger timeouts
were exceeded. The graphs display the number of symmetries found
against these timeouts. Future work will investigate whether reorder-
ing the iterations in the main loop, for example, choosing i with the
largest number of unknowns, increases the proportion of symmetries
found early in the search.

VI. DISCUSSION

This paper presents a novel anytime symmetry detection algorithm,
that is capable of detecting all symmetric variable pairs. The startling
speed-ups over Mishchenko’s algorithm stem from our use of a sin-
gle static adjacency matrix rather than sets of pairs that are repeat-
edly generated. It is important to appreciate that there is no obvious
way to re-engineer Mishchenko’s algorithm to use a static adjacency
matrix. This is because Mishchenko’s algorithm is a bottom-up, di-
vide and conquer algorithm that derives the solution to a problem
by obtaining, and combining, the solutions to several sub-problems.
Mishchenko [14, p 1590] points out that caching of the answers to
these sub-problems is required to reduce the computational complex-
ity from exponential to polynomial yet this requires multiple data
structures to be maintained. By contrast, the anytime approach merely
has to mark nodes as visited in any of the ROBDD traversals. More-
over, the only set operations that the anytime algorithm require are
atomic O(1) insertions and deletions, which finesses the otherwise
O(n2) overhead of set intersection and union. This partly explains
the speed of the anytime approach.
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Another source of speedup, in the anytime approach, is its
amenability to optimization by enriching the A and S sets on-the-fly.
One would think that computing the transitive closure is prohibitively
expensive, but close inspection of the SPARC assembler revealed that
the GNU compiler was able to generate very tight code from the reg-
ular structure of the closure algorithm.

Finally, Mishchenko’s algorithm [14] is capable of detecting all
four basic types of symmetry, namely, non-skew non-equivalence
symmetry — the notion of symmetry considered in this paper —
(NE), non-skew equivalence symmetry (E), skew non-equivalence
symmetry (!NE) and the skew equivalence symmetry (!E). In this
more general setting, a pair of variables are asymmetric if they do
not satisfy any of these four symmetry types. A key component of
our optimized algorithm, SymmetryClosure, can be straightfor-
wardly generalized to infer these transitive symmetries by using a 4-
bit encoding to indicate which symmetry types apply. A lookup-table
of (42)× (42) = 256 entries can then be used to obtain the transitive
symmetry types without any impact on the asymptotic running time.
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