
Transition-Based Coverage Estimation for Symbolic Model Checking

Xingwen Xu Shinji Kimura Kazunari Horikawa Takehiko Tsuchiya

Graduate School of IPS System LSI Design Division
Waseda University Toshiba Corporation

2-7 Hibikino, 808-0135 Japan Sawasaki, 210-8520 Japan

Abstract— Lack of complete formal specification is

one of the major obstacles for the deployment of model

checking. Coverage estimation addresses this issue by

revealing the unverified part of the design according

to the specified properties. In this paper we propose a

new transition-based coverage metric to evaluate the

completeness of properties for symbolic model check-

ing. It is more comprehensive and accurate than the

existing coverage metrics for model checking. An ef-

ficient symbolic algorithm is presented for computing

the transition coverage for a subset of ACTL. Our cov-

erage estimator has been applied to the model check-

ing of a cache coherence protocol. We uncovered sev-

eral coverage holes including one that eventually led

to the discovery of a design bug.

I. Introduction

Model checking [1] proves whether a system satisfies a
set of properties under all possible input sequences. How-
ever, to model-check a complex design, it is very hard to
determine whether sufficient properties have been speci-
fied or not [5, 13]. The completeness of formal specifica-
tion needs to be evaluated for ensuring that there is no
unknown behavior in the implementation, assuming the
unknown behaviors often contain design bugs. Coverage
estimation for model checking compares the given specifi-
cation with a given implementation and deduces the parts
of the implementation that are not covered by the spec-
ification. Additional properties then should be specified
to close such coverage gap. Assisting the model check-
ing process with coverage estimation can achieve higher
degree of confidence in the verification results [10].

One of the most popular coverage methods for model
checking is a state-based coverage metric based on state
perturbation [2, 3]. Informally, a state is covered by a ver-
ified property with respect to an observed signal if chang-
ing the value of the signal in that state will cause the
property to fail. The accuracy of the coverage computa-
tion algorithm is improved in [3]. The state coverage met-
ric has successfully uncovered several meaningful coverage
holes in real-word model checking projects [2]. However,
one major limitation of the state coverage metric is that
it is based on states, not transitions or pathes. A state
may be reached via several transitions. Property verifi-
cation over any of those transitions will cover that state.
Consequently the state metric leaves quite a large portion

of the design’s behaviors unchecked. since design errors
usually creep in on the transitions [15], the limitation of
the state metric might leave such bugs escaped.

To provide more comprehensive coverage analysis, a
transition traversal coverage method is proposed in [4].
Transitions of FSM are covered if they are traversed by
verified properties according to the semantics of CTL. The
authors provide a novel symbolic approach to compute the
transition coverage. However, since the transition traver-
sal dose not consider the signals’ values, transition traver-
sal coverage can not precisely reflect the completeness of
properties.

Other mutation coverage metrics for model checking are
introduced in [6, 7], including metrics based on omitting
or replacing transitions (or paths) of the finite state ma-
chine. However, the practicality of these metrics has not
been full established. Besides perturbations on FSM, the
high-level fault model is introduced for generating the per-
turbed implementation in coverage method of [8]. Farn et.
al. also have presented a numerical coverage estimation
for the symbolic simulation of real-time systems focusing
on safety analysis [9].

In this paper, we propose a new transition-based cover-
age metric for symbolic model checking based on a novel
transition perturbation model. The transition pertur-
bation model is able to pinpoint the transition through
which the value of selected observed signal is checked by
properties. The transition-based coverage is much more
comprehensive than the existing state coverage since the
coverage space expands from all states to all transitions of
FSM. It avoids the false sense of completeness by the high
coverage in the transition traversal method by consider-
ing perturbation. We present an efficient symbolic algo-
rithm for computing the transition coverage for a subset
of ACTL. The algorithm has the same order of complex-
ity as a model checking algorithm. We have integrated it
with the model checking engine of VIS2.0 [14]. The cover-
age estimator has been applied to the model checking of a
cache coherence protocol. We discovered several coverage
holes including one that eventually led to the discovery
of a design bug. And the computation overhead is less
than 20% of the plain model checking in our experiments.
We also compare the coverage results and computation
time with the state coverage method to demonstrate the
advantages of the proposed method.

The rest of the paper is organized as follows. Section
II presents the preliminaries including the state coverage

metric and the transition representation. The transition
coverage metric and symbolic computation algorithm is
presented in Section III. In section IV, we discuss our
experimental results and Section V concludes this paper.

II. Preliminaries

Let AP be a set of atomic propositions. A Kripke struc-
ture over AP is a four tuple K =< S, S0, R, L >, where S
is a finite set of states, S0 ⊆ S is the set of initial states,
R ⊆ S × S is a complete transition relation, L : S → 2AP

is a function that labels each state with the set of atomic
propositions true in that state. Any atomic proposition
in A is a CTL formula, and if ϕ and ψ are CTL formula,
then so are: ¬ϕ, ϕ ∨ ψ, ϕ ∧ ψ, AXϕ (ϕ holds at the
next time instant), AϕUψ (ϕ holds until ψ holds), and
AGϕ (ϕ holds henceforth). The semantics of other CTL
operators like AϕRψ can be found in [1].

The state coverage metric is defined as follows [2]:
Definition 1 : Given a Kripke structure K =<

S, S0, R, L > over AP , a state s ∈ S , and an atomic
proposition q ∈ AP . The perturbed Kripke structure
for s with respect to q (observed signal) is Kq

s =<
S, S0, R, Lq

s >, where for each state t ∈ S:

Lq
s(t) =

⎧⎨
⎩

L(t) if t �= s
L(s) \ {q} if t = s and {q} ∈ L(t)
L(s) ∪ {q} if t = s and {q} �∈ L(t)

Definition 2 : Given a property f and a Kripke struc-
ture K such that K |= f , the set of covered states C ⊆ S
by f with respect to q satisfies the following condition for
any state s ∈ S: (Kq

s �|= f) ⇔ (s ∈ C).
A sequential circuit is usually modeled as a finite state

machine (FSM) where input propositions are labeled on
the transition edges. We consider the transitions in the
circuit FSM when talking about transition coverage. On
the other hand, model checking is usually performed on
the Kripke structure. Traditionally, a circuit FSM is
first translated to a Kripke structure for model checking.
For a FSM (Mealy Type) M=<I,O, S, δ, λ, S0>, where
S and I are the state space and the input space; δ and
λ are the state transition function and the output func-
tion, the corresponding Kripke structure can be derived
as K=<S × I, S0 × I,R, L>, where for any s, s′ ∈ S and
any i, i′ ∈ I:

• (< s, i >,< s′, i′ >) ∈ R iff δ(s, i) = s′,

• L(< s, i >) = i ∪ s ∪ λ(s, i).

For example, the FSM of a simple modulo-3 counter
in Fig. 1 is translated to the Kripke structure shown in
Fig. 2. From the translation, it is observed that each
transition δ(s, i) → s′ in the circuit FSM corresponds to
a state < s, i > in the Kripke structure one-by-one. In the
example, the state S10 in the Kripke structure represents
the transition from S1 to S2 in the FSM. As a result, we
can evaluate the transition coverage of the circuit FSM
based on the states of the Kripke structure.

Fig. 1. The FSM of a modulo-3 counter.

Fig. 2. The Kripke structure model of the module-3 counter.

III. Transition Coverage Estimation

In this section, we first talk about the basic idea of the
transition-based coverage method, then we introduce our
new transition perturbation model and define the transi-
tion coverage metric. We also present a symbolic algo-
rithm to compute the transition coverage for a subset of
ACTL.

A. Transition-Based Coverage Method

For a circuit FSM, we can consider two types of cover-
age metrics: the state coverage and the transition cover-
age. If the set of states of the FSM is S, then the state
coverage space is just S. Deep-hidden design bugs usually
creep in on transitions and state-based coverage method
is not sufficient to clear such bugs. On the other hand, the
transition coverage space is S×I, where I is the set of in-
puts. Note that by enhancing the coverage space, we can
do more precise coverage analysis and higher confidence
in the correctness can be achieved [11, 12, 15]. A basic
transition-based coverage method for model checking is
proposed in [4], where covered transitions are defined as
traversed by CTL operators. In this paper, we combine
the transition traversal coverage and the state-based one
by introducing transition perturbation.

Since the transition coverage method extends the cover-
age space to S × I, more computation resources might be
required. Such drawback should be treated as the tradeoff
between completeness and computation efficiency.

B. Coverage Metric Based on Transition Perturbation

A CTL formula usually specifies how particular states
should be reached through transitions and the correctness
conditions for certain circuit signals on the reached states.
The two factors answer the coverage question of what has
been verified by a property. In order to catch the ver-
ification intent of formal properties on both states and
transitions, we propose a novel transition perturbation
model. The model is to pinpoint the transition through

Fig. 3. The transition perturbation model for FSM.

which the correctness condition for the selected observed
signal is checked.

We show a simple example to illustrate how a perturbed
FSM is constructed. Fig. 3(a) is a simple FSM. To gener-
ate a perturbed FSM for transition r1 = (S0, S1) for the
selected observed signal q, first a new state Sq is added
on which the value of q is different with the state S1;
then the original transition r1 is redirected to the state
Sq; finally all transitions starting from the state S1 are
copied to the state Sq. The perturbed FSM is shown in
Fig. 3(b). In the same way, the perturbed FSM for r2 is
shown in Fig. 3(c).

In the transition perturbation model, there is only one
transition reaching at the state where the value of the
observed signal q is deliberately changed. On the other
hand, all other transition sequences of the original model
are maintained. As a result, a property will get failed if
and only if the property traverses through the transition
to check the value of the observed signal, which provide
coverage information for both the state transition and the
correctness condition of signals.

Informally, a transition of FSM is covered for the se-
lected observed signal if a proven property gets failed
on the perturbed FSM. As in the example of Fig. 3,
two properties AX(q = 1) and AX(AX(AX(q = 1)))
are satisfied by the original model (Fig. 3(a)). Because
AX(q = 1) is no longer satisfied by the model with per-
turbation on r1 (Fig. 3(b)), transition r1 is covered by
this property with respect to signal q. Similarly, transi-
tion r2 is covered by AX(AX(AX(q = 1))). According to
the state coverage metric, both properties cover state S1.
With our new transition coverage metric, two transitions
reaching at state S1 are covered by different properties.

Since model checking is actually performed on the
Kripke structure, we give a formal definition of perturba-
tion model and transition coverage metric on the Kripke
structure according to the relationship between the FSM
and its corresponding Kripke structure (Section II).

Definition 3: Given a Kripke structure K =<
S, S0, R, L >, a state ri ∈ S (it actually represents a tran-
sition of the circuit FSM), and an atomic proposition (ob-
served signal) q ∈ AP . The perturbed Kripke structure on
ri for q is Kq

r =< Sq
r , S0, R

q
r, L

q
r >, where Sq

r = S∪Sq, Sq

is a new state set and for each state rj with (ri, rj) ∈ R,

we add a new state rq
j in Sq.

For each state t ∈ Sq
r :

Lq
r(t) =

⎧⎨
⎩

L(t) if t �∈ Sq;
L(rj) \ {q} if t = rq

j and {q} ∈ L(rj);

L(rj) ∪ {q} if t = rq
j and {q} �∈ L(rj).

For each state pair (ti, tj), ti ∈ Sq
r , tj ∈ Sq

r :

(ti, tj) ∈ Rq
r ⇔

⎧⎪⎪⎨
⎪⎪⎩

(rj , tj) ∈ R if ti = rq
j ;

true if ti = ri and tj = rq
j ;

false if ti = ri and tj = rj ;
(ti, tj) ∈ R otherwise.

Definition 4: Given a property f and a Kripke struc-
ture K such that K |= f . The set of covered transitions
T by f for the selected observed signal q is defined as: for
any state r ∈ S, (Kq

r �|= f) ⇔ (r ∈ T).

coverage =
number of covered transitions

number of reachable transitions

The definition is based on the states of the Kripke
structure, but it is different with the state-based cover-
age method [2]. In the counter example (Fig. 2), consider
the property AG(cnt = 2 → AX(cnt = 0)) and select
cnt as observed signal. According to the state coverage
method, states {S01,S00} are covered, which correspond
to the state S0 in the FSM (Fig. 1). However, there
are 4 transitions arriving at S0, but the state coverage
metric dose not distinguish which transitions are really
concerned by the property. Differently, according to the
transition coverage metric, states {S21,S20} are covered
by the property, which correspond to transitions from S2
under input rst = 1 and rst = 0 in the FSM. The other
two transitions arriving at S0 in the FSM are not cov-
ered. Conceptually, states of the Kripke structure are in-
terpreted as transitions of the circuit FSM in our method,
but they are just considered as static states of FSM in the
state-based metric.

C. Coverage Computation

The transition coverage metric is general for any prop-
erty specification language. However, the set of covered
transitions may not be easily computed. In this paper, we
present a symbolic algorithm which is based on fix point
computation and binary decision diagrams (BDDs) [1] to
compute the transition coverage for a subset of ACTL.

Definition 5: The set of formulae acceptable to our
algorithm is defined as: if b is a propositional formula,
then b is acceptable; if f and g are acceptable, then so are
AXf , AGf , A(fUg),A(fRg),f ∧ g,b → g.

Note that AFf can be represented as A(trueUf), so
we do not treat it separately. According to industrial
experience, the set of formulae is sufficiently expressive
to specify most desirable properties for sequential logic
circuits.

Fig. 4 is the main function of our coverage computa-
tion algorithm Cov(ϕ, S). The algorithm is performed
on the Kripke structure of a circuit design. The input

Cov(ϕ, S){
if (S == empty) return empty;
if (ϕ is propositional) return empty;
switch (ϕ)
case f ∧ g : result = Cov(f, S) ∪ Cov(g, S);
case b → g : result = Cov(g, S ∩ Sat(b));
case AGf : result = Cov(f,Rch(S));
caseAXf :

cf = Chk(f, Fwd(S));
r1 = Bwd(cf) ∩ S; r2 = Cov(f, Fwd(S));
result = r1 ∪ r2;

casefUg :
fTrv = empty; gTrv = empty;
gS = Sat(g); doS = S;
do{

gTrv = gTrv ∪ (doS ∩ gS);
fS = doS \ gS;
if(fS �= empty){

fTrv = fTrv ∪ fS;
doS = Fwd(fS) \ (fTrv ∪ gTrv);

}
}while(fS �= empty & doS �= empty));
c1 = Chk(f, fTrv); c2 = Chk(g, gTrv);
r1 = fTrv ∩ Bwd(c1); r2 = fTrv ∩ Bwd(c2);
r3 = Cov(f, fTrv); r4 = Cov(g, gTrv);
result = r1 ∪ r2 ∪ r3 ∪ r4;

casefRg : //similar to fUg
default : Unacceptable formula;
return result;

}

Fig. 4. Coverage computation algorithm: the main function
Cov(ϕ, S).

is a property and a set of states; the output is a set of
covered states which correspond to the transitions of the
circuit FSM. For the top-level run, S is the initial state
set, and ϕ is a verified property. As the algorithm pro-
ceeds, sub-formulae and states on the traversing pathes
are recursively processed by the algorithm. The algorithm
finally returns the covered transitions with respect to the
given observed signal q. Chk(ϕ, S) is a sub-function which
extracts correctness conditions of each sub-formula and
checks their dependency on the observed signal in differ-
ent states, as shown in Fig. 5. Other predicates used in
the algorithm is explained as follows:

Fwd(S): the forward image of a state set S;
Bwd(S): the backward image of a state set S;
Rch(S): all reachable states from a state set S;
Sat(f): the set of states satisfying f ;
\ : the set minus.

The idea of our algorithm is to perform transition
traversal for a property, and while traversing a transition,
we extract the correctness conditions from the property
on its destination state, the transition is identified as cov-
ered if the correctness condition depends on the value of
the observed signal.

Chk(ϕ, S){
if (S == empty) return empty;
if (ϕ is propositional)

result = S ∩ Sat(¬ϕ|q→¬q);
return result;

switch (ϕ)
case f ∧ g : result = Chk(f, S) ∪ Chk(g, S);
case b → g : result = Chk(g, S ∩ Sat(b));
case AGf : result = Chk(f, S);
caseAXf : result = empty;
casefUg :

r1 = Chk(g, S ∩ Sat(g));
r2 = Chk(f, S \ Sat(g));
result = r1 ∪ r2;

casefRg : //similar to fUg
default : Unacceptable formula;
return result;

}

Fig. 5. Coverage computation algorithm: the sub function
Chk(ϕ, S).

In our algorithm, we care more about the verification
intent of a property formula. As for formula AGf , the
set of reachable states are assumed and there are no ver-
ification intent for transitions from the initial state to all
other states. Thus, in our algorithm, we do not perform
traversing for AG but directly compute the coverage of
its sub-formula f with all reachable states.

Compared with the state coverage estimation algorithm
[2], the main extra computation in our algorithm comes
from the backward image computation. This will not in-
crease much computation cost since it is only performed
on certain state sets. The algorithm has the same order
of complexity as a model checking algorithm, which is ex-
ponential in the worst case. The actually computation
overhead is quite small in our experiments when we inte-
grate the coverage estimation with model checking itself.

IV. Experimental Results

We have implemented the transition coverage estimator
by extending the state-of-the-art model checker VIS2.0
[14]. We integrate the coverage estimation with model
checking to save computation cost. The Kripke structure
constructed for model checking is also used for coverage
estimation. The model checking results for sub-formulas
can be used in the coverage estimation. For compari-
son purpose, we have also implemented the state coverage
method [2]. We have applied the coverage method to the
model checking of a cache coherence protocol.

One of the most successful application domains for
model checking has been multiprocessor cache coherence
protocols. This application is commercially very impor-
tant since almost all high-end servers are now cache-
coherence multiprocessors. In our work, we apply cover-
age metrics to assist the model checking process for a full-

Fig. 6. The three different states in a full-map directory.

map directory-based cache coherence protocol [16]. The
protocol uses directory entries with one bit per proces-
sor and dirty bit. Each bit represents the status of the
block in the corresponding processors’s cache (present or
absent). If the dirty bit is set, then one and only one pro-
cessor’s bit is set, and that processor has permission to
write into the block. Each cache block may be in one of
the three states: INVALID, SHARED, or EXCLUSIVE.
Fig. 6 illustrates three different states of a full-map direc-
tory. In (a), location X is missing in all of the caches; (b)
results from three caches requesting copies of location X;
(c) results from cache C3 requesting writing to location
X. Note the dirty-bit is set to clean in (a) and (b), and to
dirty in (c). To simply the complexity, we first configure
the protocol model with two processors and two memory
entries. The cache for each processor only contains one
data block.

The cache protocol should keep the block states in
the memory directory and those in the caches consistent.
We use invariant properties to check the state consis-
tency. For example, the following two properties check
the SHARED and EXCLUSIVE states for cache C1 with
address 0:

AG(c1 sta = SHA ∗ c1 add = 0 ↔

dirty[0] = 0 ∗ share c1[0] = 1); (1)

AG(c1 sta = EXC ∗ c1 add = 0 ↔

dirty[0] = 1 ∗ share c1[0] = 1); (2)

Since invariant properties do not contribute transition
coverage, we estimate state coverage by selecting the dirty
bit dirty[0] as the observed signal. The coverage re-
sults show certain states with clean dirty-bit are not cov-
ered. After analysis, we found a design error in our ini-
tial model. When a cache is full, a write-back operation
should be performed when the cache gets a read or write
miss. After fixing the bug, additional properties are added
to cover all states. For example, dirty bit for address 0
should be clean when cache C1 is in INVALID state and
cache C2 is not for address 0:

AG(c1 sta = INV ∗ c2 add �= 0 → dirty[0] = 0) (3)

At this point, the state coverage metric is of great value
since we are mainly concerned for the state consistency.
However, we do not consider the state transition behav-
iors of the protocol.The cache protocol should ensure se-
quential consistency. Intuitively, each read should return

TABLE I
State and transition coverage results.

Observed Number of State Transition
Signal Properties Coverage Coverage

ack1 9 100% 100%
c1 o 7 100% 99.72%

dirty[0] 3 100% 95.49%

the value of the most recent write to the same memory
location.

We select the data output of cache C1 c1 o as the ob-
served signal and seven properties are specified. For in-
stance, if any processor reads value 0 from memory ad-
dress 0, then all read at address 0 should return 0 unless
there is a write to address 0 with value 1. This property
can be expressed by CTL formula like:

AG(r a0 v0 ack → A((w a0 v1)R

(c1 r a0 ack → c1 o = 0))); (4)

Three properties are specified for the observed signal
dirty[0]. For example, the dirty-bit should remain clean
until there is a write for its address. And if cache C1 is in
EXCLUSIVE state, the dirty-bit for the same address as
cache C1 should remain dirty until cache C1 is requested
to write back or invalidate its data.

AG(dirty[0] = 0 → A(wri add0)R(dirty[0] = 0)); (5)

AG(c1 sta = EXC ∗ c1 add = 0 →

A((wri bak1 = 1 + inva1 = 1)R(dirty[0] = 1))); (6)

Another 9 properties are specified when taking the ac-
knowledge for processor P1 ack1 as the observed signal.

Tab. I compares the state and transition coverage
results. All states are covered by these properties but
the transition coverage results discover certain conditions
which are not considered by these properties.

When a write operation by a processor begins, the read
operation by another processor may have not finished.
And the outcome of such a read is not verified. The state
coverage metric is unable to discover this coverage hole
because this state in which the read operation finishes is
covered through other transitions. Another corner case
is that, when processor P1 begins to write, cache C2 is
asked to invalidate its content, then cache C1 writes back
its content to the memory because it is full. After that
the new value is written to cache C1. The uncovered tran-
sition is illustrated in Fig. 7 (the bold edge). The state
metric is unable to detect this coverage hole because a
read operation by processor P2 will also trigger P1 to
write back. The invalidation–write-back sequence is ac-
tually a design error since it will degrade performance.
A superior sequence is write-back–invalidation for such a
condition.

We also compare the computation time of transition
and state coverage estimation. We add two other differ-

Fig. 7. One uncovered transition in the cache protocol.

TABLE II
Comparison of computation time.

Protocol T1 T2 T3
Configure (Seconds) (Seconds) (Seconds)

2p2m 51 65 66
3p2m 3956 4065 4071
2p4m 9938 10444 12592

ent types of configuration as two processor with 4 mem-
ory entries and 3 processors with 2 memory entries. The
computation time for the 7 properties for observed signal
c1 o is shown in Tab. II, where T1 is the time of plain
model checking; T2 and T3 are respectively the times of
model checking along with state and transition coverage
estimation. The CPU times are measured on a IBM In-
telliStation Z-Pro with 3.0GHZ CPU and 2.3GB RAM.
The results confirm our discussion in section III that the
computation costs are similar for the transition and state
coverage estimation. The computation overhead of cover-
age estimation compared to plain model checking is also
shown in Tab. II, which is less than 20% of the plain
model checking.

V. Conclusions

We have proposed a novel transition perturbation
model, and based on this model, we have defined a new
transition-based coverage metric for model checking to
evaluate the completeness of properties. An efficient sym-
bolic algorithm has been presented to compute the tran-
sition coverage for a subset of ACTL. The implemented
coverage estimator has been applied to the model check-
ing of a cache coherence protocol. The experiment results
have confirmed that the proposed method can identify
critical coverage holes which may escape the state-based
coverage estimation, while the computation overhead is
minor compared with plain model checking. Our future
work is to develop automatic techniques for analyzing the
coverage results so as to fill coverage holes efficiently.

References

[1] E.M. Clarke, O. Grumberg, and D. Peled. Model Checking.
MIT Press, 1999.

[2] Y. Hoskote, T. Kam, Pei-Hsin Ho, and Xudong Zhao. “Cover-
age estimation for symbolic model checking”. In Proceedings
of the 36th Design Automation Conference (DAC), page 300-
305, 1999.

[3] N. Jayakumar, M. Purandare, and F. Somenzi. “Do’s and
don’ts of CTL state coverage estimation”. In Proceedings of

the 40th Design Automation Conference (DAC), page 292-
295, 2003.

[4] X. Xu, S. Kimura, K. Horikawa, and T. Tsuchiya. “Transition
Traversal Coverage Estimation for Symbolic Model Checking”.
In Proceedings of the 3rd ACM/IEEE internatinoal Confer-
nece on Formal Methods and Models for Co-Design (MEM-
OCODE), page 259-260, 2005.

[5] S. Katz, O. Grumberg, and D. Geist. “Have I written enough
properties? - A method of comparison between specification
and implementation”. In Proceedings of the 10th ACM Ad-
vanced Research Working Conference on Correct Hardware
Design and Verification Methods (CHARM), page 280-297,
1999.

[6] H. Chockler, O. Kupferman, and M.Y. Vardi. “Coverage Met-
rics for Formal Verification”. In Proceedings of 12th ACM Ad-
vanced Research Working Conference on Correct Hardware
Design and Verification Methods (CHARM), page 111-125,
2003.

[7] H. Chockler, O. Kupferman, R. Kurshan and M.Y. Vardi. “A
Practical Approach to Coverage in Model Checking”. In Pro-
ceedings of the 2001 International Conference on Computer
Aided Verification (CAV), page 66-78, 2001.

[8] F. Fummi, G. Pravadelli, A. Fedeli, U. Rossi, and F. Toto.
“On the use of a high-level fault model to check properties
incompleteness”. In Proceedings of the 1st ACM/IEEE Inter-
national Conference on Formal Methods and Models for Co-
Design (MEMOCODE), pages 145-152, 2003.

[9] F. Wang, G.-D. Huang, F. Yu. “Numerical Coverage Estima-
tion for the symbolic simulation of real-time systems”. FORTE
2003, LNCS 2767, pages 160-176, 2003.

[10] S. Tasiran, and K. Keutzer. “Coverage metrics for functional
validation of hardware designs”. In IEEE Journals of Design
& Test of Computers, Volume 18(4), pages 36-45, 2001.

[11] Y. Hoskote, D. Moundanos, and J.A. Abraham. “Automatic
extraction of the control flow machine and application to
evaluating coverage of verification vectors”. In Proceedings of
the 1995 IEEE Internatinal Conference on Computer Design
VLSI in Computers and Processors (ICCD), page 532-537,
1995.

[12] R.C. Ho, C. Han Yang, M.A. Horowitz, and D.L. Dill. “Archi-
tecture validation for processors”. In Proceedings of the 22nd
Annual International Symposium on Computer Architecture,
page 404-413, 1995.

[13] S. Das, et al.. “Formal Verification Coverage: Computing the
Coverage Gap between Temoral Specifications”. In Proceed-
ings of the IEEE/ACM International Conference on Compute
Aided Design (ICCAD), page 198-203, 2004.

[14] R.K. Brayton, et al.. “VIS : A System for Verification and Syn-
thesis”. In Proceedings of the 1996 International Conference
on Computer Aided Verification (CAV), page 428-432, 1996.

[15] A. Gupta, S. Malik, and P. Ashar. “Toward Formalizing A
Validation Methodology Using Simulation Coverage”. In Pro-
ceedings of the 34th Design Automation Conference (DAC),
page 740-745, 1997.

[16] D. Chaiken, C. Fields, K. Kurihara, and A. Agarwal.
“Directory-based cache coherence in large-scale multiproces-
sors Computer”. In Computer, IEEE Computer Society, Vol-
ume 23, Issue 6, page 49-58,1999.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

