
Prefetching-Aware Cache Line Turnoff for Saving Leakage Energy ∗

Ismail Kadayif Mahmut Kandemir Feihui Li

Dept. of Computer Engineering Dept. of Computer Sci. & Eng. Dept. of Computer Sci. & Eng.

Canakkale Onsekiz Mart University Pennsylvania State University Pennsylvania State University

Canakkale 17100, TR University Park, PA 16802, USA University Park, PA 16802, USA

kadayif@comu.edu.tr kandemir@cse.psu.edu feli@cse.psu.edu

Abstract— While numerous prior studies focused on perfor-
mance and energy optimizations for caches, their interactions
have received much less attention. This paper studies this inter-
action and demonstrates how performance and energy optimiza-
tions can affect each other. More importantly, we propose three
optimization schemes that turn off cache lines in a prefetching-
sensitive manner. These schemes treat prefetched cache lines dif-
ferently from the lines brought to the cache in a normal way (i.e.,
through a load operation) in turning off the cache lines. Our
experiments with applications from the SPEC2000 suite indicate
that the proposed approaches save significant leakage energy with
very small degradation on performance.

I. INTRODUCTION

Caches are critical components from both performance and

energy viewpoints, and are being increasingly employed in

mobile and embedded environments. From the performance

angle, they sit on the critical path of execution, and their

hit/miss characteristics usually determine the overall perfor-

mance of an application. From the energy angle, they are

responsible from up to 42% of overall on-chip energy con-

sumption [11]. Therefore, optimizing their performance and

energy characteristics is very important and is expected to be

even more so in the future.

Due to importance of cache memories, they have been ex-

plicit target of many previous optimizations from both perfor-

mance [12, 6] and power angles [3, 8, 7]. While these tech-

niques have been evaluated thoroughly in isolation (from both

performance and power perspectives in many cases), their in-

teraction with each other, when they co-exist together in the

same system, took relatively much less attention in the past.

For example, it is not clear how data/instruction prefetching

would interact with cache line turn-off, used for leakage reduc-

tion. Studying this interaction is critical since many embedded

environments today demand both high-performance and low-

power. Without capturing the power impact of performance

optimizations and performance impact of power optimizations,

one will not be able to perform the necessary tradeoffs in de-

signing and optimizing an embedded system.

This paper has two major goals. First, focusing on a specific

performance optimization (prefetching) and a specific power

optimization (cache line turn-off), it presents energy and per-

formance results, emphasizing on how these two optimizations

∗This work is supported in part by NSF Career Award 0093082 and a grant

from GSRC.

interact with each other from both performance and power an-

gles. Second, it proposes three novel cache line prefetching

techniques that take prefetching employed by the hardware

into account. The proposed approaches exploit the knowl-

edge on prefetched lines by employing a different decay in-

terval (time frame after which the cache line is turned off) for

prefetched lines. In other words, in the proposed strategies,

the prefetched lines and the normal lines (i.e., the lines brought

into the cache through execution of load operations) use differ-

ent thresholds. This in turn minimizes the potential negative

impact of prefetching on energy consumption. In more de-

tail, prefetching brings data/instructions from main memory to

cache before they are actually needed. But, more importantly,

when a cache line is placed into a low-leakage mode (using a

cache line turnoff strategy), prefetching data/instructions into

it forces it to be transitioned to the normal operation mode (ac-

tive mode), thereby affecting leakage behavior as well. Our

goal in this paper is to study these interactions using a set of

benchmarks in a two-level cache hierarchy, and quantify the

potential benefits of exploiting this interaction using different

prefetching-aware cache line turn-off schemes. We present

experimental data – using a simulation environment and the

SPEC2000 benchmarks – that emphasize the importance of

capturing the interactions between performance and energy op-

timizations, and show how the proposed optimization schemes

improve power-performance tradeoff when prefetching and

cache line turnoff co-exist in the same system. The experi-

ments also indicate that the performance overheads caused by

the proposed schemes are very low.

This paper is structured as follows. The next section summa-

rizes the particular prefetching and cache line turnoff schemes

studied in this paper, and explains their interaction qualita-

tively. Section III gives our experimental setup, and Sec-

tion IV presents results from our implementation. In Sec-

tion V, we propose three optimization strategies which treat

the prefetched cache lines differently than those brought into

cache in normal way to save further leakage energy in caches.

We conclude the paper in Section VI with a summary of our

major observations.

II. PRELIMINARIES: PREFETCHING AND CACHE LINE

TURNOFF

There are a number of prefetching techniques in literature.

For example Lai, et al. [10] use trace of memory references

to predict when a block becomes dead, and exploits the ad-

dress correlation to predict which subsequent block to prefetch.

In this study we used a hardware-based technique called the

tagged prefetch [12], which is implemented in several com-

mercial architectures including HP PA7200 [5]. It is based on

one block lookahead, which initiates a prefetch for block b+1

when block b is accessed under two different scenarios. First,

if there is a miss when b is accessed. Second, if b is brought

into cache via prefetching and it is accessed for the first time.

We used this approach in an L1-L2 cache hierarchy for both

data and instruction prefetching.

While prefetching targets at improving performance, the

leakage control mechanisms try to reduce the energy consump-

tion. An important requirement to reduce leakage energy us-

ing either a state-destroying (cache line turnoff) or a state-

preserving leakage control mechanism is the ability to identify

unused resources (cache blocks).1 Kaxiras et al. [8] present a

state-destroying leakage energy reduction technique for cache

memories. This technique, called cache decay, is based on

the idea that a cache block (line) that is not used for a suf-

ficiently long period of time can be considered dead. More

specifically, with each cache block, they associate a small 4-

state FSM (finite state machine). The FSM steps through these

states as long as the cache block is not being accessed. When

the last state is reached, the cache block is turned off. Li et

al. [9] propose several architectural techniques that exploit

data duplication across the different levels of cache hierarchy.

They employ both state-preserving (data-retaining) and state-

destroying leakage control mechanisms for the L2 sub-blocks

when their data also exist in L1. Among their strategies, S-

SP-Lazy (Speculative, State-Preserving, and Lazy) generates

the best leakage energy savings. In this strategy, when a data

is brought from L2 to L1, the corresponding L2 sub-block is

put in a state preserving leakage control mode. In this study,

the cache decay technique and the S-SP-Lazy technique are in-

tegrated to save leakage energy in the L1-L2 cache hierarchy.

Specifically, we use cache decay for L1, but both cache decay

and S-SP-Lazy for L2. The L2 cache is energy-managed at

the sub-block granularity and the sub-block is put into state-

preserving leakage mode immediately after it is brought into

the L1 cache. Further, if the sub-block is not accessed for a

sufficiently long period of time, it is transitioned to the state-

destroying mode. If all the sub-blocks of an L2 block are in

the state-destroying mode, the block is invalidated and subse-

quently becomes a candidate for LRU replacement.

From both performance and leakage energy viewpoints, it

is important to ensure that the prefetched cache lines are used

before being replaced. Therefore, we can divide prefetches

in two groups, namely, useful and non-useful. If a prefetched

cache line is discarded from the cache without being accessed,

this means that it is prefetched unnecessarily. In this paper,

we call this a non-useful prefetching, as opposed to useful

prefetches whose data are used at least once before being dis-

placed from the cache. Non-useful prefetches can cause per-

formance degradation due to keeping the bus busy and poten-

tially introducing extra cache misses. Further, they increase

the both dynamic energy consumption (because of unneces-

sary cache access) and leakage energy consumption (if the

1When there is no confusion, we use the term “cache line turnoff” to cover

for both state-destroying and state-preserving mechanisms.

prefetched block is brought into a cache line which is in the

leakage-saving mode).

A cache line can be in one of the three power modes (states):

active (AC) mode (consuming full leakage power), state pre-

serving (SP) low-power mode (we assume that, in this mode,

the cache line consumes 10% of the leakage energy of active

mode as in [9]), and state destroying (SD) power mode (no

energy consumption at all).

TABLE I

BASE CONFIGURATION.

Processor Core
Functional Units 4 integer and 4 FP ALUs

1 integer multiplier/divider
1 FP multiplier/divider

LSQ Size 64 Instructions
LRU Size 64 Instructions
Fetch/Decode/Issue/Commit Width 4 instructions/cycle
Fetch Queue Size 4 Instructions

Cache and Memory Hierarchy
L1 Instruction/Data Cache 32KB, 32 byte blocks

2-way, 1 cycle latency
L2 Cache 1MB unified, 128 byte blocks

2-way, 10 cycle latency
Data/Instruction TLB 128 entries, full-associative,

30 cycle miss latency
Memory 100 cycle latency

Energy Management
Technology 0.07 micron
Supply Voltage 1.0V
Dynamic Energy per L1 Access 0.186nJ
Leakage Energy per L1 Block/
L2 Sub-block per Active Cycle 0.182pJ
Leakage Energy per L2 Sub-block
per Standby Cycle (state preserving) 0.018pJ
Leakage Energy per L1 block/
L2 Sub-block per Standby Cycle
(state-destroying) 0pJ

III. EXPERIMENTAL SETUP

We used SimpleScalar 3.0 [4] to implement our prefetch-

ing and leakage-saving optimization strategies, and study their

interactions. SimpleScalar is a tool-set to simulate applica-

tion programs on a range of processors and systems using fast

execution-driven simulation. In this work, we used the sim-

outorder component. Table I lists the simulation parameters

used for our base configuration. Note that, embedded systems

are increasingly using multiple issue processors. We used the

70nm technology and energy models from CACTI 3.2 [2] to

get the dynamic energies of accessing L1 and L2 caches. We

define the leakage factor represented with parameter k as fol-

lows: the ratio between the leakage energy per cycle of the

entire L1 cache and the dynamic energy consumed per access.

In our study we assume k=1. (Larger k values reflect the future

designs, and although we only provide results for k=1 due to

lack of space, for larger k values our schemes accomplish more

savings in overall energy.) Further, we assume that the leakage

energy of an L2 sub-block is equal to that of the L1 block. We

used five randomly-selected benchmarks from the SPEC2000

suit [1] in our experiments. Since it takes a long time to sim-

ulate any benchmark from the SPEC2000 suit when it runs to

completion, we fast forwarded the first 300 million instruc-

tions, and then simulated the next 200 million instructions.

130.07

0

20

40

60

80

100

120

172.mgrid 173.applu 191.fma3d 175.vpr 256.bzip2

N
o

rm
a

li
z
e

d
 E

n
e

rg
y

Dynamic Leakage Overall

Fig. 1. The normalized energy consumption of optimized codes when k=1.

IV. BASE RESULTS

In the remainder of this paper, we refer to a benchmark opti-

mized by prefetching and leakage control mechanisms as opti-
mized. In this section we give energy and performance results

for optimized codes.

A. Energy Savings

The normalized energy consumption of the optimized codes

with respect to energy consumption of the original codes are

given in Figure 1. In dynamic energy calculations, we con-

servatively assumed that each prefetch attempt (even for the

blocks already in the cache) consumes some dynamic energy,

amount of which is equal to the dynamic energy consumed per

access. In the figure, for each benchmark, the first and the

second group of bars are for the L1 instruction cache, and the

L1 data cache, respectively, whereas the last group of bars is

for the L2 cache. The bars in each group, from left to right,

show the dynamic energy, leakage energy, and overall energy

of the corresponding cache. As can be seen from this figure,

for all benchmarks, the dynamic energy overhead introduced

by the prefetching mechanism and the leakage control mech-

anism together is so small that can be omitted for L1 caches.

This is not the case for the L2 cache though. Our optimiza-

tions increase the dynamic energy of the L2 cache 17.83%,

and 30.07% for 173.applu, and 191.fma3d, respectively. Inter-

estingly, the 175.vpr benchmark benefits, as far as the dynamic

energy consumption in the L1 instruction and L2 caches are

concerned, from the optimizations. The reason of this is that

the prefetching in this benchmark reduces the cache misses

for the caches in question dramatically, thereby lowering the

number of total cache accesses. When we look at the leak-

age results, we see that, for each benchmark there is a con-

siderable saving in all caches. An important observation from

Figure 1 is that the leakage energy consumption dominates the

dynamic energy consumption in the L2 cache even after cache

line turnoff. This can be attributed to the fact that leakage en-

ergy consumption was extremely large for this cache in the

original codes.

B. Execution Cycles

While prefetching potentially increases the performance by

bringing cache blocks early in caches, a leakage control mech-

anism usually degrades performance since there is an over-

head to be incurred when a cache line is transitioned from

the state preserving/state destroying leakage mode to the full

TABLE II

NORMALIZED EXECUTION CYCLES.

172.mgrid 173.applu 191.fma3d 175.vpr 256.bzip2

65.07% 76.08% 118.22% 54.67% 67.83%

No Leakage

Last
Access

t0 t1 t2 t3

(a)

(b)

t0 t1 t2 t3 t4

Last
Access

Turnoff

Full Leakage

Prefetch Turnoff

Low
LeakageLeakage

Full

t0 t1 t2 t3 t4

(c)

t6

t7

Last
Access

t5

Full Leakage

Prefetch Turnoff

No Leakage

Fig. 2. (a) No prefetching. Full leakage power is consumed during

the period [t3,t6]. (b) S-SP strategy. There is a prefetch at time t4,

and full leakage power is consumed only during the period [t3,t4].

(c) L-SD strategy. Prefetched line is transitioned into SD leakage

control mode at t5 (i.e., after a small decay period after being

prefetched), so consuming full leakage power during the period

[t3,t5]. However, there is no leakage consumption after t5.

power (i.e., active) mode before being accessed. In our exper-

iments, we assumed that it takes one extra cycle to bring up

a cache line into the active mode. Table II shows the execu-

tion cycles for the optimized codes, normalized with respect to

the corresponding execution cycles of the original codes. On

an average, we have 21.62% performance improvement for the

optimized codes.

V. CUSTOMIZING CACHE LINE TURNOFF FOR

PREFETCHED LINES

Until this point in our experimental evaluation, all the cache

lines are treated exactly the same way, whether they have been

brought into the cache through prefetching or through a normal

load operation. In particular, a prefetched cache line is put in

SD power mode if it is not touched during the decay interval.

In this section, we discuss three different optimization strate-

gies that treat the prefetched cache lines differently from the

normal (non-prefetched) cache lines. The first strategy places

the prefetched cache lines into the SP mode immediately after

the prefetching is performed. In the rest of this paper, we refer

to this scheme as the S-SP approach (which stands for Specu-

lative and State Preserving). The second scheme, on the other

hand, employs a new decay period for the prefetched cache

lines to put them into the SD power mode; we call it L-SD

(Lazy and State Destroying). As we will explain shortly, the

decay period for the prefetched cache lines in L-SD is much

shorter than that for the normal cache lines. The last strategy

treats a prefetched cache line based on the characteristics of

the previous prefetch into the same line. We refer to the third

scheme as the P-H (Predictive and Hybrid). It is predictive in

a sense that it tries to figure out whether the prefetching into

the line in question would be useful or not. Furthermore, this

strategy is hybrid as far as deciding the power status of the

prefetched cache line (after prefetching) is concerned, since

the power status of the cache line (after prefetching) can be

either AC or SP (i.e., both are possible).

A. S-SP Scheme

This scheme places the prefetched cache line in the SP leak-

age control mode speculatively, immediately after the prefetch-

ing is complete. In this way, if the cache line is prefetched

unnecessarily (i.e., the cache line would be discarded from the

cache without being accessed at all), the line in question will

be in SP leakage control mode until it is being replaced (or

during the decay period), instead of being in the AC leakage

control mode consuming full leakage power. Also, with this

strategy, some non-useful prefetches are not bad at all in terms

of leakage energy; on the contrary, they may contribute to the

leakage energy savings, which can be explained as follows.

Figure 2(a) shows the lifetime of a typical cache line. At time

t0, a new data is brought into the line in question, and at time

t3 the last access to the data occurs. Suppose that the cache

line has not been accessed during the decay period, it is transi-

tioned to the SD leakage control mode at time t6, so consuming

no leakage power after t6. Figure 2(b) illustrates the cache line

in question when the S-SP strategy is used. Assume that the

data is brought into the cache line at t4 by prefetching, and at

the same time the cache line is transitioned to the SP mode.

Consequently, the cache line will consume full leakage power

only during the period [t3,t4], instead of [t3,t6], and consume

low leakage power during the period [t4,t7], resulting in leak-

age energy saving. If the original data in that cache line is not

referenced later by the program, this prefetch (although it is

not useful in itself) can translate to overall power savings.

The drawback of this strategy is that it puts not only the

non-useful prefetched cache lines in SP leakage control mode

but also the useful prefetched cache lines. So, when the useful

prefetched cache line is accessed, the line needs one extra cycle

to be waken up, causing performance degradation.

B. L-SD Scheme

In this scheme, we define a new decay period for the cache

lines brought into the cache via prefetching. Because of

the principle of locality, it is fair to assume that the useful

prefetched cache lines, in general, would be accessed within

a short period of time after they are brought into the cache.

Therefore, it makes sense to put the prefetched cache line into

SD leakage control mode if it is not accessed within this short

decay period (anticipating that it will not be accessed at all).

To explain this strategy better, let us consider the Figure 2(c).

The cache line is brought into the cache via prefetching at time

t4. If the cache line is not accessed within the period [t4,t5]

(note that t5-t4 is equal to new cache decay period), it is placed

in the SD leakage control mode at time t5. Consequently, the

non-usefully prefetched cache line will consume full leakage

power only from t4 to t5 instead of from t4 to t7 (t7-t4 is equal

to the decay period of the normal cache lines). This results in

reducing overhead of non-useful prefetched cache lines.

0

20

40

60

80

100

0 500 1000 1500 2000 2500

C
u

m
u

la
ti

v
e

 %

172.mgrid 173.applu 191.fma3d 175.vpr 256.bzip2

Useful

Prefetch

Non-useful

Prefetch

0

20

40

60

80

100

0 500 1000 1500 2000 2500

C
u

m
u

la
ti

v
e

 %

172.mgrid 173.applu 191.fma3d 175.vpr 256.bzip2

Non-useful

Prefetch

Useful

Prefetch

0

20

40

60

80

100

0 5000 10000 15000 20000 25000

Cycle

C
u

m
u

la
ti

v
e

 %

172.mgrid 173.applu 191.fma3d 175.vpr 256.bzip2

Useful

Prefetch

Non-useful

Prefetch

Fig. 3. Cumulative distribution of access interval of prefetched cache

lines. The top and middle graphs correspond to the L1 instruction

and data caches, respectively, and the bottom graph is for the L2

cache. The upper lines in each graph show the access intervals for

the useful prefetched cache lines, while the lower lines indicate the

access intervals for the non-useful prefetched lines.

B.1 Finding the Decay Period for Prefetched Lines

In L-SD scheme it is very important to choose a suitable decay

period for the prefetched cache lines. If we choose a very short

decay period, a usefully-prefetched line may be turned off too

early before it is accessed, resulting in performance and energy

degradation. On the other hand, if the decay period is chosen

too long, a non-useful prefetched cache line will be in the AC

leakage control mode unnecessarily long, increasing the leak-

age energy overhead. To decide a suitable cache decay period

for prefetched cache lines, we conducted a set of experiments,

which we explain below.

The cumulative distribution of the access intervals for the

prefetched L1 instruction, L1 data, and L2 lines are shown in

Figure 3. In all three graphs, the upper lines capture the ac-

cess intervals for the useful prefetched cache lines, whereas

the lower lines depict the access intervals for the non-useful

prefetched cache lines. From this figure, we can make the fol-

lowing observations. First, in general, the useful prefetched

lines in the L1-L2 hierarchy are touched within very short in-

terval after being prefetched. For example, on average, 98.84%

(97.65%) of the useful prefetched L1 instruction (L1 data)

cache lines are touched within a 1K cycles interval after they

are brought in the corresponding cache via prefetching. Fur-

thermore, within an interval of 10K cycles after being brought

into the L2 cache, 97.95% of the useful prefetched cache lines

are touched. These results are compatible with the rule of spa-

tial locality, that is, when an instruction/data is accessed it is

very likely that the neighboring instruction/data will be ac-

cessed within a short period of time. Second, the non-useful

prefetched lines spend considerable amount of time before be-

ing discarded from the cache.

Based on these two observations, one can reduce the decay

172.mgrid 173.applu 191.fma3d 175.vpr 256.bzip2
0

20

40

60

80

100

P
re

fe
tc

h
 B

re
a

k
d

o
w

n

Useful after useful Useful after non-useful Non-useful after non-useful Non-useful after useful

Fig. 4. Breakdown of the useful prefetches into useful after useful

and useful after non-useful cases, and breakdown of non-useful

prefetches into non-useful after non-useful and non-useful after

useful cases.

interval of prefetched cache lines to cut down the leakage en-

ergy overhead of the non-useful prefetched cache lines, with

negligible degradation in performance, by allowing them to

spend less time in the AC leakage control mode. For the rest

of our experimental analysis, we selected the decay period of

the prefetched cache lines as 1K cycles for the L1 instruction

and data caches, and 10K cycles for the L2 cache.

C. P-H Scheme

Before going on to the details of this strategy, let us ex-

plain some experimental results consolidating the idea behind

it. First, we tried to categorize the useful/non-useful prefetches

based upon the previous prefetch into the corresponding cache

line. If the prefetch is useful after a useful prefetch into the

same line, we call it useful after useful. Similar definitions

can be made for useful after non-useful, non-useful after non-
useful, and non-useful after useful prefetches.

Figure 4 shows the breakdown of the useful/non-useful

prefetches into categories. For each benchmark, there are three

groups of bars; the first and second correspond to the L1 in-

struction and data caches, respectively, while the third one cor-

responds to the L2 unified cache. As can be seen from the

figure, for all caches, if the prefetch is useful, the next prefetch

into the same line will more likely be useful. Furthermore, ex-

cept for L2 cache with the 173.applu and 175.vpr benchmarks,

if the data is brought into a line via prefetching and replaced

before being accessed, the next data brought into the same line

via prefetching will likely be discarded before being accessed.

Second, we tried to see to what extent we can predict the time

when the prefetched data will be accessed by just looking at the

access interval of the previous data brought into the same line

via prefetching. What we mean by “access interval” is the dif-

ference between the time when the data is brought into cache

via prefetching and the time when the data is actually accessed.

Figure 5 shows the cumulative distribution of differences be-

tween the access intervals of two consecutive useful prefetches

into the same lines. We can observe that, for all caches in our

architecture, the access interval of a prefetched cache line can

be predicted quite accurately within a range based on the ac-

cess interval of the previous prefetch into the same line. For

each prefetched line, the P-H strategy checks whether the pre-

vious prefetch into the same line was useful. If the previous

prefetch was non-useful, the line is placed in SP leakage mode

(as in the S-SP scheme) in case the current prefetch would be

useful. Otherwise, the prefetch is assumed to be useful and

its leakage mode is determined by considering the behavior of

the previous useful prefetch into the same line. If the access

80

85

90

95

100

100 200 300 400 500

C
u

m
u

la
ti

v
e

 % 172.mgrid

173.applu

191.fma3d

175.vpr

256.bzip2

40

50

60

70

80

90

100

100 200 300 400 500

C
u

m
u

la
ti

v
e

 % 172.mgrid

173.applu

191.fma3d

175.vpr

256.bzip2

0

20

40

60

80

100

1000 2000 3000 4000 5000

Cycle

C
u

m
u

la
ti

v
e

 % 172.mgrid

173.applu

175.vpr

256.bzip2

Fig. 5. Cumulative distribution of the differences between the access

intervals of the two successive useful prefetches into the same cache

line. The top and middle graphs are for the L1 instruction and data

caches, and the lower graph is for the L2 cache.

interval of the previous prefetch is smaller than a threshold
value, the prefetched data is assumed to be accessed within

very short interval after the prefetching is complete; so, it is

placed in the AC leakage mode so that it will be ready when it

is needed (as the threshold value, we used 200 cycles for both

the L1 instruction and data caches, and 2000 cycles for the L2

cache). If this is not the case, the prefetched line is placed in

SP leakage mode for a period, which is smaller than the ac-

cess interval of the previous prefetched data into the same line

by the threshold. Tuning the value of this threshold parameter

is critical since it affects both power and performance. After

the interval, if the line is still in the SP mode (i.e., the line is

not accessed within the interval), it is placed into the AC leak-

age mode so that it would be ready when it is required. If the

prefetched line is not accessed during the decay period used

for the prefetched lines after it is prefetched (regardless of the

outcome of the previous prefetch), it is placed into SD leakage

mode as in the L-SD scheme to save further leakage energy. In

our experiments, as the decay period for the prefetched cache

lines, we adopted the same values we used in the L-SD strat-

egy, i.e., 1K/10K cycles for L1/L2 caches.

D. Leakage Energy Savings

In this section, we first give the results regarding the leak-

age energy overhead caused by non-useful prefetches and the

maximum leakage savings when an oracle predictor is used,

and then give the leakage energy savings achieved through

the L-SD, S-SP, and P-H schemes described above. For max-

imum leakage savings, we assume that we have an oracle

that can predict precisely whether a prefetch is useful or not.

The percentage of leakage overheads introduced by non-useful

prefetches and the leakage savings achieved via the oracle in

the L1-L2 cache hierarchy for the optimized codes are shown

in Figure 6. For each benchmark, the first, second, and third

groups of bars correspond to the L1 instruction cache, L1 data

cache, and L2 cache, respectively. In each group, the first bar

illustrates the overhead incurred by non-useful prefetches, the

second bar depicts the leakage saving obtained using the or-

acle. One can see that, for any benchmark, in general, the

23.70 16.1923.70

0

3

6

9

12

15

172.mgrid 173.applu 191.fma3d 175.vpr 256.bzip2

L
e

a
k

a
g

e
 %

Overhead due to non-useful prefetch Saving by oracle

Fig. 6. Leakage energy overheads due to non-useful prefetches and

the leakage savings by the oracle.

22.2624.18 20.2526.41

0

3

6

9

12

15

18

172.mgrid 173.applu 191.fma3d 175.vpr 256.bzip2

L
e

a
k

a
g

e
 E

n
e

rg
y

 S
a

v
in

g
 (

%
)

S-SP L-SD P-H

Fig. 7. Leakage energy savings with the L-SD, S-SP, and P-H

schemes.

leakage energy saving for any component is larger than the

overhead introduced by the non-useful prefetches. Moreover,

the 191.fma3d benchmark has 23.70% leakage overhead and

saving in the L1 data cache, the largest percentage of leakage

overhead and saving in any component in the L1-L2 cache hi-

erarchy among all our benchmark codes. On the other hand,

the same benchmark does not incur any overhead in the L2

cache since all its prefetches into L2 are useful.

Figure 7 shows the leakage energy savings in the L1-L2

cache hierarchy when the L-SD, S-SP, and P-H schemes are

applied. All the savings are given as percentages with respect

to the leakage energy consumption of the optimized codes (i.e.,

the codes optimized by prefetching and leakage control mech-

anisms). For each benchmark, there are three groups of bars,

where the first and second groups are for the leakage savings

in the L1 instruction and L1 data caches, and the third group is

for the leakage savings in the unified L2 cache. In each group,

the first bar shows the leakage energy saving when the L-SD

scheme is used, whereas the second and third bars indicate

the leakage energy savings with the S-SP and P-H schemes,

respectively. From this figure, we can make the following

observations. First, the S-SP scheme outperforms the L-SD

scheme in both the L1 instruction and L1 data cache leakage

energy savings. This is due to fact that S-SP scheme puts the

prefetched cache lines in SP leakage control mode immedi-

ately after the prefetch operation is complete, and these L1

lines spend at most 10K cycles (not a long duration at all) be-

fore being turned off. On the other hand, the L-SD scheme

waits for 1K cycles to put the prefetched lines in the L1 caches

in the SD mode, resulting in more leakage energy consump-

tion. Second, as opposed to the case with the L1 caches, in gen-

eral, the L-SD scheme does a better job than the S-SP scheme

in saving the L2 leakage energy. This can be attributed to the

fact that the L-SD scheme transitions the prefetched cache line

to the SD leakage control mode in a relatively short period of

time (10K cycles) after the prefetch is complete, thereby result-

ing in considerable leakage saving. On the other hand, with the

S-SP scheme, a prefetched cache line may spend quite a long

time (about 1M cycle) in the SP leakage control mode if it is

not accessed. This makes the S-SP scheme less efficient than

the L-SD scheme as far as the savings in L2 are concerned.

As shown in the figure, the behavior of the L-SD scheme in

L2 energy saving is better than that of the S-SP scheme for all

the benchmarks except 191.fma3d. The different behavior ob-

served with this benchmark is due to the fact that there is no

non-useful prefetches in L2 for this benchmark; so, the L-SD

scheme can not take advantage of them. Our next observa-

tion is that, the P-H scheme outperforms the L-SD scheme in

leakage savings for all caches in the hierarchy. Fourth, the per-

formance of the L-SD scheme depends on the number of the

non-useful prefetches. If the number of non-useful prefetches

are low as in the 191.fma3d benchmark with the L2 cache, its

performance will be very poor. However, this is not the case

for the P-H scheme since it may place the usefully-prefetched

cache lines into the SP leakage power mode. Due to space

limitation we are not giving the performance details here. The

average performance overhead is around 1% for each scheme,

and their performance ranking is S-SP, P-H, and L-SD.

VI. CONCLUSIONS

This paper makes two important contributions. First, it

presents a detailed quantification of the power-performance in-

teractions between prefetching and cache line turnoff. Second,

based on this quantification, it proposes and evaluates three

different cache line turn off schemes that treat prefetched lines

differently from the lines brought into the cache through a nor-

mal load operation.

REFERENCES

[1] Spec cpu2000 benchmark. http://www.spec.org/.

[2] http://research.compaq.com/wrl/people/jouppi/CACTI.html

[3] B. Batson and T. N. Vijaykumar. Reactive associative caches. In Proc.

International Conference on Parallel Architectures and Compilation
Techniques, 2001.

[4] D.C Burger and T. M. Austin. The SimpleScalar toolset, version 2.0,

Tech. Rep. 1342, Dept. of Computer Science, UW, June 1997.

[5] K. K. Chan. Design of the HP PA 7200 cpu. Hewlett-packard J., vol.

47, no. 1, pp. 25-33.

[6] R. Cooksey, S. Jourdan, and D. Grunwald. A stateless contend-directed

data prefetching mechanism. In Proc. International Conference on Ar-
chitectural Support for Programming Languages and Operating Sys-
tems, October 2002.

[7] K. Flautner, N. S. Kim, S. Martin, D. Blaauw, and T. Mudge. Drowsy

caches: simple techniques for reducing leakage power. In Proc. Inter-
national Symposium on Computer Architecture, 2002.

[8] S. Kaxiras, Z. Hu, and M. Martonosi. Cache decay: exploiting gen-

eral behavior to reduce cache leakage power. In Proc. the 28th Annual
International Symposium on Computer Architecture, 2001.

[9] L. Li, I. Kadayif, Y. F. Tsai, N. Vijaykrishnan, M. Kandemir, M. J.

Irwin, and A. Sivasubramaniam. Leakage energy management in cache

hierarchies. In Proc. International Conference on Parallel Architectures
and Compilation Techniques, September 2002.

[10] A. C. Lai, C. Fide, and B. Falsafi. Dead-block prediction and dead-block

correlating prefetchers. In Proc. International Symposium on Computer
Architecture, 2001.

[11] J. Montenaro et al. 160 mHz 32b 0.5w CMOS RISC Microprocessor.

In Proc. International Solid State Circuits Conference, 1996.

[12] S. P. Vanderwiel and D. J. Lilja. Data prefetch mechanisms. ACM Com-
puting Surveys, vol. 32, no. 2, June 2000.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

