2B-4

Image Segmentation and Pattern Matching Based FPGA /ASIC
Implementation Architecture of Real-Time Object Tracking

K. Yamaoka, T. Morimoto, H. Adachi, T. Koide, and H. J. Mattausch
Research Center for Nanodevices and Systems, Hiroshima University,
1-4-2 Kagamiyama, Higashi-Hiroshima, 739-8527, Japan
Phone:+81-82-424-6265, Fax:+81-82-424-3499
Email:yamaoka, morimoto, adachi, koide, hjm@sxsys.hiroshima-u.ac.jp

Abstract— A novel algorithm for object tracking in
video pictures, based on image segmentation and pat-
tern matching, as well as its FPGA /ASIC implemen-
tation architecture are presented. With image seg-
mentation, we can detect all objects in the images no
matter whether they are moving or not. Using image
segmentation results of successive frames, we exploit
pattern matching in a simple object feature space for
tracking of objects. The proposed algorithm can be
applied to multiple moving and still objects even in
the case of a moving camera. The FPGA/ASIC im-
plementation architecture is verified to enable real-
time tracking of up to 220 objects, when realized with
modern FPGA hardware [1].

I. INTRODUCTION

For intelligent information processing of visual data, the
moving object tracking in video pictures has attracted
recently a great deal of interest [2]. Scene surveillance
or object recognition are typical examples, where object
tracking is an indispensable technology. Many moving
object tracking algorithm and architectures have already
been proposed. Most of them are based on difference eval-
uation between the current image and a previous image
or a background image [3, 4]. However, algorithms based
on the difference of images have problems with following
practical cases. (1) Still objects included in the tracking
task exist. (2) Multiple moving objects are present in the
same frame. (3) The camera is moving. (4) Occlusion of
objects occurs. Our novel algorithm for object tracking
[5], based on image segmentation and pattern matching
(Fig. 1), aims at solving above problems. In this algo-
rithm we extract all objects from an input image by im-
age segmentation. Next we extract simple object features
and use these features to form pattern representing the
objects. Then we compare the features of extracted ob-
jects in the current frame and those of extracted objects
in the preceding frame by pattern matching. The most
similar objects (i.e. the objects which have the small-
est distance) between successive frames are judged to be
corresponding objects. In spite of the motion condition
of objects, this algorithm is effective because each ob-
ject’s motion vector is determined and used as one of its
features. Additionally, we can increase the number of
extracted object features from segmentation results, so

0-7803-9451-8/06/$20.00 ©2006 IEEE.

segmented objects
in the current frame

segmented objects
in the preceding frame

o
. e e
image
in the current frame similar object search

based on object-features

>

Fig. 1. Object-tracking based on image segmentation and similar
object feature matching.

that detection and tracking accuracy can be improved to
a suitable level. However, image segmentation process-
ing needs a great deal of calculations, so that realizing
real-time object tracking with the proposed algorithm by
software implementation is difficult. That is why, we have
developed an FPGA /ASIC architecture for realizing real-
time object tracking. For the segmentation part we ex-
ploit a previously developed digital image segmentation
architecture [6]. Furthermore, pipeline processing of seg-
mented objects is applied in order to achieve tracking of
more objects in real time.

II. OBJECT TRACKING ALGORITHM

A. Concept

In the proposed object tracking algorithm, we employ
image segmentation of each frame and extraction a num-
ber of features for all segmented objects. Then pattern
matching with the objects of the previous frame is car-
ried out. A coarse flow chart of the proposed algorithm is
shown in Fig. 2. The detailed processing consists of the
following steps.

Step 1: With the image segmentation algorithm, we ex-
tract all objects in the input image.

Step 2: Then we extract coordinates of 4 object-pixels
which are indicated in Fig. 3(a). Prmaz and Pemin
have the maximum and minimum z-component, while
Pymar and Pypin have the maximum and minimum y-
component, respectively.

Step 3: Afterwards we calculate characteristic features of

176

not extracted objects
exist in the frame?

Image segmentation of object i Input image data
(object extraction) of next frame

Calculation of object features for object i \—
(position, size, color, area)

}

+ Pattern matching
. d
with reference data

« Storage of extracted object features
as reference data for next frame

!

+ Calculation of motion vector and estimated position
for object i in next frame
« Storage of estimated position as reference data for next frame

Fig. 2. Flowchart of the proposed algorithm based on image
segmenation and pattern matching.

X X (x,y)
Prmin(Xsmin , Y smin) position in the current frame\
y Pymin(Xymin 5 mein) y (X(t-l)Y (t- 1)) l‘_ X

motion vector

>

-\--distance to

h R | AT real position
Segmented Reg_ion _____ _ —
mx(t-1) estimated position
X'()=X(t-1)Fmx(t-1)
Pymax(Xymax 5 meax) (X(t—2),y(l—2)) Y OFy (-1)+Il’1y(t- 1)

Prxmax(Xmax , Yxmax) position in the preceding frame

(a) 4 feature-positions (b) calculation of motion vector and estimated position

Fig. 3. Definition of four feature-positions, motion vector and
estimated position.

the segmented object, that is, object position (z,y), ob-
ject size (width, height), color information (R, G, B), and
object area, respectively. Object position (x,y), width w
and height h are calculated according to below equations.

w = szaw - meina

szaw + mein

h = Y;gmaa: - meina

Y;gmaa: + Y;gmzn
T = B) s Yy =) .

The object area is determined by counting the number of
its constituting pixels. As object color information, aver-
age RGB data of the 4 pixels, Prmazs Pomin, Pymas and
Pymin, are used.

Step 4: The minimum distance search in the feature
space is performed between each object in the current
frame and all objects in the preceding frame. Then we
identify each object in the current frame with the object
in the preceding frame which has the minimum distance
or in other words which is the most similar object.

Step 5: Afterwards, we calculate the motion vector
(mg(t—1), my(t —1)) from the difference in position be-
tween the object in the current frame and matching object
in the preceding frame (Fig. 3(b)). By adding the mo-
tion vector (my(t — 1), m,(t — 1)) to the current position
(z(t—1), y(t—1)) of the object, we determine an estimate
for the object’s position (2’(t), ¥'(t)) in the next frame

2B-4

(a) Sample sequence 1 (80x60, 30fps) (a) The Manhattan distance
between succesive frames
for the sample sequence 1.
@b a2 | @3 | a4
@n] 1 19 10 10
el 18 [4 [19 [21
23)] 12 18 1 11
24) | 13 23 12 2

@D | 2] @3 |24
Gh| 2 17 | 10 | 13
32|19 | 6 19 | 26
G310 [19] 2 |15
GAH| 10 |25] 14] 3

[N RE RE N EEE)
@bl 2 |17 |12] 10
42|19 | 2 23 | 27
(43)] 10 | 21 2 | 14
@H |11 |24)13] 1

(b) The Manhattan distance
between succesive frames
for the sample sequence 2.

frame 4
(1,2) 2.1 | 22 3.0 | (3.2)
@h| 1 12 G.hH| 2 13 “h] 2 10
22)] 12 1 3.2) 11 2 “42)| 12 0

Fig. 4. Successive image sequence for algorithm simulation.

(Fig. 3(b)). This estimate position is exploited instead
of the extracted position (z(t — 1), y(t — 1)) for pattern
matching after a start-up phase from the 3rd frame on-
wards.

Step 6: By carrying out this matching procedure with all
segments obtained for the current frame, we can identify
all objects one by one and can maintain tracking of all
objects between frames.

B. Verification

For verifying the effectiveness of the proposed object
tracking algorithm, we tested sample picture sequences
with 80x60 pixels per frame, consisting of four successive
frames (30fps) as shown in Fig. 4. The sample sequence
1 is an example, which includes multiple moving objects
and also the occlusion effect among objects. The sample
sequence 2 is an example, which includes non-rigid ob-
jects. Note that the object labels are explicitly shown in
the pictures. Tables (a) and (b) in Fig. 4 show Manhat-
tan distances between the objects of successive frames.
We employ the simple Manhattan distance as the dis-
tance measure, because matching quality is found to be
approximately the same as with the more complicated Eu-
clidean distance [5]. The distances express the similarity
of objects, namely as the Manhattan distance approaches
to 0 the similarity increases. In this table, the notation
(t,i) stands for the objects 4 in the ¢-th frame. For mak-
ing possible distance contributions of each object feature
equal, we have normalized their numerical values. From
the table(a) in Fig. 4, we can confirm correct matching
between objects in successive frames and thus confirm the
validity of the proposed algorithm. Furthermore, we also
have confirmed the effectiveness of the proposed algorithm
for many other difficult cases such as rapid direction of
movement, changes by object collision, rotating complex
objects or non-rigid objects like walking humans (sample

177

2B-4

sequence 2 in Fig. 4). Since the object feature difference
is also very small between successive frames for non-rigid
objects, the proposed pattern matching based method can
correctly track the same objects. By doing the verifica-
tion based on the algorithm’s software implementation,
we could confirm that unless very small and very com-
plex objects are tracked, sufficient tracking reliability is
achieved with an image resolution of 80x60 pixels. For
QVGA or VGA size images, we can shrink the original
image to 80x60 pixel size image. Therefore, we design
the FPGA/ASIC implementation architecture aiming at
video pictures reduced to 80x60 pixels in size.

ITI. PROPOSED ARCHITECTURE FOR FPGA /ASIC
IMPLEMENTATION

This section presents the FPGA /ASIC architecture for
implementing the proposed algorithm in more detail.

A. Architecture Overview

Fig. 5 shows the overall block diagram of the devel-
oped FPGA /ASIC implementation architecture. This ar-
chitecture roughly consists of 4 blocks. The first block
is the image segmentation cell-network in which all ob-
jects of the frame are extracted. The second block is the
feature extraction block in which object features for each
segmented object are calculated using the image segmen-
tation results. The third block is the pattern matching
block in which the most similar object is searched among
the reference data from the previous frame. The fourth
block is the estimated position calculation block in which
the estimated position of each object in the next frame is
calculated.

The image segmentation cell-network implements a
region-growing algorithm and has the structure of a two-
dimensional array of image segmentation cells correspond-
ing to the pixels of an input image. By taking advantage
of the cell-network, we can access the segmentation result
of each cell in parallel in x-direction and in y-direction.
This is done in the feature extraction block where the
width of each segmented object is calculated from the
cell-network data which is outputted in parallel into y-
direction and where the height and the area of each ob-
ject are calculated from the cell-network data which is
outputted in parallel into x-direction. With this chosen
approach it is not necessary to scan pixels belonging to a
segmented region one by one, and thus high speed process-
ing is achieved. Then the determined object-features are
transmitted to pattern matching block so as to search the
most similar object among the reference data in the pre-
vious frame. In the estimated position calculation block,
the estimated position of the current input object in the
next frame is calculated from the positions of the matched
object and the input object. Then the estimated position
is stored in the pattern matching block as one feature of
the input object’s reference pattern in the next frame.

Due to the sequential nature of the segmentation by re-
gion growing, we can apply pipeline processing, as shown
in Fig. 6, to interleave the processing steps of image seg-

O image segmentation cell

Column Decoder

[R AR A AT
= = Image Segmentation Cell-network E=
g8 2 b0 97 91 97 o7 ol I 5 3 | [
15) [} 5 O <
goé%ﬁgﬂ;’@?@?@“'@ £z |2
EE | | A e o ool 85 (|2
= g
5 ol ol o ol ol —oA]|8 5|2
<
Pl nome A% B B % % A — | £
R : S
3z S N N I : Blle
2] 91 9 O 1) J] BS|| 2
32|35
SEES
| Object Width Extraction Circuit | 7(3 o

¢ ¢ ¢ ¢4 4 4 9

Object Feature Calculation Circuit
osition | size [color |
[v Jwidth]heightf R [G [B | 2
T T T

P
A A S T A

| Pattern Matching Circuit

Motion Vector Estimated Position

Calculation Circuit Calculation Circuit

Fig. 5. Block diagram of proposed FPGA/ASIC implementation
architecture.

weight calculation order of processing objects

(connection weight)
(select leader cells)
image

segmentation stop

(= segmentation
E feature extraction
< | feature calculation
&
< B
% | pattern matching mmage
2 [segmentation
B | estimated position E feature extraction
calculation £ feature calculation
] . image
% pattern matching ee
° segmentation
8 | estimated position feature extraction
calculation feature calculation

time

pattern matching
LN]

object3(frame T)

estimated position
calculation

Fig. 6. Process flow of the FPGA/ASIC implementation
architecture when using pipeline processing.
mentation, feature extraction and pattern matching. As
compared to the case of completing the frame’s segmen-
tation before advancing to feature extraction, higher pro-
cessing speed of the complete algorithm is achieved, so
that more objects can be tracked in real time. This is
evaluated quantitatively in SectionIV.

In following subsections, we explain the circuit struc-
ture and function of each of the 4 blocks.

B. Image Segmentation Cell-Network

The proposed implementation architecture uses a
region-growing-type image segmentation cell-network [6,
7]. This cell-network realizes high-speed object segmen-
tation from an input image. The cell-network is an array
of image segmentation cells, where each cell corresponds
a pixel of the input image. In a preprocessing step to the
segmentation, connection weights between adjacent pix-
els are calculated from the pixel’s RGB data in a weight
calculation circuit. These calculated connection-weights
are transmitted to the image segmentation cell-network,

178

Cell status signal from each column
(column including cells in the current segment is "1")
column 1 column 2 column n

V) V) ?
jEREm =
)
o =

Xxmax

minimum column number maximum column number

Fig. 7. Width extraction circuit for the current segment.

and image segmentation is done based on these connec-
tion weights. In the image segmentation cell-network, all
segments are grown sequentially by a region-growing pro-
cess starting from leader cells, which are also determined
by the connection weights. After segmentation of one ob-
ject, if a pixel belongs to the currently segmented object,
a flag register of the corresponding cell has been set to 1
and a label number of the object has been stored in an
internal register.

C. Feature Extraction and Calculation Block

C.1 Basic Feature Extraction Circuits

The feature extraction circuit is shown in Figs. 7 and
8. The four feature-positions shown in Fig. 3(a) are ex-
tracted in these circuits. The circuit shown in Fig. 7
extracts the maximum and the minimum x-coordinates,
Xoymin and Xgmaq, for calculating width of the segmented
object. As shown in Fig. 5, status signals are transmitted
from each column of the image segmentation cell-network
to this circuit in parallel. The signal from each column be-
comes 1 if the column contains the pixel belonging to cur-
rent segment. Otherwise it becomes 0. These input sig-
nals are stored in registers corresponding to each column
in Fig. 7. The boundaries between 1 and 0 are detected
with the shown combinational circuit consisting of EXOR
and AND gates, and are transformed to the column in-
dex in the two decoders. The max-min detection unit
(y-component) shown in Fig. 8 extracts the maximum
and the minimum y-coordinates, Yymin and Yymas, for
calculating height of the current segment and calculates
the area at the same time. To extract Yy, and Yymaz,
the same circuit shown in Fig. 7 is used. After an image
segmentation of an object finished, cell status signals (0 or
1) are inputted to registers which connected from rows of
the cell-network in column parallel and Y42 and Yy,
of each column are sequentially outputted from decoders.
Then by inputting cell status signals of X,,,q.-th and
Xoemin-th column, Y., and Yi,., are calculated. To
extract remaining coordinates, Xymin and Xypee, min
and max position detection units (x-component) depicted
in Fig. 8 are used. Input signals to these units are the
output signal from each decoder and the current column
number. When the output from each decoder becomes
minimum or maximum, the current column number is

2B-4

max-min positions detection unit (y-component)

min position detection unit (x-component)
h
h
i

Y

03
:
o

decoder
(for min)

row 2 | F‘

row 3 m

oo [register| [register
T

row m

cell-status signal from each row of cell-network

register | «
,
0

R

selector

R =
| max position detection unit (x-component)

| area

area calculation unit

Fig. 8. Second basic feature extraction circuit which extracts
height and area of the segmented region.

from Feature Extraction Circuit l

‘ l Xxmin l Y xmin l Xxmaxl Y xmax Xymin‘ Y ymin l Xymax{ Yymax ruQES{SOfI
T
—

RN

input image data memory
(R, G, B)

Address caleutaon] ||

é'g l adder H adder Hsubtracter] lsubtracter] cireuit '% T

:E E

I‘g i{% l shifter H shifter l l shifter l l shifter l § :

S R R 5
k2 k2 K2

color
B)

color
G)

color

width (R)

area

position|position
X y

height

to Pattern Matching Processing Circuit l

Fig. 9. Dependent feature calculation circuit.

stored to each register as Xymin or Xymqr. Concurrently,
area of the current segment is calculated by counting the
number of the cells in the current segment of each row,
and all counter’s values are finally summed up.

C.2 Dependent Feature Calculation Circuit

As shown in Fig. 9, the dependent feature calculation cir-
cuit consists of registers, adders, subtracters, and shifters.
This circuit calculates the eight features, position(z, y),
size(width, height), color(R, G, B) and area, by using 4
feature-positions detected with the basic feature extrac-
tion circuit and outputs these object features to pattern
matching circuit. Color information is calculated by read-
ing four boundary pixels data shown in Fig. 3(a) and
taking the average of luminances (R, G, B) of four pixels.

D. Pattern Matching Processing Circuit

The structure of the pattern matching circuit is shown
in Fig. 10. Two memories, memory-A and memory-B are
used for pattern matching. One of the memories stores the
object-features in the current frame, the other stores the
object-features in the preceding frame as reference data.

179

2B-4

object features

(from feature calculation circuit)
Memory-A Memory-B

address
read,write
(odd frame) (even frame)

N A
Y Y
Selector Selector
Selector Selector
4

N T A
r r

) 4 \ 4

feature register-B

osition size color area | N
w|h|RJIGIBJ|A

P

f

address
read,write

feature register-A
osition size color’ area
S B|A

X viwlh|RIJG
T T

Address —1]

1 generator [—/—
A
Estimated Position T

Calculation Circuit Matching Unit

estimated position

(xy)

<

Controller —

matched label

Fig. 10. Block diagram of the pattern matching circuit and
estimated position calculation circuit.

For odd frames, an input data is written in memory-A
and the reference data is read from memory-B. For even
frames, an input data is written in memory-B and the
reference data is read from memory-A. In this way, the
functionarity of each memory is switched when processing
frame is changed.

The pattern matching process is done in the matching
unit. All combinations of the current object and all ref-
erence objects in the preceding frame are checked in the
matching unit one by one. For that purpose, a feature-
register-A and a feature-register-B are temporarily used
as the buffer to storing the current object and a refer-
ence object. Then the matching unit compares the input
data and the reference data which are set in both feature-
registers.

The block diagram of the matching unit is shown in
Fig. 11. This unit consists of a Manhattan distance cal-
culation circuit which calculates the distance (i.e. simi-
larity) between the input data and all reference data, and
a Manhattan distance comparison circuit, which searches
the most similar combination (i.e. the smallest distance).
Each difference is calculated sequentially per object fea-
ture pair and is normarized by shifters. Afterward all dis-
tances components are added serially and the calculated
Manhattan distance is transmitted to the Manhattan dis-
tance comparison circuit, and is stored in a comparison
register (A or B) of the circuit with the label of the refer-
ence object. Then, this newly calculated distance is com-
pared with up to now smallest distance between the input
data and other reference data. And smaller distance is se-
lected to the candidate of the most similar object. The
selected distance is kept intact in its register and the other
is deleted from its respective register. Repeating these
processes for all reference data of the previous frame in
memory, the most similar reference object is selected and
the matched object-label is outputted from the matching
unit.

object number
of
reference data

Manhattan Distance Calculation Circuit, Manhattan Distance Comparison Circuit

feature registerA feature registerA Matching
(8 object features) (8 object features) Controller [€7]

(i ‘

! Yo '

i

I Selector ‘ Selector ‘ ' | '

| i H |

i !

! ' ! registerA registerB| |

! Shifter Shifter | || 1| — . N ‘ |

! - ' ! label | Manhattan label | Manhattan '

! o (A) |distance (A) (B) |distance (B) !

i Subtracter oo I I I '

! (absolute value) B |
! 1

1 e ; !

i -

! ! | Selector comparator |

! o (select winner) !
i

! o |

' [I

! ! !

U matched label

Fig. 11. Details of the matching unit.

E. Estimated Position Calculation Circuit

The estimated position calculation circuit consists of
adder and subtracter and a motion vector of input object
is calculated with distance between the matched object
position in the preceding frame and the input object po-
sition in the current frame (Fig. 10). The estimated po-
sition of the input object for the next frame is calculated
by adding the motion vector to the current position of
the input object, and is stored to the reference memory
to apply to the pattern matching of the next frame.

IV. PERFORMANCE ESTIMATION OF PROPOSED
ARCHITECTURE

Here we estimate the processing speed of the proposed
FPGA/ASIC architecture and judge the possibility of real
time processing (30fps). The process flow of the proposed
architecture is shown in Fig. 6 and we assumed that the
achievable clock frequency with the FPGA is 20MHz in
the worst case. First, when an image is inputted, the
connection weights are calculated and leader cells are de-
termined in the weight calculation circuit. These data are
then transfered to image segmentation cell-network. With
the assumed worst-case operating frequency of 20MHz,
it takes 480usec to finish calculating and transfering the
connection-weight and leader cell data. Next, image
segmentation is done, which requires about 200usec for
80x60 image size at 20MHz. After image segmentation
is finished, feature extraction processing is started. In
the basic feature extraction circuits, calculating the area
of segmented objects needs scanning of all columns be-
longing to the segmented object, so that area calculation
becomes the critical path. In the worst-case it takes 80
clock cycles for counting the number of pixels belonging
to the segmented region. Additionally, it takes 60 clock
cycles to calculate the sum of the counted pixels of all
columns. The delay of the dependent feature calculation
circuit is only 5 clock cycles and thus quite small. There-
fore it takes all together 145 clock cycles or 7.25usec at
20MHz to extract the features of one object in the worst
case.

After finishing the extraction of object features, pat-
tern matching is done. With the described implementa-

180

(=)
(=}

= non-pipeline
o pipeline
A non-pipeline
x pipeline

w
(=}

borderline of /Q/
14+ M (20 Fae)
TCartnnc l}?bcbblllé \.fb]/////

B
(=1

processing time (msec)
v
(=1

3\3
\é

.__‘/
0 \ \ \ \ \
0 50 100 150 200 250 300

number of segmented regions

Fig. 12. Relationship between the number of segmented regions
and the processing time

tion circuit it takes 10 clock cycles or 0.5usec at 20MHz to
finishing the processing for one reference pattern. In the
case of N objects existing in the current frame and corre-
spondingly N reference pattern from the previous frame,
it takes therefore 0.5x N2usec to execute pattern match-
ing for all objects. The final processing in the estimated
position calculation circuit needs only a few clock cycles
and can be neglected.

Fig. 12 shows the graph which plots the number of seg-
mented regions vs. the processing time for two kinds of
image size, QVGA and 80x60 pixels. The process of pat-
tern matching with the sequential implementation of Figs.
10 and 11 requires much time. But as shown in Fig. 6 we
can shorten the total amount of time by executing image
segmentation, feature extraction and pattern matching in
a processing pipeline. In this way, about 220 objects for
QVGA image size and about 255 objects for 80x60 pixel
image size can be handled in a real-time tracking appli-
cation under the condition that the operating frequency
is 20MHz. If the number of objects is less than about 50,
then we can slow down the clock frequency to reduce the
power dissipation. Futhermore Fig. 12 shows, that as the
image size becomes larger, the effect of pipeline processing
on processing time becomes more significant.

We have coded the proposed FPGA/ASIC architecture
in Verilog-HDL and carried out logic synthesis with a
standard cell library in 0.35um CMOS technology. The
image segmentation cell-network in the case of 80x60
pixel images is estimated 124mm?, and therefore con-
sumes the largest area. All other elements of the pro-
posed object-tracking circuit can be implemented on an
area of only 0.94mm? when memories are excluded. This
gives a total of about 125mm? for an object tracking
ASIC (80x60 pixel images) in 0.35um CMOS with exter-
nal memories. The area can be reduced to about 20mm?
with a state-of-the-art 100nm CMOS technology, so that
memories can also be integrated on the ASIC.

V. CONCLUSIONS

We have proposed an object tracking architecture for
video pictures, based on image segmentation and pattern
matching of the segmented objects between frames in a

2B-4

simple feature space. The suitability of the proposed al-
gorithm was verified by simulation. It could be comfirmed
that the algorithm overcomes all insufficiencies of the con-
ventional approach, which is based on the difference be-
tween the current image and a previous image or a back-
ground image. In particular the cases of a moving camera
or object occlusion, where objects are hard to track, are
no problem for our proposed algorithm. Then we have
proposed an FPGA/ASIC implementation architecture,
realizing its algorithm for real time object tracking. The
detailed circuitry of each processing block of this archi-
tecture was described. Furthermore, we estimated the
processing speed of the proposed architecture for FPGA
implementation with 80x60 pixel and QVGA size images.
We comfirmed that even this FPGA implementation can
track multiple moving objects in the same frame in real
time. The estimated area of proposed architecture for
80x60 pixel with an ASIC in 0.35pum CMOS technology
is about 125mm?. By applying state-of-the-art CMOS
technology at the 100nm node, the ASIC area can be re-
duced to about 20mm?, so that larger image sizes for the
tracking algorithm become possible. It will be also possi-
ble to implement the proposed architecture with state-of-
the-art FPGA and we have already proposed a compact
image segmentation architecture for FPGA implementa-
tion in Ref.[8].

ACKNOWLEDGEMENTS

The authors are grateful to O. Kiriyama, Y. Harada, from Hi-
roshima University, Japan, for fruitful advices and discussions. Part
of this work was supported by the 21st Century COE program ”Na-
noelectronics for Tera-bit Information Processing”, a Grant-in- Aid
for Young Scientists (B) (No.16700184), Ministry of Education, Cul-
ture, Sports, Science and Technology, Japanese Government and a
Grant-in-Aid for JSPS Fellows, 1650741, 2005.

REFERENCES

[1] StratixII, Altera Corporation, 2005,

URL: http://www.altera.com/products/devices/stratix2/.

[2] See, for example, W. G. Kropatsch and H. Bischof, “Digital
Image Analysis,” Springer, 2001.

[3] S. W. Seol et al., “An automatic detection and tracking system
of moving objects using double differential based motion esti-
mation,” Proc. of International Technical Conference on Cir-
cuits/Systems, Computers and Communications, pp. 260-263,
2003.

[4] H. Kimura and T. Shibata, “Simple-architecture motion-
detection analog V-chip based on quasi-two-dimensional pro-
cessing,” Fxtended Abstracts of the 2002 International Confer-
ence on Solid State Devices and Materials, pp. 240-241, 2002.

[5] T. Morimoto et al., “Object tracking in video pictures based on
image segmentation and pattern matching,” Proc. of the IEEE
Int. Symp. on Circ. and Syst. (ISCAS2005), pp.3215-3218, 2005.

[6] T. Morimoto et al., “Efficient video-picture segmentation al-
gorithm for cell-network-based digital CMOS implementation,”
IEICE Transactions on Information and Systems, Vol. E87-D,
No. 2, pp. 500-503, 2004.

[7] T. Morimoto et al., “Pixel-parallel digital CMOS implementa-
tion of image segmentation by region growing,” IEE Proceedings
Circuits, Devices € Systems, in press.

[8] H. Adachi et al., “Image-scan architecture for efficient
FPGA/ASIC implementation of video-segmentation by region

growing,” Proc. of The International SoC Design Confer-
ence(ISOCC2005), pp. 301-304, 2005.

181

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

