
Conversion of Reference C Code to Dataflow Model:
H.264 Encoder Case Study

Hyeyoung Hwang Taewook Oh Hyunuk Jung* Soonhoi Ha

The School of Electrical Engineering And Computer Science
Seoul National University KOREA

* Samsung Electronics
{hyhwang, twoh, jung, sha}@iris.snu.ac.kr

Abstract – Model-based design is widely accepted in
developing complex embedded system under intense
time-to-market pressure. While it promises improved
design productivity, the main bottleneck lies not in the
design methodology but in constructing the initial
algorithm representation in the specified model. It is
particularly true if a complicated multimedia application
is given in the form of a sequential reference C code. In
this paper we propose a systematic procedure for
converting a sequential C code to a dataflow specification
that has been widely used in many design environments
for DSP systems. The proposed technique is successfully
applied to H.264 encoder algorithm as a case study.

I. Introduction

In HW/SW co-design methodology of embedded systems,
system level specification enables us to model and analyze
the system behavior in high level of abstraction to cope with
the ever-increasing complexity of system design under
relentless time-to-market pressure. Especially model-based
specification is widely accepted because mapping the system
behavior to processing components can be easily performed.
In a model-based approach, the system algorithm is
specified using a block diagram or a composition of function
blocks. Once functional blocks are built and completely
tested, they can be reused in many other systems thereby
saving time and costs compared to traditional design
approaches [1].

In this paper we use an extended synchronous dataflow
(SDF[2]) model for algorithm specification. In SDF model, a
node, or a block, represents a coarse grain function block
whose body is described in C language. An arc represents a
channel that carries streams of data samples from the source
node to the destination node. The number of samples
produced (or consumed) per block execution is called the
output (or the input) sample rate of the block. In case the
number of samples consumed or produced on each arc is
statically determined and can be any integer, the graph is
called a synchronous dataflow graph (SDF). A block is
executable only after it receives the specified number of
samples at all input ports. These restrictions make the model
formal and data-driven. The SDF model has been widely
used in many system-level design environments especially
for digital signal processing systems [2][3].

The inherent difficulty of model-based approach lies in
constructing the initial algorithm representation in the

specified model, dataflow model in this paper. In most cases
the algorithm description is given in the form of a reference
C code. To get the benefits of model-based design approach,
we have to convert the sequential reference code somehow
to a dataflow specification. It is not a simple task for a
system designer who may not know the algorithm details in
particular. For instance, the reference C code of H.264
encoder algorithm [6] is about 32000 lines long and is
scattered into 55 files.

In this paper, we propose a systematic procedure for
converting a sequential C code to a dataflow specification.
The procedure has been established after numerous hands-on
experiences and successfully applied to H.264 encoder
algorithm. It consists of three phases. First, we transform the
reference code into the same code structure as would be
automatically generated from a dataflow specification. In the
second phase we identify the functional blocks from the
transformed code and analyze their dependencies. At last we
draw a dataflow graph, synthesize the sequential C code
from the dataflow specification, and check the correctness
and the performance of the code by comparing it with the
reference code.

The rest of the paper is organized as follows. In Section 2,
some background information is reviewed on the dataflow
specification and the H.264 encoder algorithm. Section 3
presents the problem definition and the overview of the
proposed solution. The detailed description of the procedure
is explained in Section 4 with the H.264 encoder case study.
Clustering and scheduling of the data flow specification are
explained in section 5. The experimental results are
presented in Section 6. Section 7 concludes the paper.

II. Background

A. Software Synthesis from Dataflow Model
Fig. 1 depicts the process of software code synthesis from

an SDF specification [3]. A simple SDF graph in Fig. 1(a)
contains three nodes, labeled A, B, and C. Each arc is
annotated with the number of samples consumed or
produced per node execution.

To generate a code from the given SDF graph, the order
of block executions is determined at compile time, which is
called "scheduling". Since a dataflow graph specifies only
partial orders between blocks, there are usually more than
one valid schedule. Fig. 1(b) shows a valid schedule. The
parenthesized terms in schedule are used to express
repetitive invocation patterns. These are called schedule

loops. In Fig. 1(b), the term 2(B(2C)) represents the
invocation sequence BCCBCC. Each schedule loop is
implemented as a loop structure in the synthesized code.

A code template according to the schedule is shown in Fig.
1(c). The function body of each function block is placed in
the scheduled position. The code structure of the synthesized
code from dataflow specification has the following
characteristics.

- It may have nested loops.
- All function blocks appear in the main loop. A

function block may not be called in another function
block.

- State variables of function blocks may not be shared.

A CB
2 121

(a)

Valid Schedule
A(2(B(2C)))

 Synthesized Code

 code block for A
 for (i=0; i<2; i++){
 code block for B
 for (j=0; j<2; j++){
 code block for C
 }
 }

(c)

(b)

Fig. 1. An example of synthesized code from SDF

Fractional Rate Dataflow (FRDF) is an extension to the
dataflow model in which fractional number of samples can
be produced and consumed [4]. In the FRDF model, a
constituent data type is considered as a fraction of the
composite data type. For instance, a 16x16 macro-block is
considered as 1/99 of a QCIF frame (176x144). Existing
integer rate dataflow models can be easily extended to
incorporate the fractional rates without loosing analytical
properties. But it is reported that the FRDF model can
reduce the buffer memory requirement in the synthesized
code significantly, up to 70%, for some multimedia
application.

B. H.264 Encoder Algorithm

Fn

F´n-1

F´n

ME

MC

Intra
Prediction

DF

choose
Intra

prediction

Entropy
EncoderReorderQ

Q-1T-1

T

(reference)
1or2

previous
encoded
frames

(current)

(reconstructed)

Inter

Intra

P

X
NAL

+

-

+

+

uFn D n

Dn

Fig. 2. H.264 encoder (baseline profile) block diagram

H.264 is a video coding standard (or Recommendation)
made by the Video Coding Experts Group (VCEG) of the
International Telecommunication Union
Telecommunication Standardization Sector (ITU-T)[6].
While H.264 achieves bit rate saving ratio up to 50%
compared to H.263+ and offers consistently good video
quality at most bit rates, algorithm complexity grows
significantly. More efficient compression and high quality
video are attributed to the following features: Enhanced
motion compensation, small blocks (4x4) for transform
coding, improved in-loop deblocking filter, and enhanced
entropy coding. The standard specification defines many
options hence the reference code is very complex. In this
work, we consider the baseline profile with a single slice
mode for simplicity[7].

III. Problem Definition

Fig. 3 shows the skeleton of the H.264 reference code.

main()

encode _one_frame()

frame_picture()

 encode_one_macroblock(){

Mode_Decision_for_Intra4x4Macroblock()

 intrapred _luma_16x16()

 }

 encode_one_slice(){

 start_macroblock()
encode_one_macroblock()

 write_one_macroblock ()
 terminate_macroblock()

 }

code_a_picture()

Mode_Decision_for_8x8IntraBlocks ()

Mode_Decision_for_4x4IntraBlocks (){

 intrapred _luma()

dct_luma()

 }

 DCT
 Quantization
 CofACGen
 Dequantization
 IDCT

Fig. 3. Skeleton of H.264 reference code

As apparent from the Fig. 3 shown, the function call depth
of the reference code is very deep and the key functions
reside close to the bottom in the call graph. They should be
elevated up to the top if they are to be defined as function
blocks in the dataflow specification. While not shown in the
Fig. 3, numerous global variables are defined and accessed

in various places. Therefore, it is not easy to grasp the data
flow dependency between functions because data is coupled
very tightly.

On the contrary, Fig. 4 illustrates the code structure of the
synthesized code. So in the first phase of the proposed
conversion procedure we transform the reference code to
this code structure. The proposed code transformation
consists of three steps that are applied repeatedly until no
more transformation is needed. They are “Function
restructuring”, “Variable classification”, and “Data sample
rate decision” as shown in Fig. 5.

 main(){

 ReadOneFrame ()

 for(99){

 generate _mb()
 ...
 intrapred _luma_16x16()
 for (16){
 intra 4_prediction ()
 Intra 4PredNSel ()
 Intra 4Dct4x4()
 Intra 4Quant()
 Intra 4cofACGen()
 Intra 4DeQ4x4()
 Intra 4Idct4x4()
 Intra 4PreReBlockGen ()
 Intra 4ReBlockGen()
 }
 inter ()

 }

dct_luma()

Fig. 4. Transformed code skeleton

Function restructuring

Data sample rate decision

Variable classification

Fig. 5. Code transformation overview

In the Function-restructuring step, basic function blocks
are identified and moved up to the top level in the call graph.
In the Variable-classification step, the scope of variables are
classified and analyzed to remove the global variables as
much as possible. After this step, the redundant dependency
between function blocks are removed so that the total
ordering of function blocks is converted to partial ordering
between function blocks. In the Data-sample-rate-decision
step, we determine the sample rates of all function blocks.
We use fractional rates as much as possible to reduce the

memory requirements in the synthesized code. The process
of transforming the reference code is repeated until the code
structure of Fig. 4 is obtained.

IV. Code Transformation Techniques

In this section, we describe in detail the code
transformation steps overviewed in the previous section. We
also explain how the proposed technique is applied to the
H.264 encoder example.

A. Function Restructuring
In this step we define 4 kinds of transformation. They are

flattening, splitting, merging, and duplication, as
demonstrated in Fig. 6.

A A

C

B B2B1 C

(a)

A

ECA D

A

ECA DDDCDBDA

A

EDCB

GF

A

EB H

A

EDCB

GF

A

EDCB

GF H

(d)

(c)

(b)

Fig. 6. Function restructuring transformations: (a)
flattening, (b) splitting, (c) merging, (d) duplication.

Fig. 6(a) shows that flattening technique can be used to
move a function up to one level higher. The caller function
may need to be split into two parts that is called before and
after the callee. In Fig. 3, the two functions intrapred_luma()
and dct_luma() are called from inside
Mode_decision_for_4x4IntraBlocks(). These two functions
were first moved to same level as intrapred_luma_16x16 as

shown in Fig. 4. Note that the function names of Fig. 4 are
renamed to have a prefix, “intra4”, for better readability.

Fig. 6(b) shows the case where a single function is split
into multiple functions. The 5 different functionalities are
included in function dct_luma(). The functionalities are dct,
quantization, cofACGen, dequantization, and idct. So, as can
be seen in Fig. 4, the dct_luma() is split and replaced with
five functions.

Fig. 6(c) shows the opposite case where multiple
functions are merged into a single function. When the call
dependency is tightly coupled or data dependency between
functions is tightly coupled, it is impossible to divide the
functions into separate function blocks without re-
programming. In this case, the tightly-coupled functions are
merged into a single function to preserve the functionality of
the code. In the H.264 encoder example, the functions for
inter-prediction are tightly coupled so that we merge them
into a single function block, called inter() in Fig. 4

Lastly, Fig. 6(d) shows the case where functions are
duplicated. If the function F uses no shared variable or static
variable inside, the function it can be duplicated without
side-effect. Otherwise, two caller functions C and D should
be merged by the merging transformation. When a function
is duplicated, it should be renamed to avoid naming conflict.
While function duplication has a drawback of increased code
size, it increases the modularity and reusability of the
function block.

B. Variable Classification
Variable classification is the most critical step to isolate

the function blocks that are communicated with other
function blocks only via port variables in dataflow
specification. In the reference code, functions are tightly
coupled with shared variables, so they are closely inter-
dependent. The purpose of this step is to identify the true
dependency between the functions by classifying the global
and static variables.

Variable
Non-constant variable

 Data-path
 Block state
 Block local

Constant variable
 Block parameters

Fig. 7. Variable classification

As shown in Fig. 7, variables are classified into non-
constant variables and constant variables. Non-constant
variables, updated at run-time, create the dependency
between functions. The non-constant variables are further
classified into data-path, block state, and block local
variables. They can be classified using the life time chart as
illustrated in Fig. 8. The life time of a variable is defined as
a set of durations what starts with a write operation and ends
with the last read operation. Integer variable, int a, in Fig. 8

has multiple life durations since it is reused several times.

 Non-constant variable
 (global or static variable)

 int a

 int b

 int c

Block A Block B

W W

W

W

R R

R

R

Fig. 8. Life time chart of non-constant variables

A data-path variable is a variable that is used as an
interface between function blocks, especially at the top level,
i.e. inside the main function. Integer variable int b in Fig. 8
is an example of a data-path variable. The life time of
variable b starts at block A and ends at block B. A data path
variable is translated to a port variable in the dataflow model.

Integer variable int c in Fig. 8 is not only read but also
written during the execution of block A. The written value
affects the next execution of block A. Therefore the variable
c is classified as a block state variable and translated into a
block state in the dataflow model.

Integer variable int a is a global variable that can be
accessed from both block A and block B. But the value of int
a inside one function does not affect the outcome of the
other function. Hence, variable a can be classified as block
local.

The constant variables are the variable whose value is not
changed inside the main loop. They are translated into block
parameters or global parameters without the risk of side-
effect.

 int m5[4]

 int m7[4][4]

 int img_Number

PredNSel DCT

W

W

W

W

R

R

R

R

Quant

ReadOne
Frame

W R

 Fig. 9. Examples of variable classification

 Fig. 9 shows the life time of some variables used in
function intra4x4(). Variable m5[4], which is shared
between DCT and Quant functions, is classified to a block
local variable. Variable m7[4][4] is a global variable used
for sending the value written from the previous function to
the next function – from PredNSel to DCT, and from DCT
to Quant. Therefore, the variable is classified as a data-path
variable. Lastly, variable img_Number is classified as a
block state variable since the value modified at the previous

instance of the ReadOneFrame function affects the next
instance of the function.

C. Data Sample Rate Decision
After function restructuring and data classification is

completed, the sample rates of each function block are
determined by examining how many data samples are
produced and consumed at each port per function invocation.
It also determines the execution frequency of function
blocks. Fig. 10(a) shows a part of the translated code ,
which highlights the imgY_org data-port variable that
connects two function blocks. By analyzing the data
producing and consumption rates of two blocks, it is
identified that one invocation of the ReadOneFrame block
triggers the intra4_prediction block 16x99 times. Then we
have three possible assignments of sample rates between two
blocks. Note that a sample rate can be a fractional number.

 main(){

 ReadOneFrame (p_in, img_number, 176,144, imgY_org, imgUV_org);

 for(99){
 ...
 for (16){
 ...
 intra 4_prediction (imgY_org, pred_data, output, org_block, Mb_nr,
 imgY _mb_phase, pred_data_Y);
 }

 }

(a)

ReadOneFrame

ReadOneFrame

ReadOneFrame

intra4_prediction

intra4_prediction

intra4_prediction

1

1

1/16

1/(99*16)

99*16

99

(b)

Frame

4x4
Block

16x16
Macroblock

Fig. 10. Data sample rate decision between the
ReadOneFrame and intra4_prediction blocks.

The first assignment in Fig. 10(b) indicates that the
entire frame is passed from the ReadOneFrame() function to
intra4_prediction(). In this case, the port buffer becomes
imgY_org[1] which is a frame-type buffer whose size is
176x144 in the QCIF format. The data sample rate in this
case is set to 1:1/(99x16). In the second assignment, the
frame is broken down and passed in the unit of macroblock.
In this case, the port buffer becomes imgY_mb[99] which is
a macroblock array. In this case, the data sample rate
becomes 99:1/16. Lastly, in the third example, the frame is
passed in unit of 4x4 blocks. In this case, the buffer becomes
imgY_block[99*16] and the data sample rate becomes
99*16:1.

Among three possible assignments we selected the second
assignment to make a two-level nested loop as shown in
Fig. 10(a). The corresponding dataflow subgraph of Intra4x4

prediction subsystem is shown in Fig. 11

pred_data
imgY_mb
b8
b4
pre_best_mode

output
mprr
cost

currMB_Intra_Pred_Modes_out

output
input

imgY_mb
s_block
m_pred_data

pred_data
org_block

b8
b4

output1
output2

input
img_type

output1
output2

input
b8
b4

input
input2

outputinputoutput

Mprr
b4
b8

input

output

output

input
b8
b4

Intra4

Intra4PredNSel

Intra4Dct
Intra4Quant

Intra4cofACGen

Intra4DeQIntra4Idct

Intra4PreReBlockGen
output

Intra4ReBlockGen

1/16

1/16
1/16

1/16

1/161/16

1/16

1/16

Fig. 11. Dataflow subgraph for Intra4x4 prediction
subsystem

V. Clustering and Scheduling

After the conversion to a dataflow specification is
completed, we have to find a valid schedule that generates
the code structure as expected. Since obtaining an optimal
schedule is beyond the scope of this paper, we outline how
the valid schedule is constructed from the given dataflow
specification. We make the clusters of function blocks that
have the same sampling rates on the connected arc. Then the
function blocks associated with intra4x4 prediction are
merged together into a cluster. The Intra4x4 subsystem of
Fig. 11 becomes a single cluster in the clustered graph. The
cluster constructs a loop body in the final code as illustrated
in Fig. 4.

The next step is the looping step of the clusters. If
Intra4x4 subsystem is looped 16 times, the sample rates of
this looped cluster become the same as the Intra16x16
subsystem. Then, we apply the merging step again to make it
a hierarchically clustered graph. The second level loop of
Fig. 4 is achieved in this way. We repeat the merging and
looping steps until only one cluster remains at the top, which
defines the main schedule body.

VI. Experimental Result

As a case study we convert the H.264 reference C code
into an extended SDF model using our HW/SW codesign
environment [8] that supports automatic C code generation
from dataflow specification. Fig. 12 shows the schematic
captured from the environment.

We first cut down the reference C code (JM original) to a
light-weight version of the reference code, called Modified
JM. The Modified JM code keeps the codes only for simple
profile with single-slice mode. We then converts the
Modified JM code to the dataflow graph applying the
proposed methodology. From the dataflow specification, we
obtain the synthesized code (Synthesized JM) from the
design environment. We have compared these three codes in
respect of code size, data size, and encoding time. All

experiments are done on a Linux platform (kernel version
2.6.8), and each C code is compiled using GNU gcc version
3.3.5.

Fig. 12. SDF modeled H.264 encoder in PeaCE [8]

Table 1. Result on three different H.264 encoder codes

 JM original Modified JM Synthesized JM
I Frame 0.04 sec 0.04 sec 0.10 sec Encoding

time per
Frame P Frame 0.70 sec 0.14 sec 0.31 sec

Code Size 369275 bytes 115863 bytes 148442 bytes
Data Size 7793536 bytes 2747900 bytes 2051908 bytes

Table 1 shows the experimental results on the three
different H.264 encoder codes. As shown in the Table 1, the
JM original code shows poor performance, and requires
large code and data size, because it implements all options.
So it is fair to compare the Modified JM code and the
synthesized JM code. In this comparison, we do not perform
any optimization on the dataflow specification.

As for the encoding performance, the Modified JM code
shows about twice better performance than the synthesized
code. This performance discrepancy is mainly due to data
copying overhead between function blocks, which is the
main target of optimization. In the current definition of
function blocks, it includes several functions inside. Since
these internal functions maintain the same variable sharing
mechanism of the reference code, we explicitly copy the port
buffers to the shared variables or vice versa. This copy
overhead does not exist in the Modified JM code. It also
causes code size expansion. It remains as a future work to
remove this overhead since performance optimization is not
a key objective of this paper.

On the other hand, the synthesized code shows better
results than the Modified JM code in terms of the data size.
This is because the Modified JM code allocates more frame
–size variables than necessary. And the synthesized code
allocates only a portion of frame for macro-block delivery
between blocks and shares it through iteration, while the
Modified JM code uses a frame-size variable. If we apply
the buffer sharing optimization on the dataflow specification,
the gap will be wider.

It took two man-months to transform the reference code

to the code structure as shown in Fig. 4. It is performed by
an expert in dataflow modeling, but he has only the basic
knowledge on the encoding algorithm. So, two man-month
includes the learning time of the H.264 encoder algorithm. It
took another two man-month to draw a dataflow graph from
the transformed code, which includes function block
definition and code synthesis. It is performed by two
graduate students who have no experience in this task.

VII. Conclusion
In this paper, we presented a systematic procedure to

convert a sequential C code to a dataflow specification. The
key technique is to transform the C code into a well-
structured form for dataflow model. We experimented with
an H.264 encoding algorithm to demonstrate how the
proposed methodology can be applied to a complicated real-
life multimedia application. The proposed technique
includes function restructuring, variable classification, and
data sample rate decision. These transformation techniques
are applied in turn and repeatedly until the well-structured
form is obtained.

We successfully obtain the dataflow specification and
compared the synthesized code from dataflow specification
with the reference code in terms of encoding time, code size,
and data size. While the automatically synthesized code
shows worse performance and code size, it shows better
result on the data size. Optimization of the dataflow
specification is left as a future work.

ACKNOWLEDGEMENTS
This work was supported by National Research Laboratory
Program(number M1-0104-00-0015), Brain Korea 21,
SystemIC 2010 Project and IT Leading R&D Project funded
by Korean MIC. ICT and ISRC at Seoul National University
provided research facilities for this study.

References
[1] K. Jerry, “Model-Based Design and Beyond: Solution for
Today’s Embedded Systems Requirements,” American
Technology International.
[2] E. A. Lee, D. G.. Messerschmitt, “Synchronous Data
Flow”, A Proceeding of the IEEE, Vol. 75, NO. 9, September
1987.
[3] S. S. Bhattacharyya, P. K. Murthy, E. A. Lee, “Synthesis
of Embedded Software from Synchronous Dataflow
Specification,” Journal of VLSI Signal Processing 21, 151-
166(1999).
[4] H. Oh, S. Ha, “Fractional Rate Dataflow Model for
Efficient Code Synthesis.”
[5] S. Kwon, H. Jung, S. Ha, “H.264 Decoder Algorithm
Specification and Simulation in Simulink and PeaCE.”
[6] H.264/AVC Software Coordination
http://bs.hhi.de/~suehring/tml/
[7] Iain E. G.. Richardson, H.264 and MPEG-4 Video
Compression, Willy, 2003
[8] PeaCE(Ptolemy extension as Codesign Environment)
project homepage http://peace.snu.ac.kr/research/peace/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

