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Abstract – Model-based design is widely accepted in 
developing complex embedded system under intense 
time-to-market pressure. While it promises improved 
design productivity, the main bottleneck lies not in the 
design methodology but in constructing the initial 
algorithm representation in the specified model. It is 
particularly true if a complicated multimedia application 
is given in the form of a sequential reference C code. In 
this paper we propose a systematic procedure for 
converting a sequential C code to a dataflow specification 
that has been widely used in many design environments 
for DSP systems. The proposed technique is successfully 
applied to H.264 encoder algorithm as a case study.

I. Introduction 

In HW/SW co-design methodology of embedded systems, 
system level specification enables us to model and analyze 
the system behavior in high level of abstraction to cope with 
the ever-increasing complexity of system design under 
relentless time-to-market pressure. Especially model-based 
specification is widely accepted because mapping the system 
behavior to processing components can be easily performed. 
In a model-based approach, the system algorithm is 
specified using a block diagram or a composition of function 
blocks. Once functional blocks are built and completely 
tested, they can be reused in many other systems thereby 
saving time and costs compared to traditional design 
approaches [1].  

In this paper we use an extended synchronous dataflow 
(SDF[2]) model for algorithm specification. In SDF model, a 
node, or a block, represents a coarse grain function block 
whose body is described in C language. An arc represents a 
channel that carries streams of data samples from the source 
node to the destination node. The number of samples 
produced (or consumed) per block execution is called the 
output (or the input) sample rate of the block. In case the 
number of samples consumed or produced on each arc is 
statically determined and can be any integer, the graph is 
called a synchronous dataflow graph (SDF). A block is 
executable only after it receives the specified number of 
samples at all input ports. These restrictions make the model 
formal and data-driven. The SDF model has been widely 
used in many system-level design environments especially 
for digital signal processing systems [2][3]. 

The inherent difficulty of model-based approach lies in 
constructing the initial algorithm representation in the 

specified model, dataflow model in this paper. In most cases 
the algorithm description is given in the form of a reference 
C code. To get the benefits of model-based design approach, 
we have to convert the sequential reference code somehow 
to a dataflow specification. It is not a simple task for a 
system designer who may not know the algorithm details in 
particular. For instance, the reference C code of H.264 
encoder algorithm [6] is about 32000 lines long and is 
scattered into 55 files.

In this paper, we propose a systematic procedure for 
converting a sequential C code to a dataflow specification. 
The procedure has been established after numerous hands-on 
experiences and successfully applied to H.264 encoder 
algorithm. It consists of three phases. First, we transform the 
reference code into the same code structure as would be 
automatically generated from a dataflow specification. In the 
second phase we identify the functional blocks from the 
transformed code and analyze their dependencies. At last we 
draw a dataflow graph, synthesize the sequential C code 
from the dataflow specification, and check the correctness 
and the performance of the code by comparing it with the 
reference code. 

The rest of the paper is organized as follows. In Section 2, 
some background information is reviewed on the dataflow 
specification and the H.264 encoder algorithm. Section 3 
presents the problem definition and the overview of the 
proposed solution. The detailed description of the procedure 
is explained in Section 4 with the H.264 encoder case study. 
Clustering and scheduling of the data flow specification are 
explained in section 5. The experimental results are 
presented in Section 6. Section 7 concludes the paper. 

II. Background 

A. Software Synthesis from Dataflow Model 
Fig. 1 depicts the process of software code synthesis from 

an SDF specification [3]. A simple SDF graph in Fig. 1(a) 
contains three nodes, labeled A, B, and C. Each arc is 
annotated with the number of samples consumed or 
produced per node execution.

To generate a code from the given SDF graph, the order 
of block executions is determined at compile time, which is 
called "scheduling". Since a dataflow graph specifies only 
partial orders between blocks, there are usually more than 
one valid schedule. Fig. 1(b) shows a valid schedule. The 
parenthesized terms in schedule are used to express 
repetitive invocation patterns. These are called schedule 



loops. In Fig. 1(b), the term 2(B(2C)) represents the 
invocation sequence BCCBCC. Each schedule loop is 
implemented as a loop structure in the synthesized code.  

A code template according to the schedule is shown in Fig. 
1(c). The function body of each function block is placed in 
the scheduled position. The code structure of the synthesized 
code from dataflow specification has the following 
characteristics. 

- It may have nested loops. 
- All function blocks appear in the main loop. A 

function block may not be called in another function 
block.  

- State variables of function blocks may not be shared. 
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(a)

Valid Schedule
A(2(B(2C)))

      Synthesized Code

       code block for A
       for (i=0; i<2; i++){
          code block for B
          for (j=0; j<2; j++){
             code block for C
          }
       }

(c)

(b)

Fig. 1. An example of synthesized code from SDF 

Fractional Rate Dataflow (FRDF) is an extension to the 
dataflow model in which fractional number of samples can 
be produced and consumed [4]. In the FRDF model, a 
constituent data type is considered as a fraction of the 
composite data type. For instance, a 16x16 macro-block is 
considered as 1/99 of a QCIF frame (176x144). Existing 
integer rate dataflow models can be easily extended to 
incorporate the fractional rates without loosing analytical 
properties. But it is reported that the FRDF model can 
reduce the buffer memory requirement in the synthesized 
code significantly, up to 70%, for some multimedia 
application. 

B. H.264 Encoder Algorithm 
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Fig. 2. H.264 encoder (baseline profile) block diagram 

H.264 is a video coding standard (or Recommendation) 
made by the Video Coding Experts Group (VCEG) of the 
International Telecommunication Union 
Telecommunication Standardization Sector (ITU-T)[6]. 
While H.264 achieves bit rate saving ratio up to 50% 
compared to H.263+ and offers consistently good video 
quality at most bit rates, algorithm complexity grows 
significantly. More efficient compression and high quality 
video are attributed to the following features: Enhanced 
motion compensation, small blocks (4x4) for transform 
coding, improved in-loop deblocking filter, and enhanced 
entropy coding. The standard specification defines many 
options hence the reference code is very complex. In this 
work, we consider the baseline profile with a single slice 
mode for simplicity[7]. 

III. Problem Definition 

Fig. 3 shows the skeleton of the H.264 reference code.  

main()

encode _one_frame()

frame_picture()

  encode_one_macroblock(){

Mode_Decision_for_Intra4x4Macroblock()

     intrapred _luma_16x16()

  }

 encode_one_slice(){

      start_macroblock()
encode_one_macroblock()

      write_one_macroblock ()
      terminate_macroblock()

   }

code_a_picture()

Mode_Decision_for_8x8IntraBlocks ()

Mode_Decision_for_4x4IntraBlocks (){

    intrapred _luma()

dct_luma()

 }

   DCT
   Quantization
   CofACGen
   Dequantization
   IDCT

Fig. 3. Skeleton of H.264 reference code 

As apparent from the Fig. 3 shown, the function call depth 
of the reference code is very deep and the key functions 
reside close to the bottom in the call graph. They should be 
elevated up to the top if they are to be defined as function 
blocks in the dataflow specification. While not shown in the 
Fig. 3, numerous global variables are defined and accessed 



in various places. Therefore, it is not easy to grasp the data 
flow dependency between functions because data is coupled 
very tightly.  

On the contrary, Fig. 4 illustrates the code structure of the 
synthesized code. So in the first phase of the proposed 
conversion procedure we transform the reference code to 
this code structure. The proposed code transformation 
consists of three steps that are applied repeatedly until no 
more transformation is needed. They are “Function 
restructuring”, “Variable classification”, and “Data sample 
rate decision” as shown in Fig. 5. 

 main(){

    ReadOneFrame ()

    for(99){

       generate _mb()
       ...
       intrapred _luma_16x16()
       for (16){
          intra 4_prediction ()
          Intra 4PredNSel ()
          Intra 4Dct4x4()
          Intra 4Quant()
          Intra 4cofACGen()
          Intra 4DeQ4x4()
          Intra 4Idct4x4()
          Intra 4PreReBlockGen ()
          Intra 4ReBlockGen()
       }
       inter ()

 } 

dct_luma()

Fig. 4. Transformed code skeleton 

Function restructuring

Data sample rate decision

Variable classification

Fig. 5. Code transformation overview 

In the Function-restructuring step, basic function blocks 
are identified and moved up to the top level in the call graph. 
In the Variable-classification step, the scope of variables are 
classified and analyzed to remove the global variables as 
much as possible. After this step, the redundant dependency 
between function blocks are removed so that the total 
ordering of function blocks is converted to partial ordering 
between function blocks. In the Data-sample-rate-decision 
step, we determine the sample rates of all function blocks. 
We use fractional rates as much as possible to reduce the 

memory requirements in the synthesized code. The process 
of transforming the reference code is repeated until the code 
structure of Fig. 4 is obtained. 

IV. Code Transformation Techniques 

In this section, we describe in detail the code 
transformation steps overviewed in the previous section. We 
also explain how the proposed technique is applied to the 
H.264 encoder example.  

A. Function Restructuring 
In this step we define 4 kinds of transformation. They are 

flattening, splitting, merging, and duplication, as 
demonstrated in Fig. 6.  
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Fig. 6. Function restructuring transformations: (a) 
flattening, (b) splitting, (c) merging, (d) duplication. 

Fig. 6(a) shows that flattening technique can be used to 
move a function up to one level higher. The caller function 
may need to be split into two parts that is called before and 
after the callee. In Fig. 3, the two functions intrapred_luma() 
and  dct_luma() are called from inside 
Mode_decision_for_4x4IntraBlocks(). These two functions 
were first moved to same level as intrapred_luma_16x16 as 



shown in Fig. 4. Note that the function names of Fig. 4 are 
renamed to have a prefix, “intra4”, for better readability.  

Fig. 6(b) shows the case where a single function is split 
into multiple functions. The 5 different functionalities are 
included in function dct_luma(). The functionalities are dct, 
quantization, cofACGen, dequantization, and idct. So, as can 
be seen in Fig. 4, the dct_luma() is split and replaced with 
five functions.  

Fig. 6(c) shows the opposite case where multiple 
functions are merged into a single function. When the call 
dependency is tightly coupled or data dependency between 
functions is tightly coupled, it is impossible to divide the 
functions into separate function blocks without re-
programming. In this case, the tightly-coupled functions are 
merged into a single function to preserve the functionality of 
the code. In the H.264 encoder example, the functions for 
inter-prediction are tightly coupled so that we merge them 
into a single function block, called inter() in Fig. 4 

Lastly, Fig. 6(d) shows the case where functions are 
duplicated. If the function F uses no shared variable or static 
variable inside, the function it can be duplicated without 
side-effect. Otherwise, two caller functions C and D should 
be merged by the merging transformation. When a function 
is duplicated, it should be renamed to avoid naming conflict. 
While function duplication has a drawback of increased code 
size, it increases the modularity and reusability of the 
function block.  

B. Variable Classification 
Variable classification is the most critical step to isolate 

the function blocks that are communicated with other 
function blocks only via port variables in dataflow 
specification. In the reference code, functions are tightly 
coupled with shared variables, so they are closely inter-
dependent. The purpose of this step is to identify the true 
dependency between the functions by classifying the global 
and static variables.  

Variable
Non-constant variable

 Data-path
 Block state
 Block local

Constant variable
 Block parameters

Fig. 7. Variable classification 

As shown in Fig. 7, variables are classified into non-
constant variables and constant variables. Non-constant 
variables, updated at run-time, create the dependency 
between functions. The non-constant variables are further 
classified into data-path, block state, and block local
variables. They can be classified using the life time chart as 
illustrated in Fig. 8. The life time of a variable is defined as 
a set of durations what starts with a write operation and ends 
with the last read operation. Integer variable, int a, in Fig. 8 

has multiple life durations since it is reused several times.  

 Non-constant variable
 (global or static variable )

  int a 

  int b

  int c

Block A Block B

W W

W

W

R R

R

R

Fig. 8. Life time chart of non-constant variables 

A data-path variable is a variable that is used as an 
interface between function blocks, especially at the top level, 
i.e. inside the main function. Integer variable int b in Fig. 8 
is an example of a data-path variable. The life time of 
variable b starts at block A and ends at block B. A data path 
variable is translated to a port variable in the dataflow model.  

Integer variable int c in Fig. 8 is not only read but also 
written during the execution of block A. The written value 
affects the next execution of block A. Therefore the variable 
c is classified as a block state variable and translated into a 
block state in the dataflow model.  

Integer variable int a is a global variable that can be 
accessed from both block A and block B. But the value of int 
a inside one function does not affect the outcome of the 
other function. Hence, variable a can be classified as block 
local. 

The constant variables are the variable whose value is not 
changed inside the main loop. They are translated into block 
parameters or global parameters without the risk of side-
effect.  

 int m5[4] 

 int m7[4][4]

 int img_Number

PredNSel DCT

W

W

W

W

R

R

R

R

Quant

ReadOne
Frame

W R

   Fig. 9. Examples of variable classification  

   Fig. 9 shows the life time of some variables used in 
function intra4x4(). Variable m5[4], which is shared 
between DCT and Quant functions, is classified to a block 
local variable. Variable m7[4][4] is a global variable used 
for sending the value written from the previous function to 
the next function – from PredNSel to DCT, and from DCT 
to Quant. Therefore, the variable is classified as a data-path 
variable. Lastly, variable img_Number is classified as a 
block state variable since the value modified at the previous 



instance of the ReadOneFrame function affects the next 
instance of the function. 

C. Data Sample Rate Decision 
After function restructuring and data classification is 

completed, the sample rates of each function block are 
determined by examining how many data samples are 
produced and consumed at each port per function invocation. 
It also determines the execution frequency of function 
blocks.  Fig. 10(a) shows a part of the translated code , 
which highlights the imgY_org data-port variable that 
connects two function blocks. By analyzing the data 
producing and consumption rates of two blocks, it is 
identified that one invocation of the ReadOneFrame block 
triggers the intra4_prediction block 16x99 times. Then we 
have three possible assignments of sample rates between two 
blocks. Note that a sample rate can be a fractional number. 

 main(){

    ReadOneFrame (p_in, img_number, 176,144, imgY_org, imgUV_org);

    for(99){
       ...
       for (16){
          ...
          intra 4_prediction ( imgY_org, pred_data, output, org_block, Mb_nr, 
                                       imgY _mb_phase, pred_data_Y);
       }

 } 

(a)

ReadOneFrame

ReadOneFrame

ReadOneFrame

intra4_prediction

intra4_prediction

intra4_prediction

1

1

1/16

1/(99*16)

99*16

99

(b)

Frame

4x4
Block

16x16 
Macroblock

Fig. 10. Data sample rate decision between the 
ReadOneFrame and intra4_prediction blocks. 

The first assignment in  Fig. 10(b) indicates that the 
entire frame is passed from the ReadOneFrame() function to 
intra4_prediction(). In this case, the port buffer becomes 
imgY_org[1] which is a frame-type buffer whose size is 
176x144 in the QCIF format. The data sample rate in this 
case is set to 1:1/(99x16). In the second assignment, the 
frame is broken down and passed in the unit of macroblock. 
In this case, the port buffer becomes imgY_mb[99] which is 
a macroblock array. In this case, the data sample rate 
becomes 99:1/16. Lastly, in the third example, the frame is 
passed in unit of 4x4 blocks. In this case, the buffer becomes 
imgY_block[99*16] and the data sample rate becomes 
99*16:1.  

Among three possible assignments we selected the second 
assignment to make a two-level nested loop as shown in  
Fig. 10(a). The corresponding dataflow subgraph of Intra4x4 

prediction subsystem is shown in Fig. 11 
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Fig. 11. Dataflow subgraph for Intra4x4 prediction 
subsystem 

V. Clustering and Scheduling 

After the conversion to a dataflow specification is 
completed, we have to find a valid schedule that generates 
the code structure as expected. Since obtaining an optimal 
schedule is beyond the scope of this paper, we outline how 
the valid schedule is constructed from the given dataflow 
specification. We make the clusters of function blocks that 
have the same sampling rates on the connected arc. Then the 
function blocks associated with intra4x4 prediction are 
merged together into a cluster. The Intra4x4 subsystem of 
Fig. 11 becomes a single cluster in the clustered graph. The 
cluster constructs a loop body in the final code as illustrated 
in Fig. 4. 

The next step is the looping step of the clusters. If 
Intra4x4 subsystem is looped 16 times, the sample rates of 
this looped cluster become the same as the Intra16x16 
subsystem. Then, we apply the merging step again to make it 
a hierarchically clustered graph. The second level loop of 
Fig. 4 is achieved in this way. We repeat the merging and 
looping steps until only one cluster remains at the top, which 
defines the main schedule body.  

VI. Experimental Result 

As a case study we convert the H.264 reference C code 
into an extended SDF model using our HW/SW codesign 
environment [8] that supports automatic C code generation 
from dataflow specification. Fig. 12 shows the schematic 
captured from the environment. 

We first cut down the reference C code (JM original) to a 
light-weight version of the reference code, called Modified 
JM. The Modified JM code keeps the codes only for simple 
profile with single-slice mode. We then converts the 
Modified JM code to the dataflow graph applying the 
proposed methodology. From the dataflow specification, we 
obtain the synthesized code (Synthesized JM) from the 
design environment. We have compared these three codes in 
respect of code size, data size, and encoding time. All 



experiments are done on a Linux platform (kernel version 
2.6.8), and each C code is compiled using GNU gcc version 
3.3.5. 

Fig. 12. SDF modeled H.264 encoder in PeaCE [8] 

Table 1. Result on three different H.264 encoder codes 

 JM original Modified JM Synthesized JM
I Frame 0.04 sec 0.04 sec 0.10 sec Encoding 

time per 
Frame P Frame 0.70 sec 0.14 sec 0.31 sec 

Code Size 369275 bytes 115863 bytes 148442 bytes 
Data Size 7793536 bytes 2747900 bytes 2051908 bytes 

Table 1 shows the experimental results on the three 
different H.264 encoder codes. As shown in the Table 1, the 
JM original code shows poor performance, and requires 
large code and data size, because it implements all options. 
So it is fair to compare the Modified JM code and the 
synthesized JM code. In this comparison, we do not perform 
any optimization on the dataflow specification.  

As for the encoding performance, the Modified JM code 
shows about twice better performance than the synthesized 
code. This performance discrepancy is mainly due to data 
copying overhead between function blocks, which is the 
main target of optimization. In the current definition of 
function blocks, it includes several functions inside. Since 
these internal functions maintain the same variable sharing 
mechanism of the reference code, we explicitly copy the port 
buffers to the shared variables or vice versa. This copy 
overhead does not exist in the Modified JM code. It also 
causes code size expansion. It remains as a future work to 
remove this overhead since performance optimization is not 
a key objective of this paper.  

On the other hand, the synthesized code shows better 
results than the Modified JM code in terms of the data size. 
This is because the Modified JM code allocates more frame 
–size variables than necessary. And the synthesized code 
allocates only a portion of frame for macro-block delivery 
between blocks and shares it through iteration, while the 
Modified JM code uses a frame-size variable. If we apply 
the buffer sharing optimization on the dataflow specification, 
the gap will be wider.  

It took two man-months to transform the reference code 

to the code structure as shown in Fig. 4. It is performed by 
an expert in dataflow modeling, but he has only the basic 
knowledge on the encoding algorithm. So, two man-month 
includes the learning time of the H.264 encoder algorithm. It 
took another two man-month to draw a dataflow graph from 
the transformed code, which includes function block 
definition and code synthesis. It is performed by two 
graduate students who have no experience in this task.   

VII. Conclusion 
In this paper, we presented a systematic procedure to 

convert a sequential C code to a dataflow specification. The 
key technique is to transform the C code into a well-
structured form for dataflow model. We experimented with 
an H.264 encoding algorithm to demonstrate how the 
proposed methodology can be applied to a complicated real-
life multimedia application. The proposed technique 
includes function restructuring, variable classification, and 
data sample rate decision. These transformation techniques 
are applied in turn and repeatedly until the well-structured 
form is obtained.  

We successfully obtain the dataflow specification and 
compared the synthesized code from dataflow specification 
with the reference code in terms of encoding time, code size, 
and data size. While the automatically synthesized code 
shows worse performance and code size, it shows better 
result on the data size. Optimization of the dataflow 
specification is left as a future work.  
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