
Object Duplication for Improving Reliability

G. Chen, G. Chen, M. Kandemir, N. Vijaykrishnan, M. J. Irwin

Department of Computer Science and Engineering
The Pennsylvania State University
University Park, PA 16802, USA

e-mail: {guilchen,gchen,kandemir,vijay,mji}@cse.psu.edu

Abstract— Soft errors are becoming a common problem in
current systems due to the scaling of technology that results in
the use of smaller devices, lower voltages, and power-saving tech-
niques. In this work, we focus on soft errors that can occur in
the objects created in heap memory, and investigate techniques
for enhancing the immunity to soft errors through various object
duplication schemes. The idea is to access the duplicate object
when the checksum associated with the primary object indicates
an error. We implemented several duplication based schemes and
conducted extensive experiments. Our results clearly show that
this spectrum of schemes enable us to balance the tradeoffs be-
tween error rate and heap space consumption.

I. INTRODUCTION

A major reliability concern due to the increasing size of
embedded memories is soft errors. Soft errors occur when a
memory bit flips its value due to external radiation effects, thus
corrupting the stored data. The need for reliable memory has
become even more acute due to the use of power-savings tech-
niques such as voltage scaling in current embedded systems.

A common approach to handling these memory errors is to
use error detection and correction hardware [14, 13]. However,
embedded systems are usually sold in huge quantities and thus
tend to be more sensitive to the per device cost as compared
to their high-performance counterparts. Consequently, a hard-
ware approach, which increases the overall cost of the system,
may not be attractive for low-cost embedded systems. Fur-
ther, an embedded system may run a set of applications and not
all of them may require fault-tolerance. Employing expensive
hardware for just a few applications that need fault-tolerance
may not be the best economic option. In comparison, a soft-
ware scheme can take application specific requirements into
account and tune the policy, considering the limited resources
in the embedded device.

The focus of this work is on handling soft errors in object-
oriented frameworks. We select an embedded Java Virtual Ma-
chine (JVM) as our target object-oriented environment, and in-
ject errors into the heap memory that stores the objects in order
to investigate techniques for enhancing immunity to soft errors
through various object duplication schemes. While a lot of
work has been done on the problem of reliable computation at
the circuit, architectural, operating system, and application lev-
els [1, 2, 10, 11, 15, 17, 18], our work focuses explicitly on the
integrity of objects, and is complementary to model checking
and verification based work [7, 12].

The rest of this paper is organized as follows. Sec-
tion II discusses our error injection model. Section III

presents our object duplication schemes, including full dupli-
cation, compression-based duplication, and selective duplica-
tion schemes. Section IV presents an experimental evaluation
of these schemes. Section V concludes the paper with a sum-
mary of our major observations.

II. THE ERROR INJECTION MODEL

We use Sun’s KVM [5] to implement the object duplication-
based error protection techniques proposed in this work. KVM
is a compact, portable Java Virtual Machine specifically de-
signed for small, resource-constrained devices. KVM uses a
handle-free mark-sweep-compact collector. An error manage-
ment module is added into KVM to store the error information
for each object. For every bytecode executed, KVM invokes
our error injection function to inject errors into the object in-
stances in the heap. The error injection function scans the
heap; every bit in the object instances has a fixed probability of
incurring an error. When an object is accessed, we check the
error management module to determine whether the accessed
part has any error(s) in it. The default value for the error in-
jection probability for our base experiments is 10−10. While
we perform experiments with different error injection rates, the
rates used in our experiments are generally higher than those
with the current technology. The main reason for this is that
errors are more likely to happen only when an application ex-
ecutes for long durations of time or when it is executed re-
peatedly, and we need an accelerated testing environment. It
should be noted that accelerated testing is meaningful because
there are many embedded Java applications that need to be op-
erational without errors for long durations ranging from several
hours (e.g., cell phones) to months (e.g., sensors).

III. DUPLICATION SCHEMES

A. Motivation for Object Duplication

In this work, unless stated otherwise, we assume that each
object is protected using a “checksum-based scheme” (called
CHK). In this scheme, each object has a single checksum at-
tached to it. The checksum calculations are performed in a
similar fashion to that in [3]. Specifically, each object header
is extended with one additional word to store the precomputed
checksum. This checksum is checked upon a read request to a
field, and updated upon a write request.

The Java applications used in this study are given in Ta-
ble I. Calc, firstaid, jpeg, and mvideo are taken from the

TABLE I
THE JAVA BENCHMARK CODES AND THEIR CHARACTERISTICS.

Benchmark Description Execution Errors Injected/
Cycles Consumed/Detected

auction ticket auction 467.4 75 / 27 / 25
calc calculator 338.5 71 / 14 / 14

firstaid firstaid info 618.5 423 / 127 / 126
jpeg jpeg viewer 1,052.9 1314 / 329 / 313

image photo album 1,157.1 430 / 302 / 271
manyballs bouncing balls 475.2 53 / 13 / 11

mvideo video player 2,732.6 63 / 44 / 40
pushpuzzle puzzle game 479.7 72 / 14 / 13

0%
20%
40%
60%
80%

100%

au
cti

on ca
lc

firs
tai

d
im

ag
e

jpe
g

man
yb

all
s

mvid
eo

pu
sh

pu
zz

le

A
ve

ra
ge

 H
ea

p
O

cc
up

an
cy

Fig. 1. Average heap occupancy of our applications.

http://www.microjava.com site, and auction, image, many-
balls, and pushpuzzle come with the MIDP 1.0.3 reference im-
plementation [8]. The third column gives the execution cycles
(in millions) for the “base execution.” In this base execution
(denoted BASE in the rest of the paper), the objects are not pro-
tected. The last column shows statistics on the behavior of the
CHK scheme. It gives the total number of errors injected into
the memory , the number of errors that have been consumed
by the application, and the number of errors detected by CHK.
Note that many of the injected errors have not been consumed,
meaning that the memory location with the error has not been
accessed. We see that although CHK is successful in detecting
most of the consumed errors (it detects 93.1% of the errors on
the average) , it will not be able to correct any of them. One of
our objectives in this work is to correct as many of these errors
with as little performance overhead as possible.

We next look at the heap usage statistics of our applications.
Figure 1 shows the average heap space used by each applica-
tion over the time as a fraction of the peak heap space used
by that application. For example, the first bar indicates that,
on the average, the benchmark auction uses 65.2% of the peak
heap space it needs for its objects. One can see from these re-
sults that, across all applications, only 74.1% of the peak heap
usage is utilized on the average. The remaining heap space can
be used for some other purpose. Moreover, the actual max-
imum heap space allocated for the objects of the application
can even be larger than the peak space demanded by an appli-
cation. That is, in reality, we may have a larger unused heap
area that can be exploited for some other purpose.

B. Full Duplication

In this paper, we use this unused heap space for duplicating
objects. In this scheme (called DUPL), each time a new object
is created, we also create a duplicate object in the heap. Both
the primary object and duplicate are protected using check-
sums. When accessing an object, we first access the primary
object. If its checksum indicates no error, we continue with

execution as usual. On the other hand, if its checksum indi-
cates an error, we access the duplicate and check its checksum.
Note that, under realistic operating conditions, the chances that
the checksum of the duplicate also shows an error will be very
low. Therefore, we should be able to correct the error in the
primary copy most of the time. An important advantage of this
scheme is that as long as there is no error, we incur very small
performance penalty over CHK. Our performance overheads
are mainly due to creation of duplicate objects and updating
them on writes. And, when an error occurs, correcting it using
one more object access should be acceptable to most operating
environments.

The primary and the duplicate objects are allocated in the
primary area and duplicate area, respectively. The primary
area starts from the lowest address of the heap, and grows to-
ward the higher addresses. The duplicate area, on the other
hand, starts from the highest address, and grows toward the
lower addresses. When the boundaries of these two areas meet
with each other, a mark/compact garbage collector [9] is in-
voked. To compact the heap, the primary objects are slided
toward the lowest address, and the duplicate objects are slided
toward the highest address. The header of each primary object
contains a pointer to its duplicate, which is called the forward
pointer. Similarly, each duplicate object contains a pointer to
its primary object, which is referred to as the backward pointer.
During the mark-compact garbage collection, if a primary ob-
ject is moved, the backward pointer in its duplicate should be
updated. Similarly, if a duplicate object is moved, we need
to update the forward pointer in its primary copy. Forward-
backward pointer pairs allow the primary and duplicate ob-
jects to find each other. Further, this mechanism enables us
detect or repair the errors in the forward or backward point-
ers. Note that, though not evaluated in this work, it is possible
to have more efficient strategies to connect primary and dupli-
cate objects (e.g., having one object with duplicated fields and
two checksums, or placing the duplicate at a fixed distance in
memory from the primary object). The reason that we use the
pointer-based scheme explained above is that it suits better for
more sophisticated duplication strategies, such as the selective
scheme as will be discussed later.

Discussion: A full duplication scheme doubles the mem-
ory requirement of heap objects, which might be undesirable
for an embedded environment. There exist at least two ways of
reducing the memory space and/or performance overheads as-
sociated with DUPL. First, since the duplicate objects are read
only when there is an error in the primary copy, we can com-
press them so that their heap space occupancy can be reduced.
The downside is that when we need to access a compressed du-
plicate, it first needs to be decompressed before the access can
take place. Therefore, there is a tradeoff between performance
and heap space saving. The second alternative for reducing
the overheads is to use duplication selectively based on object
lifetimes. If we are careful in identifying the objects that really
need duplicates, we can reduce the overall overhead. The next
two sections investigate these two approaches.

C. Compression-Based Full Duplication

Since it is known that, in most Java applications, the objects
contain a lot of zero bytes [4], we use a “zero-removal” algo-
rithm to compress the duplicate objects to reduce their heap
space requirements. We modified KVM to implement object

Fig. 2. The format of a compressed duplicate.

compression. Figure 2 shows the format of a compressed du-
plicate object. The compressed object contains a bitmap and
a non-zero byte array. Each bit in the bitmap corresponds to
one byte of the object in the uncompressed format. A 0-bit in-
dicates that the corresponding byte is zero and this byte is not
stored; a 1-bit indicates that the corresponding byte is stored in
the non-zero byte array. The details of the zero-removal com-
pression/decompression algorithm are beyond the scope of this
paper.

When an error is detected in the primary object during exe-
cution, we check if its compressed duplicate is corrupted. If the
duplicate is not corrupted, we correct the error in the primary
object by decompressing the duplicate into the address of the
primary copy. Otherwise, we terminate the program and report
the non-correctable error. When the contents of the primary
object are updated, we check the bitmap in the compressed du-
plicate to determine the number of bytes that are currently used
to store the accessed field. If this number is not smaller than
the number of non-zero bytes in the updated value, we update
the corresponding bitmap bits and non-zero bytes of the ac-
cessed field in the compressed duplicate. Otherwise, we need
to discard the current duplicate, and create a new one since the
new compressed duplicate cannot fit in the space reserved for
the old one. It should be noted that, during garbage collection,
the reference fields of the primary objects may be updated due
to compaction. Therefore, we discard and collect all the du-
plicates whose primary objects contain reference fields. After
the compaction phase, we re-create those discarded duplicates
from the contents of their primary objects. This compression-
based version of DUPL is referred to as COMPDUPL in the
rest of this paper.

D. Selective Duplication

In this strategy, the main goal is to maintain as few dupli-
cates as possible without significantly hurting the error cor-
rection rate achieved using full duplication. Recall that both
DUPL and COMPDUPL maintain duplicates as long as the
primary object is alive. However, since the duplicate is only
needed when there is an error in the primary object, we can get
rid of the duplicates under certain circumstances.

One example of how a duplicate can be eliminated is based
on an analysis of object “drag times”. The drag time of an
object is the ratio between the time the object spends beyond
its last use and the time since its creation to its death [16]. We
found that the drag times for auction, calc, firstaid, image, jpeg,
manyballs, mvideo, and pushpuzzle are 53%, 45%, 59%, 53%,
82%, 54%, 88%, and 48%, respectively. That is, the objects
in our embedded applications spend a large percentage of their
lifetimes in the heap beyond their last-use. Our first selective
scheme is specifically designed to exploit this observation to
reduce the lifetime of duplicates. Another way of cutting the
number of duplicates is to consider the lifetime of the objects.

Fig. 3. The breakdown of objects, injected errors, and consumed errors into
four life groups. Left: firstaid. Right: pushpuzzle. Each portion of the first
bars indicates the percentage of objects that fall into that life group (in terms
of a cycle range). Each portion of the second (third) bars represents the
percentage of errors injected into (consumed by) objects within that life
group.

Figure 3 gives for two applications, firstaid and pushpuzzle, the
breakdown of the objects created, of the errors injected, and of
the errors consumed into four categories formed based on their
lifetimes. We see that most of the objects created are small in
size, and in comparison, the injected errors are more uniformly
distributed across the different life groups. However, the last
bars clearly indicate that the most of the consumed errors are in
long-living objects. Consequently, one can expect a protection
strategy that pays special attention to long-living objects to be
effective in practice. Our second and third selective duplication
strategies are designed to take advantage of this observation.

Early Termination of Duplicates: In the first selective
scheme, when we create an object, we create its duplicate as
usual. However, we also predict the last-use of the object.
At each invocation of the garbage collector, we now collect
not only the unreachable primary objects and their duplicates,
but also the duplicates whose primary objects have become
last-used. To implement this scheme, each duplicate is aug-
mented with a time-stamp that records its allocation time. At
each garbage collection, the duplicates that are older than a
threshold are collected. The success of this strategy critically
depends on the accuracy of the last-use prediction (i.e., the
threshold value used). To determine good prediction values,
we plotted the CDF (cumulative distribution function) for ob-
ject last-uses. Each (x, y) point on the curve of a specific appli-
cation in Figure 4 indicates that the last-use of y% of the total
object words occurs within the first x cycles after its creation.
From this graph, one can determine good estimates to use for
predicting last-uses. For example, we see from the calc’s curve
that, if we create the duplicate at the same time when the pri-
mary object is created and then discard the duplicate about
3,000 cycles after the creation time, 90% of the total object
words will be beyond their last-use point when their duplicates
are discarded. Beyond its last-use point, an object will not be
accessed by the application any more. Therefore, the errors
occurring beyond the last-use point will not affect the correct-
ness of the application. The downside of this scheme is that the
objects that have not reached their last-uses will be vulnerable
between their predicted last-uses and their actual last-uses. In
addition, if the predicted last-use is longer than the actual last-
use of an object, we increase heap occupancy unnecessarily.
Therefore, an accurate last-use prediction is very important.

Fig. 4. CDF for object last-uses.

Fig. 5. CDF for object sizes created by each object
creation point for firstaid and mvideo. The figure
also shows how the object creation points are
marked for firstaid.

Fig. 6. CDF for last-uses of the objects in
mvideo.

Allocation Site Based Selective Duplication: Our second
selective scheme is based on profiling. We collected informa-
tion on the number of accesses to the objects created by each
object creation point for our applications. We observed that,
for many object creation points, the objects created are not ac-
cessed very frequently. Consequently, one can choose not to
provide duplicates for such objects. Figure 5 shows how we
select the creation points for which we want to provide dupli-
cates. The x-axis represents the object creation points sorted
(from left to right) according to non-increasing number of ac-
cesses to the objects created by each point. The y-axis shows
CDF for the sizes of the total objects created by each object
creation point. For example, if we want to provide duplicates
for only 50% of the frequently accessed objects, we need to
draw a horizontal line from the y-axis and find the correspond-
ing point on the x-axis. All the object creation points on the
right of this point are then annotated. These annotations are
recognized and handled by the JVM, and no duplicate is cre-
ated for the objects allocated by these points.

Lazy Duplication: Our last selective scheme, referred to
as DELAYED, defers the creation of the duplicate to a point,
where we expect the object to be long-living and frequently-
accessed once it reaches that point. In other words, this scheme
is lazy in creating object duplicates. It is implemented as fol-
lows. Each object has a time-stamp, indicating its creation
time. At each access to the object, we compare the current
time against the time-stamp. If the difference between them is
larger than a threshold (T), we create a duplicate for the object.
This selective strategy does not create duplicates for the objects
whose last accesses are shorter than T. A critical issue here is
how to determine a suitable value for T. Note that, if we are
late in creating the duplicate, we can increase the number of
non-correctable errors since the object is vulnerable until a du-
plicate is created for it. On the other hand, if we create the du-
plicate too early, there will be very little improvement in heap
space consumption over DUPL. To determine good threshold
values, one can use the CDF curves presented in Figure 4. For
example, Figure 6 zooms in the initial portion of the curve for
mvideo. If we want to avoid the duplicates for 80% of the total
allocated object words, we draw a horizontal line, determine
the corresponding values on the x-axis, and use that value as T.

IV. EXPERIMENTAL RESULTS

In our experimental evaluation, we collect three types of
statistics:
• Heap space results: These results indicate the memory

space overhead due to object duplication. We are interested in

0
0.5

1
1.5

2
2.5

3
3.5

au
cti

on
ca

lc

fir
sta

id
im

ag
e

jpeg

man
yb

all
s

mvid
eo

push
puzz

le

N
or

m
al

iz
ed

 S
iz

e

CHK DUPL COMPDUPL

Fig. 7. Allocated heap space during the entire execution.

0%

50%

100%

150%

200%

250%

300%
1 33 66 98 13
0

16
3

19
5

22
7

26
0

29
2

32
4

35
7

38
9

42
1

45
3

48
6

Time (K cycles)

H
ea

p
O

cc
up

an
cy

COMPDUPL

CHK

DELAYED

DUPL

Fig. 8. Heap space occupancy by the application objects during execution of
manyballs. The y-axis is normalized with respect to the peak heap space
required by BASE.

two metrics: (1) the total amount of heap space allocated dur-
ing execution, and (2) the variance in heap occupancy during
the course of execution. We define “heap occupancy” in this
context as the total size of the “live application objects” in the
heap.
• Error resilience results: These results are collected by

injecting errors into the heap memory and instrumenting the
application code to collect error statistics. The main metric that
we are interested in is the “non-correctable error rate”, which
is the percentage of soft errors that are detected by checksums
but could not be corrected by a given protection scheme.
• Performance results: These results correspond to execu-

tion cycles, and are obtained using an enhanced version of the
Shade tool-set [6].

A. Heap Space Results

The first two bars for each application in Figure 7 give the
increase in the total size of the heap space allocated with CHK

0%

50%

100%

150%

200%

250%

300%

350%

1 33 66 98 13
0

16
3

19
5

22
7

26
0

29
2

32
4

35
7

38
9

42
1

45
3

48
6

Time (K cycles)

H
ea

p
O

cc
up

an
cy

LAST-USE-100

COMPDUPL

LAST-USE-80

PRFL

LAST-USE-OPT

DELAYED

DUPL

Fig. 9. Heap space occupancy for the application objects during the execution
of manyballs for selective schemes.

and DUPL during the entire execution. One can see that, while
the allocated memory space increase due to CHK is within rea-
sonable limits (around 24% increase over the base execution),
DUPL increases the size of the allocated heap space by a factor
of 2.77 on the average. We also see that the value for COM-
PDUPL is lower than the corresponding value for DUPL.

To see how the heap space requirements change during exe-
cution, we give in Figure 8 the variance in the heap space occu-
pancy (y-axis) over the time (x-axis) with the different schemes
for the manyballs benchmark. Recall that the peak point of a
heap occupancy curve gives the minimum heap space required
for the user objects. In a multiprogrammed environment, the
entire shape of the curve can also be important as memory
space saved at any point can be reused by some other applica-
tion. When we look at the curves for CHK and DUPL, we see
that at any given time DUPL occupies much more heap space
than CHK. Also, its peak heap occupancy is 124% higher than
that of the CHK scheme. We also observe that while object
compression (COMPDUPL) brings some heap space savings,
the results are not as good as someone might want. The main
reason for this is the fact that most of the objects in our embed-
ded applications are smaller than 16 bytes, which makes object
compression less effective.

The heap occupancy of the selective duplication schemes is
plotted in Figure 9 for manyballs. The curves marked as LAST-
USE-OPT, LAST-USE-100, and LAST-USE-80 represents the
selective schemes based on early termination of duplicates.
LAST-USE-OPT represents an optimal version where we de-
tect the last-uses of the objects by looking at the object traces
we gleaned. In other words, in this post-processing based ap-
proach, we have a prediction accuracy of 100%, and we get
rid of the useless duplicates without any delay. As a result, we
do not incur any extra non-correctable errors over DUPL. In
comparison, the curves marked as LAST-USE-100 and LAST-
USE-80 show the results from our actual implementation. The
difference between them is that, in the first one we predict, for
each application, the last-use in such a way that it includes the
last-uses of 100% of the total object words. In other words, we
use the longest last-use time of all objects. In the LAST-USE-
80 version, we want to cover the last-uses of 80% of the total
object words. We see from Figure 9 that LAST-USE-OPT per-
forms very well, and its heap occupancy is lower than that of
the COMPDUPL scheme. Similarly, LAST-USE-80 also ex-
hibits a good heap occupancy. The main reason for this is that
it eliminates the duplicate objects aggressively. In contrast,
LAST-USE-100 does not perform well from the heap occu-
pancy perspective as it waits too much for removing the dupli-

0%
5%

10%
15%
20%
25%
30%

au
cti

on ca
lc

firs
tai

d
im

ag
e

jpe
g

man
yb

all
s

mvid
eo

pu
sh

pu
zz

le

P
er

ce
nt

ag
e

of
 E

rr
or

s
no

t R
ec

ov
er

ed DUPL COMPDUPL

Fig. 10. Non-correctable error rates for the different schemes.

cates. It should be mentioned that all these three selective ver-
sions incur an additional space overhead due to the time-stamp
maintained. The line LAST-USE-100 is higher than DUPL
due to such overheads. The curve marked PRFL in Figure 9
shows the heap occupancy of the allocation site based selective
scheme. In this particular execution, we created duplicates for
60% of the frequently used objects. We observe from these re-
sults that the heap occupancy of this scheme is better than that
of the first selective strategy in most of the cases. However, this
behavior can change if we annotate the object creation points
more or less aggressively We also observe from Figure 9 that
the lazy duplication scheme, marked as DELAYED, generates
better behavior than COMPDUPL.

B. Error Resilience Results

Having looked at the heap space occupancy, we next con-
sider the error resilience of our duplication based schemes. The
graph in Figure 10 shows the non-correctable error rate for the
different schemes. We see that DUPL corrects more than 96%
of the errors in five of our eight benchmarks (auction, calc,
firstaid, mvideo, and pushpuzzle). It is not very successful with
the image and jpeg benchmarks, mainly due to large number
of errors consumed in these applications (see Table I). While
the success of DUPL in correcting errors is significant when
one considers the entire benchmark suite, there is still a large
number of errors not corrected. One reason for this is the high
error-injection rate we used (10−10). When error-injection rate
increases, the chance that both the original object and its dupli-
cate being injected with errors will increase. To see how DUPL
would behave under lower error rates, we also performed ex-
periments with error rates 10−11 and 10−12. The results given
in Figure 11 indicate that the DUPL scheme is very successful
in correcting errors with these rates. More specifically, with an
error rate of 10−12, it corrects all the errors detected by check-
sums. We also observe in Figure 10 that COMPDUPL per-
forms better than DUPL. Specifically, it reduces the average
non-correctable error rate from 8.2% (DUPL) to 4.3%. This
is because of the reduction in the heap space allocated to the
duplicates in this approach.

The non-correctable error rates for the three selective dupli-
cation schemes are shown in Figure 12. We see that the error
correction behaviors of LAST-USE-OPT and LAST-USE-100
are the same as that of DUPL (given in Figure 10) since they
destroy a duplicate only when they are certain that the primary
object has reached its last-use. On the other hand, LAST-USE-
80 incurs extra non-correctable errors over the DUPL scheme
as it eliminates some duplicates while the primary copies are
still alive. We also see that, as compared to DUPL, PRFL in-
curs significantly more non-correctable errors in some appli-

0%
5%

10%
15%
20%
25%
30%

au
cti

on ca
lc

firs
tai

d
im

ag
e

jpe
g

man
yb

all
s

mvid
eo

pu
sh

pu
zz

le

P
er

ce
nt

ag
e

of
 E

rr
or

s
no

t R
ec

ov
er

ed 1.0E-10 1.0E-11 1.0E-12

Fig. 11. Non-correctable error rates for DUPL
with different error injection rates. Note that,
with the last error rate, DUPL corrects all the
errors.

0%

20%

40%

60%

80%

au
cti

on ca
lc

firs
tai

d
im

ag
e

jpe
g

man
yb

all
s

mvid
eo

pu
sh

pu
zz

le

P
er

ce
nt

ag
e

of
 E

rr
or

s
no

t r
ec

ov
er

ed No Duplicate Faulty Duplicate
98.3% 88.4% 89.1%

From left to right: LAST-USE-OPT, LAST-USE-100,
LAST-USE-80, PRFL, DELAYED.

Fig. 12. Non-correctable error rates for the different
selective schemes. Each bar is broken to show whether the
non-correctable error is due to lack of the duplicate or due
to faulty duplicate.

0

0.5

1

1.5

2

2.5

au
cti

on ca
lc

firs
tai

d
im

ag
e

jpe
g

man
yb

all
s

mvid
eo

pu
sh

pu
zz

le

N
or

m
al

iz
ed

 E
xe

cu
tio

n
C

yc
le

s

CHK DUPL COMPDUPL

Fig. 13. Normalized execution cycles for the
different schemes.

cations, since we create duplicates only for 60% of the fre-
quently used objects. The error resilience can be improved
if we increase the percentage of objects that we create dupli-
cates. Finally, the non-correctable error rates for DELAYED is
not excessive in some applications.

Overall, with the particular experimental parameters, used
above, LAST-USE-OPT, LAST-USE-100, LAST-USE-80,
PRFL, and DELAYED reduced the maximum heap occupancy
of DUPL by 22.0%, -14.0%, 18.4%, 17.4%, 23.1%. The non-
correctable error rates for these five schemes are 8.2%, 8.2%,
50.2%, 19.1%, and 41.6% in that order.

C. Performance Results

The bar-graph in Figure 13 gives the normalized execution
cycles for the different schemes. Note that these results include
the extra GC time due to duplication. We see that the perfor-
mance penalty incurred by DUPL is not too high. Specifically,
it increases the execution cycles of BASE by 11.3%, and 6.9%
of this comes from the checksum overhead itself. This rel-
atively small increase in execution cycles over CHK can be
explained as follows. The only time we spend extra cycles
with DUPL is when we create an object or write to an already
existing object. Since both of these events are very rare as
compared to object reads, DUPL does not bring an excessive
performance overhead over CHK. Specifically, the number of
object writes (creations) is less than 10% (1%) of the number
of object reads in our applications. COMPDUPL increases the
execution cycles of DUPL by around 20% across all applica-
tions. This is because of the compressions and decompressions
that need to be performed during execution. While the decom-
pression needs to be performed only when there is an error,
the compression is done whenever an object creation or an ob-
ject write takes place. Overall, the compression-based duplica-
tion helps reduce the non-correctable error rate and heap occu-
pancy, but increases execution cycles of DUPL. Therefore, it is
more suitable for embedded environments where performance
degradation can be tolerated. Finally, we found that the per-
formance of all the selective schemes we implemented is very
close to that of DUPL since they eliminate only some writes
for which they have already destroyed the duplicate.

V. CONCLUDING REMARKS

In this paper, we demonstrated how duplication can improve
the data integrity of objects by recovering a significant per-
centage of the errors detected by a checksum-based scheme.
Our baseline full duplication based scheme recovered 91.8%

of the errors at the expense of 11.6% degradation in perfor-
mance. Compressing the duplicates brought up the error cov-
erage to 95.7% and reduced average heap occupancy of the
full duplication-based scheme by 18.6%. However, we found
that it also increased the execution cycles significantly. We
also presented results from three different implementations
based on selective object duplication. Using the three selec-
tive schemes proposed in this paper, we can tradeoff different
requirements of the application and help the designer to deter-
mine the best operating point considering both maximum heap
space consumption and error rate.

ACKNOWLEDGEMENTS

This work was supported in part by GSRC and NSF Career
Award #0093082.

REFERENCES

[1] A. Benso, S. Chiusano, P. Prinetto, and L. Tagliaferri, “A C/C++ source-to-source
compiler for dependable applications,” in Proc. DSN’00.

[2] C. Chen and A. K. Somani, “Fault containment in cache memories for TMR re-
dundant processor systems,” IEEE Transactions on Computers, 48(4):386–397,
March 1999.

[3] D. Chen, A. Messer, P. Bernadat, G. Fu, Z. Dimitrijevic, D. Lie, D. Mannaru, A.
Riska, and D. Milojicic, ”JVM susceptibility to memory errors,” in Proc. JVM’01.

[4] G. Chen, M. Kandemir, N. Vijaykrishnan, M. J. Irwin, B. Mathiske, and M. Wol-
czko, “Heap compression for memory-constrained Java environments,” in Proc.
OOPSLA’03.

[5] “CLDC and the K virtual machine (KVM),” http://java.sun.com/products/cldc/.
[6] B. Cmelik and D. Keppel, “Shade: a fast instruction-set simulator for execu-

tion profiling,” in Proc. ACM SIGMETRICS Conference on the Measurement and
Modeling of Computer Systems, 1994.

[7] B. Demsky and M. Rinard, “Automatic detection and repair of errors in data struc-
tures,” in Proc. OOPSLA’03.

[8] “J2ME Mobile Information Device Profile,” http://java.sun.com/j2me/.
[9] R. Jones and R. D. Lins, Garbage Collection Algorithm for Automatic Dynamic

Memory Management, John Wiley & Sons, 1999.
[10] W. Kao, R. K. Iyer, and D. Tang, “FINE: A fault injection and monitoring envi-

ronment for tracing the UNIX system behavior under faults,” IEEE Transactions
on Software Engineering, SE-19(11):1105–1118, November 1993.

[11] S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and T. Austin, “A sys-
tematic methodology to compute the architectural vulnerability factors for a high-
performance microprocessor,” in Proc. Micro’03.

[12] C. S. Pasareanu, M. B. Dwyer, and W. Visser, “Finding feasible counter-examples
when model checking Java programs,” in Proc. TACAS’01.

[13] R. Phelan, “Addressing soft errors in ARM core-based designs,” White Paper,
ARM Limited, 2003.

[14] C. Pyyhtia, “Quality issues facing embedded memory,” in Proc. Sophia Antipolis
Conference on Micro Electronics, 2002.

[15] S. K. Reinhardt and S. S. Mukherjee, “Transient fault detection via simultaneous
multithreading,” in Proc. ISCA’00.

[16] R. Shaham, E. K. Kolodner, and S. Sagiv, “Heap profiling for space-efficient
Java,” in Proc. PLDI’01.

[17] P. P. Shirvani, N. R. Saxena, and E. J. McCluskey, “Software-implemented EDAC
protection against SEUs,” IEEE Transactions on Reliablity, 49(3):273–284, 2000.

[18] C. Weaver and T. Austin, “A fault tolerant approach to microprocessor design,” in
Proc. DSN’00.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

