
Energy-Aware Computation Duplication for Improving Reliability in Embedded
Chip Multiprocessors ∗

G. Chen, M. Kandemir, and F. Li
Computer Science and Engineering Department

Pennsylvania State University
e-mail: {guilchen,kandemir,feli}@cse.psu.edu

Abstract— Compilers designed for current embedded systems
must be capable of addressing multiple constraints such as low
power, high performance, small memory footprint and form fac-
tor, and high reliability at the same time. In particular, optimiz-
ing for one constraint should be performed carefully, consider-
ing its impact on other constraints. Recent trends indicate that
transient errors are becoming increasingly important in embed-
ded systems. Focusing on an embedded chip multiprocessor and
array-intensive applications, this paper demonstrates how relia-
bility against transient errors can be improved without impacting
execution time by utilizing idle processors for duplicating some of
the computations of the active processors. It also shows how a bal-
ance between power savings and reliability improvement can be
struck using a metric called the energy-delay-fallibility product.
Our experimental results indicate that the “percentage of dupli-
cated computations” is a useful high-level metric for studying the
tradeoffs among performance, power, and reliability.

I. INTRODUCTION

Today’s embedded systems are expected to satisfy multi-
ple, and often conflicting, criteria (constraints) such as low
power, high performance, small memory footprint and form
factor, and high reliability. Therefore, the entire system de-
sign cycle employed in the past, which includes software and
hardware, must be re-thought based on this multi-criteria re-
quirement. For example, most of the software compilation
techniques developed over the years target mainly at optimiz-
ing performance. Recently, compiler designers have also fo-
cused on memory footprint estimation/reduction [5,20–22] and
power/energy optimizations [9, 14]. However, recent increase
in transient error rates due to scaling technology and employ-
ment of low power techniques made it imperative to consider
reliability as a first class optimization metric. The important
point though is the reliability measures must be well-balanced
against performance and power concerns. In other words,
while ensuring reliable execution as much as possible, one also
needs to be careful in not increasing execution cycles or power
consumption excessively.

One way of addressing growing complexity problem of em-
bedded system designs is chip multiprocessors [2, 3, 13]. The
idea is to accommodate multiple simple cores within the same
die instead of a complex single core based architecture. Prior
research [13, 15] has already discussed several advantages of

∗This work is supported in part by NSF Career Award #0093082 and by a
grant from GSRC.

chip multiprocessors over complex single processor based so-
lutions, which include appropriateness to high-level code par-
allelization and design and verification advantages. Perfor-
mance/verification related issues have been addressed in stud-
ies like [16], whereas studies such as [18] and [10] focused
on the problem of reducing power consumption. An important
observation made by one of the prior studies [10] is that, in
executing array-intensive codes in a chip multiprocessor, not
all the cores are used all the time. That is, at any given time,
certain number of processors are idle and can potentially be
switched off or put in a low-power operating mode to save en-
ergy.

In this work, we explore an alternate use of such idle pro-
cessors in an embedded chip multiprocessor. Specifically, fo-
cusing on embedded array-intensive applications, we demon-
strate that idle processors can be used for duplicating some of
the computations of the active processors, thereby improving
overall reliability against transient errors. In this approach, a
computation can be duplicated once to detect transient errors
(our focus in this paper) or twice to detect and correct them. It
should also be noticed that not all of the idle processors need
to be used for duplicating computation. In fact, some of them
can still be placed into a low-power mode to save power, which
is a particularly promising approach in an environment where
both reliability and power consumption are important metrics
to consider. Whether an idle processor should be used for sav-
ing power or increasing reliability depends on the relative im-
portances of reliability and power as well as allowable power
consumption and acceptable error levels.

It is to be emphasized that reliability concerns due to tran-
sient errors are becoming an increasingly pressing problem for
embedded systems. This is mainly because of two reasons.
First, as devices are being pushed into very deep sub-micron
technologies (< 250 nano-meter), reliability is becoming an
important issue. Some of the growing effects are the so-called
“transient errors”, which are due to temporary conditions of
usage characteristics and the environment. Cross-coupling,
ground bounce, external terrestrial radiations create more and
more unpredictable transient and soft errors which affect sys-
tem reliability. Transient errors caused due to radiations espe-
cially have been studied very closely in industry. The second
reason is that many embedded systems employ several mecha-
nisms that scale voltage or place unused components into low-
power modes (sleep states), with the objective of reducing en-
ergy consumption. This in turn increases the vulnerability of
these systems to transient errors. A recent study [4] investi-
gates the relationship between power-saving strategies and cir-

cuit reliability.
Since we want to measure the impact of our approach on

performance, power, and reliability, previous evaluation met-
rics such as execution cycles, performability, or energy-delay
product are not very appropriate for our purposes. Instead,
we employ a different metric called the energy-delay-fallibility
product (EDF), where fallibility in this context is the opposite
of reliability. Using this metric, we study how the different
divisions (partitionings) of the idle processors between those
that execute duplicated computations and those that are placed
into a low-power mode to save power can affect the value of
the energy-delay-fallibility product. We also study the impact
of the duplication granularity for adaptation (i.e., application
based versus loop nest based) on the value of the energy-delay-
fallibility metric. Note that, using new metrics for character-
izing system behavior in terms of energy efficiency, reliability,
computation performance and battery lifetime has been a pop-
ular research topic recently [19].

We automated our reliability-oriented approach within a par-
allelizing compiler and tested it using seven array-intensive
benchmark codes. Our results, collected using the Simics sim-
ulation toolset [17], demonstrate that not just the different ap-
plications require different percentages of idle processors to
be used for computation duplication, but also even within the
same application, the different loop nests work best (from the
perspective of the energy-delay-fallibility product) with the
different percentages of idle processors being used for dupli-
cation. In other words, the amount of duplication should be
tuned at a loop nest granularity. While more computation du-
plication intuitively means better reliability, the latter concept
depends also on the frequency of transient errors and the pat-
terns these errors exhibit. The results indicate that the “per-
centage of computations duplicated” is a reasonable indicator
for reliability. In this paper, as long as there is no confusion,
we use the terms “percentage of computations duplicated” and
“percentage of processors used for duplicating computations”
interchangeably.

The remainder of this paper is structured as follows. The
next section summarizes the architectural abstraction pre-
sented to our approach. Section III discusses the details of our
computation duplication strategy. Section IV introduces our
experimental setup and reports the experimental results from
our implementation. This experimental evaluation considers
both the error-free case and the cases with errors. Section V
concludes with a summary of our major observations.

II. CHIP MULTIPROCESSOR ARCHITECTURE AND

EXECUTION MODEL

We focus on an embedded chip multiprocessor of the shared
memory type. In this architecture, multiple processor cores
(typically between 4 and 32) reside on the same chip. Each
core has private L1 instruction and data caches and there is
also a large unified L2 cache shared by all the cores. We also
assume existence of an off-chip memory, whose access latency
and power consumption are typically much larger than the cor-
responding values for the on-chip L1 and L2 caches. In this ar-
chitecture, data sharing and communication among processors
is achieved using shared memory components (i.e., through L2
cache and off-chip memory). Note that, several chip multipro-

cessor proposals [13,15] from academia and industry fit in this
abstraction.

We focus on execution of array-intensive applications on
this chip multiprocessor. It is to be emphasized that, array-
intensive applications frequently appear in many embedded
domains where reliability is also a concern. In this work, an
array-intensive embedded application is parallelized by con-
sidering each loop nest in turn, and distributing its iterations
across processors. How exactly the loops are parallelized is
orthogonal to the focus of this work. For this purpose, one
can employ either user-assisted methods or automatic compiler
support. For a given loop nest, the set of loop iterations as-
signed to a particular processor is called its local iteration set
or local iteration space for that processor with respect to that
nest. Our unit of duplication (for reliability purposes) in this
paper is a local iteration space. That is, we duplicate the lo-
cal iteration space of an active processor on an otherwise idle
processor. When a processor core is switched to a low-power
mode, its L1 cache is also assumed to be put in the low-power
mode. While in the low-power mode, a processor/L1 pair con-
sumes a fraction of the energy that they would consume in the
full active mode, and the L1 cache maintains its contents. Nei-
ther L2 cache nor off-chip memory is turned off during pro-
gram execution.

III. COMPUTATION DUPLICATION

Figure 1 illustrates our approach to computation duplication.
In Figure 1(a), a loop nest is parallelized (either automatically
by a parallelizing compiler or through user help), and m out of
total n processors (P1 through Pm) are used to execute the loop
nest. In a previous work [10], all the idle processors (Pm+1

through Pn) along with their L1 caches are placed into a low-
power mode to save energy. In our work, on the other hand, we
utilize some of these idle processors to improve reliability by
executing on them duplicates of the computation performed by
the active processors (P1 through Pm). What we mean by com-
putation in this context is the local iteration space assigned to
an active processor as a result of code parallelization. In Fig-
ure 1(b), the local iteration spaces of r processors (P1 through
Pr) are duplicated and executed on processors Pm+1 through
Pm+r to improve the reliability of the computation. When there
is no confusion, we say that Pi (1 ≤ i ≤ r) is a primary proces-
sor, and Pm+i is the duplicate of Pi. It is to be noted that, these
concepts of primary and duplicate processors are relative to a
given loop nest; i.e., a given processor can be primary in one
nest and duplicate in another.

To improve reliability of execution for a given primary pro-
cessor, we have to check its execution with that of its duplicate
to see whether their results agree. A straightforward way of
achieving this would be letting the primary and its duplicate
run in a lock-step fashion, during which they compare their
results after executing each and every statement. Although
such a lock-step execution can be implemented rather easily,
it can also generate a lot of communication and synchroniza-
tion activities between the primaries and their duplicates, and
the overheads it incurs in terms of both performance and en-
ergy consumption can be intolerable for an embedded system.
This is particularly true considering the fact that communica-
tion and synchronization costs can be critical in a chip multi-

Fig. 1. Computation (local iteration space) duplication. P1 through Pn
represent the processors in the chip multiprocessor. The idle
processors are shaded. (a) The loop nest is parallelized and set to
execute on m processors; Ii (1 ≤ i ≤ m) is the set of iterations
assigned to Pi as a result of parallelization, i.e., its local iteration set.
(b) I1 to Ir (where r ≤ m) are assumed to be duplicated and the
duplicated computations are assigned to Pm+1 through Pr. Dashed
curves represent the duplicated iteration sets. I′i is the duplicate of Ii.

processor. Instead, in our work, we use a more efficient way
of comparing these two executions, which is as follows. We
associate a checksum with each processor (i.e., with both pri-
mary and its duplicate), and all these checksums are initialized
to zero at the beginning. Each time a statement finishes its ex-
ecution and produces a result, we add it to the corresponding
checksum. After all the loop iterations complete, we compare
the primary’s checksum with its duplicate’s checksum to see
whether they are equal. Note that, in this approach, we do not
need any output (except for the checksum) from the duplicate
processor. Therefore, in most cases, in the duplicate, all the
results of computations can be directly fed to the checksum
without being written into any array or variable, as would be
the case in the original code. This also helps reduce the energy
overhead associated with the duplicate significantly. Figure 2
gives an example of how a code segment can be transformed
to generate checksum. Figure 2(a) is the original code in the
loop body (assuming that i is the loop index variable); Fig-
ure 2(b) is the transformed code to be executed by the primary;
and Figure 2(c) is the transformed code to be executed by the
duplicate. It can be seen that the code to be executed by the
duplicate does not update arrays A and B due to the reason ex-
plained above.

The transformation used in Figure 2 may not work correctly
if an array element is both read and written in the iteration
space (i.e., when there exists a data dependence involving the
array in question). Figure 3 presents such an example. In state-
ment Sb1, we use the old value of B[i]. To be consistent, Sc1

should also use the old value of B[i]. Otherwise, the checksums
computed in Figure 3(b) and Figure 3(c) will be different from
each other, even in the absence of any transient error, because
the input values used to calculate them are different. Therefore,
Sc1 should be executed before Sb3 to ensure that the old value
of B[i] is not overwritten by Sb3. However, doing so means that
we need to synchronize the primary processor and its duplicate
at the statement level, which is what we want to avoid by intro-
ducing checksums at the first place. Our approach to address

A[i] = C[i+1]∗D[i]+E[i];
B[i] = C[i−1]−D[i−1];

(a)

A[i] = C[i+1]∗D[i]+E[i];
CHECK[prid]+= A[i];
B[i] = C[i−1]−D[i−1];
CHECK[prid]+= B[i];

(b)

CHECK[prid]+=C[i+1]∗D[i]+E[i];
CHECK[prid]+=C[i−1]−D[i−1];

(c)

Fig. 2. Adding checksum to a
code segment. prid is the id of a
given processor, and
CHECK[prid] is the
corresponding checksum. (a)
Original code (loop body). (b)
Transformed code to be executed
by the primary processor. (c)
Transformed code to be executed
by the duplicate processor.

A[i] = B[i]+C[i];
B[i] = C[i]−10;

(a)

Sb1: A[i] = B[i]+C[i];
Sb2: CHECK[prid]+= A[i];
Sb3: B[i] = C[i]−10;
Sb4: CHECK[prid]+= B[i];

(b)

Sc1: CHECK[prid]+= B[i]+C[i];
Sc2: CHECK[prid]+=C[i]−10;

(c)

CHECK[prid]+= B′[i]+C[i];
B′[i] = C[i]−10;
CHECK[prid]+= B′[i];

(d)

Fig. 3. An example code segment
that illustrates the need for array
duplication. (a) Original code. (b)
Transformed code to be executed
by the primary processor. (c)
Incorrect version of the
transformed code to be executed
by the duplicate processor. (d)
Correct version of the
transformed code with array
duplication to be executed by the
duplicate processor.

this problem is presented in Figure 3(d). In this solution, array
B is duplicated, and B′ represents the duplicate. We replace
B with B′ in the code depicted in Figure 3(c), and we obtain
the code in Figure 3(d). Notice that, although not shown here
explicitly, we need to initialize B′ with B’s old values before
the loop is entered since the old values of B will be used before
they are written (updated) within the loop. Using array du-
plication, the synchronization problem discussed above due to
data dependences is solved. It should be observed though that
such data duplications bring extra overheads in terms of mem-
ory space occupation, performance (execution cycles), and en-
ergy consumption. However, our experience with numerous
application codes shows that such cases (that require data du-
plication) do not happen very frequently. In fact, we observed
during our experimental evaluation that, in only six out of the
twenty four loops in our study need array duplication, and we
take all the associated overheads into account in our experi-
mental evaluation. The code transformations illustrated in Fig-
ures 2 and 3 have been automated within our compiler.

It should be noticed that this computation duplication
catches all types of transient errors during loop execution (as
long as either the primary and the duplicate executes cor-
rectly), not just the memory related errors. That is, it also cap-
tures the CPU errors that might occur during the execution of
the duplicated loops. Therefore, it is very general. While it
is possible that it can fail in cases where a wrong computation
still generates a correct checksum, such cases are expected to
be very rare in practice. The presented scheme is different from
the prior code duplication related studies such as [1,6,8], as we
focus on an embedded chip multiprocessor and try to minimize
a different metric, which captures performance, energy, and re-
liability. However, there is still a chance that a transient error
can strike during execution of an unduplicated computation,
which cannot be detected by our approach. In other words,

TABLE I
MAJOR SIMULATION PARAMETERS AND THEIR VALUES.

Parameter Value
Number of Processors 8

8KB
L1 Instruction Cache 2-way associative

32 byte blocks
8KB

L1 Data Cache 2-way associative
32 byte blocks

1MB
L2 Cache 4-way associative

64 byte blocks
L1 Dynamic Energy Consumption 0.16 nJ/access
L2 Dynamic Energy Consumption 0.65 nJ/access

r 0.1
Reactivation Latency 4 cycles

Off-Chip Memory Energy 6.32 nJ/access
Off-Chip Memory Access Latency 80 cycles

On-Chip Bus Arbitration Delay 5 cycles
Replacement Policy Strict LRU

while we increase the resilience of execution against soft er-
rors, the number of errors we actually detect is another matter,
and depends on error injection rate, error injection pattern, and
other factors.

IV. EXPERIMENTS

A. Setup

We used a chip multiprocessor simulator for our experi-
ments, built upon Simics [17]. Simics is a platform for full
system simulation that can run actual firmware, complete ker-
nel, and driver codes. It is sufficiently abstract to achieve good
performance levels, and it provides both functional accuracy
for running commercial workloads and sufficient timing accu-
racy to interface to detailed hardware models. In particular,
it allows us to model the overheads incurred by our approach
accurately. Our simulator keeps track of the number of instruc-
tions executed by each processor and data/instruction accesses
to different memory components (L1, L2, and off-chip mem-
ory). We also embedded energy models into this simulator.
These energy models are access based, and compute energy
of a component by multiplying the number of accesses to that
component with a fixed (component specific) per access en-
ergy consumption. The per access energy consumption value
for each component is obtained through profiling. The nec-
essary code modifications to insert checksum computations in
the source codes are automated within a parallelizing compila-
tion framework [7]. The increase in compilation time caused
by our approach was about 19% when averaged over all the
codes used in our evaluation. The largest compilation time in-
crease was approximately 41%.

Table I gives the major simulation parameters used in this
study. The parameter r specifies the magnitude of the leakage
power consumption when a processor core/L1 cache is placed
into the low-power mode. More specifically, when r=r*, this
means that the leakage energy consumed by the core/L1 pair
in the low power mode is r*x100% of the leakage energy con-
sumption of an active processor core/L1 pair. We assume that
the leakage energy per cycle for an 8KB SRAM (our L1) is
equal to the dynamic energy consumed per access to a 32 byte
data from that SRAM, similar to the assumption made by [11].

The seven benchmark codes used in this study and their im-
portant characteristics are given in Table II. These benchmark
codes are extracted from the Perfect Club, Spec, Livermore,

TABLE II
BENCHMARK CODES USED IN OUR EXPERIMENTS AND THE

STATISTICS COLLECTED WHEN NO POWER OPTIMIZATION AND

NO DUPLICATION IS USED.

Benchmark Number Cycles Dynamic Leakage
Name of Nests (Million) Energy (uJ) Energy (uJ)

3step-log 3 14688 20195.27 29390.57
adi 2 217 589.45 706.24
btrix 7 82336 92524.07 83096.42
eflux 2 1236 2018.51 2496.56
full-search 3 97640 137887.96 18937.01
n-real-updates 3 160 395.45 423.66
tsf 4 246 752.84 282.55

and DSPStone benchmark suites. The values listed in this ta-
ble are obtained by executing the benchmarks in our simulation
environment without any power management and without any
computation duplication. All benchmark codes have been run
to completion. In the rest of our discussion, we refer to this
version of a benchmark as the base version, or the original
version. The third column gives the number of cycles. The
last two columns give the dynamic and leakage energy con-
sumptions under the 70nm process technology. These values
include the energies consumed in the processor cores, L1 and
L2 caches, and off-chip main memory.

As stated earlier, our approach can work under any loop par-
allelization strategy. The particular strategy used in this work
is based on locality of reference. In this strategy, a loop nest is
parallelized such that each processor accesses data mostly with
temporal or spatial reuse. However, each loop is parallelized
using the minimum number of processors; that is, increasing
the number of processors beyond this minimum number does
not improve performance any further. Table III gives statistics
on the execution of the base version under the default machine
configuration. Each column (starting with the second one) in
this table corresponds to a loop nest in the application and each
cell shows the minimum processor count (as explained above)
that gives the best performance for that nest. That is, using
more processors for the nest does not improve its performance
further. An observation that one can make from the values
in this table is that, in almost all the loop nests, there exist
some idle processors, which can potentially be placed into the
low-power mode to save energy, or can be used for duplicating
some computation to increase error detection capabilities. In
fact, most of the nests use only 4 or fewer processor (of a to-
tal of 8 processors) to generate the best execution cycles. We
need to point out that this low processor utilization is typical
in parallel processing (i.e., it is not a particular characteristic
of the applications used in this study), and can be explained as
follows. As we increase the number of processors over which
a loop nest is parallelized, at least two types of overheads in-
crease. The first of these is the time/energy spent in spawning
the additional threads and finalizing them when the parallel
loop execution is over. The second one is the synchronization
costs due to increased inter-processor communication. In ad-
dition, some data dependences across loop iterations generate
the best results with a particular processor count. All these
factors are effective in preventing us from using all processors
in the chip multiprocessor. As a result, going beyond a given
processor size increases only the overheads without bringing
any performance benefits. In particular, using more processors
than necessary can have devastating results from the energy
consumption angle.

TABLE III
MINIMUM NUMBER OF PROCESSORS THAT GENERATE THE

OPTIMUM PERFORMANCE FOR EACH NEST OF EACH BENCHMARK

CODE. NOTE THAT, EACH APPLICATION HAS A DIFFERENT

NUMBER OF NESTS. NI REPRESENTS THE ITH NEST IN THE

CORRESPONDING APPLICATION.

Benchmark N1 N2 N3 N4 N5 N6 N7

3step-log 1 1 5
adi 4 5
btrix 2 1 7 6 1 3 8
eflux 2 3
full-search 2 2 6
n-real-updates 4 4 4
tsf 1 7 2 4

As stated earlier, we use the energy-delay-fallibility product
(denoted EDF henceforth) as our metric in this paper. In our
context, energy corresponds to the sum of the energies con-
sumed in the processor cores, L1 and L2 caches, and off-chip
memory, and delay is the parallel execution time (measured in
cycles). Fallibility is the opposite of reliability; the latter being
defined as the percentage of loop iterations that are duplicated.
Clearly, we want the value of the EDF metric to be as small
as possible. As mentioned earlier, our approach can involve
array duplication in certain cases, and this can in turn affect
the energy consumption and execution cycles of the applica-
tion (due to the degradation in cache performance). All these
overheads are included in the EDF values presented in the next
subsection. While, as mentioned earlier, we can duplicate a lo-
cal iteration space twice (instead of just once) to correct errors
(e.g., through a majority voting based scheme), in this paper
we present the results with single duplication only; i.e., we
focus primarily on the error detection problem. It should be
mentioned that the impact of our approach on original execu-
tion cycles is not excessive. In fact, there are only three po-
tential reasons why the performance can be affected because
of our approach. The first of these is due to array duplication.
As we mentioned earlier, it does not occur very frequently, and
as a result, the overheads it incurs are not excessive. The sec-
ond overhead is due to comparing the checksums (which also
involves inter-processor synchronization), and its impact is not
very high. The third one is the reactivation cost when a pro-
cessor/L1 pair is powered down, which is not very frequent
(as it is done only between nest boundaries). Overall, we ob-
served that the performance degradation due to our approach
was less than 2% when averaged over all the benchmark codes
in our experimental suite. In any case, the EDF values pre-
sented below include this small degradation in performance as
well. However, before presenting the benefits of our approach,
we give in Figure 4 the percentage contribution of each type
of overhead. We see that, while the overheads due to array du-
plication dominate the others, the other two factors also play
a role. However, as mentioned above, their cumulative impact
on the performance is less than 2% on the average.

B. Results

Our first set of EDF results are presented in Figure 5. Each
point on the x-axis represents a percentage of idle processors
used for computation duplication. The remaining processors
are placed into the low-power mode along with their L1 caches.
Note that, these percentages are valid for each nest of each ap-
plication. That is, in each loop nest, the same percentage of

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

3s
te

p-
log ad

i
bt

rix
ef

lux

fu
ll-s

ea
rc

h

n-
re

al-
up

da
te

s tsf

O
ve

rh
ea

d
B

re
ak

do
w

n

Array Duplication Checksum Comparison Reactivation

Fig. 4. Breakdown of performance overheads into three categories.

TABLE IV
STATISTICS WHEN 20% OF THE IDLE PROCESSORS ARE USED

FOR COMPUTATION DUPLICATION. AS COMPARED TO TABLE III,
WE HAVE MORE CYCLES AND MORE ENERGY CONSUMPTION

HERE DUE TO DUPLICATION.

Benchmark Cycles Dynamic Leakage
Name (Million) Energy (uJ) Energy (uJ)

3step-log 15623 25253.15 35313.51
adi 242 756.49 836.72
btrix 91089 127330.08 104521.98
eflux 1318 2816.13 2753.38
full-search 103233 165538.25 25913.14
n-real-updates 182 520.32 519.68
tsf 276 969.60 387.67

idle processors are used for duplication. In the results shown
in Figure 5, the EDF values for each application are normalized
with respect to the EDF values when 20% of the idle processors
are used for computation duplication (the absolute cycles, dy-
namic and static energy consumption values for the case when
20% of the idle processors are used for duplication are given in
Table IV). It can be observed from the results in Figure 5 that
the trends in general are similar across the different applica-
tions. Most of the applications have a decrease at first in EDF
as we increase the percentage of idle processors used for com-
putation duplication, which can be attributed to the increased
reliability we have as more iterations are duplicated. However,
we also observe that, beyond a certain point, using more idle
processors for duplication increases EDF since the increased
energy consumption and execution time (to a lesser extent)
starts to offset the benefits brought by more duplicated itera-
tions. Therefore, it is important to pick a suitable percentage
of duplication for a given application to reach a good tradeoff
point between performance, energy, and reliability. Only two
applications, namely full-search and tsf, exhibit slightly dif-
ferent trends. Their curves keep decreasing as the percentage
of duplicates increases. This can be attributed to the relative
lower leakage energy consumed by these two applications (as
compared to their dynamic energy consumptions). Lower leak-
age energy consumption means less energy savings brought by
putting the idle processors into the low-power operating mode.
Therefore, as we use more processors for duplication, the ben-
efits coming from the increased reliability (i.e., the decreased
fallibility) can be offset by the increased energy consumption
(as far as the EDF metric is concerned). We can also observe
from Figure 5 that the different applications reach their opti-
mum (minimum) EDF values at different points. For example,
eflux reaches its optimum result at 30%, whereas 3-step-log
achieves its optimum result at 50%. As has been discussed

Fig. 5. The EDF values with the different percentage of idle
processors being used for computation duplication. The EDF values
for each application are normalized with respect to the EDF value
when 20% of the idle processors are used for duplication.

(a) n-real-updates. (b) tsf.

Fig. 6. Normalized EDF for the different loop nests in n-real-updates
(left) and tsf (right). n-real-updates has three loop nests, denoted by
N1, N2, N3, and tsf has four loop nests, denoted by N1, N2, N3, and
N4.

above, leakage energy consumption behavior can affect the op-
timum point. In addition to this, the overheads incurred by
computation duplication are also a factor for some applica-
tions. If the overhead brought by computation duplication is
high, a small percentage in duplication will be favored. Oth-
erwise, using more processors for duplication can be expected
to be more beneficial as far as the EDF metric is concerned.
Overall, these results suggest that the percentage of compu-
tation duplication used should be tuned for each application
separately.

Figure 6 presents the EDF curves for individual loop nests
in two benchmarks: n-real-updates and tsf. It can be seen from
Figure 6(a) that the curves for N1 and N3 in n-real-updates
are almost overlapped, whereas N2 exhibits a different pattern.
Specifically, one would prefer to use a relatively small percent-
age value, say about 40%, for N1 and N3, but use a large per-
centage value for N2, as suggested by the trend exhibited by
the N2’s curve. The curves for loop nests of tsf, shown in Fig-
ure 6(b), are relatively flat. It can still be observed though that
the different loop nests have different trends. For example, N4
reaches its optimum point at 70%, while the other three loop
nests are not very sensitive to the percentage change. All of
these observations indicate that, to obtain the best tradeoffs,
one should consider adaptive computation duplication in the
granularity of loop nests, in addition to adaptive computation
duplication at application level. To sum up, the results pre-
sented in Figure 5 and Figure 6 motivate for application-level
and loop nest-level adaptation, respectively, in utilizing the idle
processors.

V. CONCLUSIONS

Single metric based compilation strategies are not sufficient
for current complex embedded systems, where multiple con-
straints (e.g., power, performance, reliability) are important
and need to be accounted for at the same time. In this context,
maybe the most useful class of optimizations are those that op-
timize for one metric without impacting the others excessively.
Motivated by this view, in this paper we evaluate a reliability
oriented compilation strategy for embedded chip multiproces-
sors based on computation duplication. Using a new metric,
called the energy-delay-fallibility product (EDF), we study the
impact of the percentage of idle processors used for computa-
tion duplication. Our results suggest that an adaptive scheme
in choosing the number of idle processors for computation du-
plication is needed to achieve the best tradeoffs between per-
formance, energy efficiency, and reliability.

REFERENCES

[1] C. Bolchini. A Software Methodology for Detecting Hardware Faults in VLIW
Datapaths. IEEE Transactions on Reliability, 52(4):458-468, December 2003.

[2] Chip Multiprocessing. http://industry.java.sun.com/javanews/stories/print/
0,1797,32080,00.html

[3] Chip Multiprocessing. ITWorld.Com, http://www.itworld.com/Comp/ 1092/CW-
STO54343/

[4] V. Degalahal, R. Rajaram, N. Vijaykrishanan, Y. Xie , and M. J Irwin. The Effect
of Threshold Voltages on Soft Error Rate. In Proc. ISQED, San Jose, CA, 2004.

[5] A. Fraboulet, K. Kodary, and A. Mignotte. Loop Fusion for Memory Space Op-
timization. In Proc. the International Symposium on System Synthesis, Montreal,
Canada, September 30-October 3, 2001.

[6] C. Gong, R. Melhem and R. Gupta. Compiler-Assisted Fault Detection for Dis-
tributed Memory Systems. In Proc. the Scalable High Performance Computing
Conference, Knoxville, TN, 1994.

[7] M. W. Hall, J. M. Anderson, S. P. Amarasinghe, B. R. Murphy, S.-W. Liao, E.
Bugnion, and M. S. Lam. Maximizing Multiprocessor Performance with the SUIF
Compiler. IEEE Computer, Dec 1996.

[8] J. G. Holm and P. Banerjee. Low Cost Concurrent Error Detection in a VLIW
Architecture Using Replicated Instructions. In Proc. the International Conference
on Parallel Processing, pp. 192-195, 1992.

[9] C-H. Hsu and U. Kremer. Single Region vs. Multiple Regions: A Comparison of
Different Compiler-Directed Dynamic Voltage Scheduling Approaches. In Proc.
PACS Workshop, Cambridge, MA, February 2002.

[10] I. Kadayif, M. Kandemir, and M. Karakoy. An Energy Saving Strategy Based
on Adaptive Loop Parallelization. In Proc. Design Automation Conference, June
10-14, 2002, New Orleans, Louisiana, USA.

[11] S. Kaxiras, Z. Hu, M. Martonosi. Cache Decay: Exploiting Generational Behavior
to Reduce Cache Leakage Power. In Proc. the 28th International Symposium on
Computer Architecture, Sweden, June 2001.

[12] S. Kim and A. Somani. Area Efficient Architectures for Information Integrity
Checking in Cache Memories. In Proc. ISCA, May 1999.

[13] V. Krishnan and J. Torrellas. A Chip Multiprocessor Architecture with Specula-
tive Multi-threading. IEEE Transactions on Computers, Special Issue on Multi-
threaded Architecture, September 1999.

[14] M. Lorenz, L. Wehmeyer, and T. Drager. Energy-Aware Compilation for DSPs
with SIMD Instructions. In Proc. LCTES, Berlin, Germany, 2002.

[15] K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson, and K. Chang. The Case
for a Single Chip Multiprocessor. In Proc. ASPLOS, 1996, pp. 2–11.

[16] K. Richter, M. Jersak, and R. Ernst. A Formal Approach to MpSoC Performance
Verification. IEEE Computer, (Vol. 36, No. 4), April 2003.

[17] Simics Tool-set. http://www.simics.com.

[18] R. Sasanka et al. The Energy Efficiency of CMP vs. SMT for Multimedia Work-
loads. In Proc. ICS, June 2004.

[19] P. Stanley-Marbell and D. Marculescu. Dynamic Fault-Tolerance and Metrics for
Battery Powered, Failure-Prone Systems. In Proc. ICCAD, San Jose, CA, 2003.

[20] M. Strout, L. Carter, J. Ferrante, and B. Simon. Schedule-Independent Storage
Mapping in Loops. In Proc. the International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, October, 1998.

[21] W. Thies et al. A Unified Framework for Schedule and Storage Optimization. In
Proc. PLDI, Snowbird, UT, June, 2001.

[22] Y. Zhao and S. Malik. Exact Memory Size Estimation for Array Computations
without Loop Unrolling. In Proc. DAC, June 1999.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

