Principles Of Digital Design

Flip-Flops

Clocks
Latches
Flip-flops
State diagrams

Topic preview

Sequential components

- Sequential components contain memory elements
- The output values of sequential components depend on the input values and the values stored in the memory elements
- The values in the memory elements define the state of sequential components
- Example : Ring counter that starts the answering machine after 4 rings
- Sequential components can be
(1) asynchronous or (2) synchronous
- Asynchronous sequential components change their state and output values as a response to change in input values
- Synchronous sequential components change their state and output values at fixed points of time defined by the clock signal

Clock signal

- Clock period (measured in micro, nano seconds) is the time between successive transitions in the same direction
- Clock frequency (measured in MHz, GHz) is the reciprocal of clock period
- Clock width is the time interval during which clock is equal to 1
- Duty cycle is the ratio of the clock width and clock period
- Clock signal is active high if the changes occur at the rising edge or during the clock width
- Clock signal is active low otherwise

SR-latch (NOR implementation)

-SR-latch has two states: (1) set state $(\mathrm{Q}=1)$ and (2) reset state $(\mathrm{Q}=0)$

S	R	Q	Q (next)	Q^{\prime} (next)	
0	0	0	0	1	(hold)
0	0	1	1	0	(hold)
0	1	X	0	1	(reset)
1	0	X	1	0	(set)
1	1	X	0	0	(?)

Truth table

Gated SR-latch

-Control signal C activates the latch

Graphic symbol

Logic schematic

C	S	R	Q	$Q($ next $)$	
$\mathbf{0}$	X	X	0	0	(inactive)
$\mathbf{0}$	X	X	1	1	(inactive)
1	0	0	0	0	(hold)
1	0	0	1	1	(hold)
1	0	1	X	0	(reset)
1	1	0	X	1	(set)
1	1	1	X	NA	(?)
			Truth table		

Gated D-latch

Graphic symbol

D

C

Logic schematic

Truth table

Timing diagram
-Setup time is minimum time inputs must be stable before $\mathbf{C} \downarrow$
-Hold time is minimum time inputs must be stable after $\mathbf{C} \downarrow$

- Q follows D while C is asserted as long as D satisfies setup and hold time restrictions

Flip Flops

- Latches are level-sensitive since they respond to input changes during clock width.
- Latches are difficult to work with for this reason.
- Flip-Flops respond to input changes only during the change in clock signal.
- They are easy to work with though more expensive than latches.
- Several styles of flip-flops are available.
(1) master-slave (MS)
(2) edge-triggered (ET)
(3) ...

Erroneous shifting with \mathbf{D}-latches

-Erroneous operation is possible with level-sensitive latches

Note: Low-to-high delay is 4.0 ns . High-to-low delay is 3.0ns.

Master-slave flip-flop

-In a MS flip-flop D is sampled and stored at the rising edge (low-to-high) of the Clk signal

Shifting with master-slave flip-flops

Flip-flop types

Note: For master-slave flip-flops data inputs must satisfy set-up and hold time constraints.

A latch / fllip-flop with asynchronous inputs

D latch
Graphic symbol

Summary

- We introduced memory elements
- Latches (asynchronous)
- Flip-flops (synchronous)
- We presented several ways to describe memory elements
- Characteristic tables
- Characteristic equations
- State diagrams
- Timing diagrams
- We introduced the concept of a state diagram >> FSM

