Chapter 5

Combinatorial Components

- Transformational Components
- Conversion Components
- Interconnection Components
- Universal Components
Digital Components

- Digital components are divided into
 - **Combinatorial components**
 - Easy to design, partition, and test
 - **Sequential components**

Combinatorial Logic Circuit
(Logic Gates)

outputs = \(f \) (inputs)

\(n \) inputs \(\rightarrow \) \(m \) outputs

Sequential Logic Circuit
(Logic Gates)

outputs = \(f \) (inputs, time)

\(n \) inputs \(\rightarrow \) \(m \) outputs

Memory
Combinatorial Components

- **Data Transformation Components**
 - Arithmetic Operation (Add, Subtract, Multiply, Divide)
 - Logic Operation (AND, OR, NOT, ...)
 - Data Comparison (Greater-than, Equal, Less-than, ...)
 - Bit Manipulation (Shift, Rotate, Extract, ...)

- **Data Conversion Components**
 - Data Encoding
 - Data Decoding

- **Interconnection Components**
 - Source and Destination Selection
 - Bus Connections and Interface

- **Universal Components (Found in Control Units for Random Boolean Functions)**
 - Read-only Memories (ROMs)
 - Programmable Logic Arrays (PLA)
Design Principles

- **Encapsulation**
 - Define simple building blocks

- **Iteration**
 - Replicate building blocks as much as possible

- **Hierarchy**
 - Compose larger building blocks from smaller ones
Ripple-Carry (Serial) Adder

<table>
<thead>
<tr>
<th>x_i</th>
<th>y_i</th>
<th>c_i</th>
<th>c_{i+1}</th>
<th>s_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Truth Table

Map Representation

Graphic Symbol

Logic Schematic

8-bit Adder Unit Schematic
Carry Computation

Carry function:
\[c_{i+1} = x_i y_i + c_i (x_i \oplus y_i) \]

Let \(g_i = x_i y_i \), \(p_i = x_i \oplus y_i \), then
\[
\begin{align*}
 c_{i+1} &= g_i + p_i c_i & (1) \\
 c_{i+2} &= g_{i+1} + p_{i+1} c_{i+1} & (2) \\
 c_{i+3} &= g_{i+2} + p_{i+2} c_{i+2} & (3) \\
 c_{i+4} &= g_{i+3} + p_{i+3} c_{i+3} & (4)
\end{align*}
\]

After forward substitution
\[
\begin{align*}
 c_{i+1} &= g_i + p_i c_i & (5) \\
 c_{i+2} &= g_{i+1} + p_{i+1} g_i + p_{i+1} p_i c_i & (6) \\
 c_{i+3} &= g_{i+2} + p_{i+2} g_{i+1} + p_{i+2} p_{i+1} g_i + p_{i+2} p_{i+1} p_i c_i & (7) \\
 c_{i+4} &= g_{i+3} + p_{i+3} g_{i+2} + p_{i+3} p_{i+2} g_{i+1} + p_{i+3} p_{i+2} p_{i+1} g_i + p_{i+3} p_{i+2} p_{i+1} p_i c_i & (8)
\end{align*}
\]

Carry-look-ahead function:
\[
 c_{i+4} = g_{(i,i+3)} + p_{(i,i+3)} c_i & (9)
\]

where
\[
\begin{align*}
 g_{(i,i+3)} &= g_{i+3} + p_{i+3} g_{i+2} + p_{i+3} p_{i+2} g_{i+1} + p_{i+3} p_{i+2} p_{i+1} g_i & (10) \\
 p_{(i,i+3)} &= p_{i+3} p_{i+2} p_{i+1} p_i & (11)
\end{align*}
\]
CLA Generator

4-bit Slice of Ripple–Carry Adder

4-bit Slice of Adder with CLA Generator

Copyright © 2004-2005 by Daniel D. Gajski
CLA Generator

Logic Schematic of CLA
Carry Chain Delays

4-bit Ripple–Carry Adder Slice

Carry Chains

<table>
<thead>
<tr>
<th>Carry Chains</th>
<th>Delay</th>
</tr>
</thead>
<tbody>
<tr>
<td>from (c_i(x_i, y_i)) to (c_{i+1})</td>
<td>4.8 (9.0)</td>
</tr>
<tr>
<td>from (c_i(x_i, y_i)) to (c_{i+2})</td>
<td>9.6 (13.8)</td>
</tr>
<tr>
<td>from (c_i(x_i, y_i)) to (c_{i+3})</td>
<td>14.4 (18.6)</td>
</tr>
<tr>
<td>from (c_i(x_i, y_i)) to (c_{i+4})</td>
<td>19.2 (23.4)</td>
</tr>
<tr>
<td>from (c_i(x_i, y_i)) to (g_{(i+1)})</td>
<td>N/A</td>
</tr>
<tr>
<td>from (c_i(x_i, y_i)) to (p_{(i+1)})</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Ripple and CLA Delays for 4-bit Adder Slice
16-bit CLA Adder

16-bit Adder with Single-Level CLA Generator

16-bit Adder with Two-Level CLA Generator

<table>
<thead>
<tr>
<th>Carry Chains</th>
<th>Delay</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ripple</td>
</tr>
<tr>
<td>from (c_i(x_i, y_i)) to (c_4)</td>
<td>19.2 (23.4)</td>
</tr>
<tr>
<td>from (c_i(x_i, y_i)) to (c_8)</td>
<td>38.4 (42.6)</td>
</tr>
<tr>
<td>from (c_i(x_i, y_i)) to (c_{12})</td>
<td>57.6 (61.8)</td>
</tr>
<tr>
<td>from (c_i(x_i, y_i)) to (c_{16})</td>
<td>76.8 (81.0)</td>
</tr>
</tbody>
</table>

Ripple and CLA Delays for 16-bit Adder Slice
Two’s Complement Adder/Subtractor

- Two’s complement subtraction
 \[A - B = A + B' + 1 \]

- Subtraction Procedure
 - Complement \(B \)
 - Set input carry to 1
 - Add to \(A \)

Truth Table

<table>
<thead>
<tr>
<th>(S)</th>
<th>Function</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(A + B)</td>
<td>Addition</td>
</tr>
<tr>
<td>1</td>
<td>(A + B' + 1)</td>
<td>Subtraction</td>
</tr>
</tbody>
</table>

8-bit Adder/Subtractor Unit Schematic

Copyright © 2004-2005 by Daniel D. Gajski

Slides by Philip Pham, University of California, Irvine
16-Function Logic Unit

- Boolean functions of two variables have two inputs, one output, and four minterms.
- There are 16 Boolean functions of four variables (4 control lines)

\[s_i = S_0 m_0 + S_1 m_1 + S_2 m_2 + S_3 m_3 \]
\[= S_0 x'_1 y'_i + S_1 x'_1 y_i + S_2 x_i y'_i + S_3 x_i y_i \]
16-Function Logic Unit

- Boolean functions of two variables have two inputs, one output, and four minterms.
- There are 16 Boolean functions of four variables (4 control lines)

\[s_i = S_0 m_0 + S_1 m_1 + S_2 m_2 + S_3 m_3 \]
\[= S_0 x'_i y'_i + S_1 x'_i y_i + S_2 x_i y'_i + S_3 x_i y_i \]
Arithmetic-Logic Unit

- **AE = Arithmetic Extender** (Add, Subtract, Increment, Decrement)
- **LE = Logic Extender** (AND, OR, PASS, NOT)

![4-bit Arithmetic-Logic Unit Schematic](image-url)
Arithmetic Extender

<table>
<thead>
<tr>
<th>M</th>
<th>S_1</th>
<th>S_0</th>
<th>Function Name</th>
<th>F</th>
<th>X</th>
<th>Y</th>
<th>c_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>Decrement</td>
<td>$A - 1$</td>
<td>A</td>
<td>all 1’s</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>Add</td>
<td>$A + B$</td>
<td>A</td>
<td>B'</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>Subtract</td>
<td>$A - B$</td>
<td>A</td>
<td>B'</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Increment</td>
<td>$A + 1$</td>
<td>A</td>
<td>all 0’s</td>
<td>1</td>
</tr>
</tbody>
</table>

Truth Table

<table>
<thead>
<tr>
<th>M</th>
<th>S_1</th>
<th>S_0</th>
<th>b_i</th>
<th>y_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Map Representation

$y_i = M S'_1 b_i + M S'_0 b'_i$

Logic Schematic
Logic Extender

<table>
<thead>
<tr>
<th>M</th>
<th>S_1</th>
<th>S_0</th>
<th>Function Name</th>
<th>F</th>
<th>X</th>
<th>Y</th>
<th>c_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Complement</td>
<td>A'</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>AND</td>
<td>A AND B</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>Identity</td>
<td>A</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>OR</td>
<td>A OR B</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Truth Table

<table>
<thead>
<tr>
<th>M</th>
<th>S_1</th>
<th>S_0</th>
<th>x_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>a'_i</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>a_ib_i</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>a_i</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>$a_i + b_i$</td>
</tr>
<tr>
<td>1</td>
<td>X</td>
<td>X</td>
<td>a_i</td>
</tr>
</tbody>
</table>

Functional Table

$M = 0$

<table>
<thead>
<tr>
<th>S_1</th>
<th>S_0</th>
<th>x_i, y_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1, 1, 3, 2</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>5, 1, 6</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>12, 13, 14</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>8, 9, 11, 10</td>
</tr>
</tbody>
</table>

$M = 1$

<table>
<thead>
<tr>
<th>S_1</th>
<th>S_0</th>
<th>x_i, y_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>16, 17, 19, 18</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>26, 21, 25</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>24, 25, 27, 28</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1, 1, 1, 1</td>
</tr>
</tbody>
</table>

Map Representation

$$x_i = M'S_1S_0a' + M'S_1S_0b + S_0a + S_1a_i + M a_i$$

Logic Schematic

S_0 S_1 M x_i a_i b_i
Final ALU Schematic

4-bit Arithmetic Logic Unit Schematic
1-to-2 Decoder

- Decoders (Demultiplexers) are used for enabling components

Truth Table

<table>
<thead>
<tr>
<th>E</th>
<th>A_0</th>
<th>C_1</th>
<th>C_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>X</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Boolean Expression

\[
C_0 = EA'_0 \\
C_1 = EA_0
\]

Graphic Symbol

Logic Schematic
2-to-4 Decoder

Diagram and Truth Table:

Boolean Expression:
- $C_0 = E_0 A'_1 A'_0$
- $C_1 = E_0 A'_1 A_0$
- $C_2 = E_0 A_1 A'_0$
- $C_2 = E_0 A_1 A_0$

Truth Table:

<table>
<thead>
<tr>
<th>E</th>
<th>A_1</th>
<th>A_0</th>
<th>C_3</th>
<th>C_2</th>
<th>C_1</th>
<th>C_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Logic Schematic
3-to-8 Decoder

- Larger decoders can be built as a tree of smaller decoders

<table>
<thead>
<tr>
<th>E</th>
<th>A_2</th>
<th>A_1</th>
<th>A_0</th>
<th>C_7</th>
<th>C_6</th>
<th>C_5</th>
<th>C_4</th>
<th>C_3</th>
<th>C_2</th>
<th>C_1</th>
<th>C_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Implementation with 1-to-2 Decoders

Implementation with 2-to-4 Decoders

Truth Table

Decoder

Graphic Symbol
2-to-1 Selector

- Selectors (Multiplexers) are used for selecting one of many sources of data

$$Y = S'D_0 + S'D_1$$

Graphic Symbol

Truth Table

Logic Schematic
4-to-1 Selector

Truth Table

<table>
<thead>
<tr>
<th>S_1</th>
<th>S_0</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>D_0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>D_1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>D_2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>D_3</td>
</tr>
</tbody>
</table>

Boolean Expression

$$Y = S'_1 S'_0 D_0 + S'_1 S_0 D_1 + S_1 S'_0 D_2 + S_1 S_0 D_3$$

Logic Schematic
8-to-1 Selector

Implementation with 2-to-1 Selectors

Truth Table

<table>
<thead>
<tr>
<th>S_2</th>
<th>S_1</th>
<th>S_0</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>D_0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>D_1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>D_2</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>D_3</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>D_4</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>D_5</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>D_6</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>D_7</td>
</tr>
</tbody>
</table>

Implementation with 3-to-8 Decoder

Copyright © 2004-2005 by Daniel D. Gajski
- Bus drivers have three possible output values:
 0, 1, and Z (High Impedance ≈ Disconnection)
2-to-1 Priority Encoder

- Encoder is opposite of decoder, but with priority for MSB

```
A_0 = D_1
Any = D_0 + D_1
```

Truth Table

<table>
<thead>
<tr>
<th>D_1</th>
<th>D_0</th>
<th>A_0</th>
<th>Any</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>X</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Logic Schematic
4-to-2 Priority Encoder

Graphic Symbol

\[A_0 = D'_2 D_1 + D_3 \]
\[A_1 = D_2 + D_3 \]
\[\text{Any} = D_0 + D_1 + D_2 + D_3 \]

Boolean Expression

Truth Table

<table>
<thead>
<tr>
<th>(D_3)</th>
<th>(D_2)</th>
<th>(D_1)</th>
<th>(D_0)</th>
<th>(A_1)</th>
<th>(A_0)</th>
<th>(\text{Any})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>X</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>X</td>
<td>X</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Logic Schematic
8-to-3 Priority Encoder

- Larger encoders can be built from smaller encoders and selectors

<table>
<thead>
<tr>
<th>D_7</th>
<th>D_6</th>
<th>D_5</th>
<th>D_4</th>
<th>D_3</th>
<th>D_2</th>
<th>D_1</th>
<th>D_0</th>
<th>A_2</th>
<th>A_1</th>
<th>A_0</th>
<th>Any</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>X</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Truth Table

Implementation with 2-to-1 Encoders and Selectors

Implementation with 4-to-2 Encoder
2-bit Magnitude Comparator

- \(G = 1 \) when \(X > Y \),
- \(L = 1 \) when \(X < Y \),
- \(G = L = 0 \) when \(X = Y \).

<table>
<thead>
<tr>
<th>(x_1)</th>
<th>(x_0)</th>
<th>(y_1)</th>
<th>(y_0)</th>
<th>(G)</th>
<th>(L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

\(G = x_1y'_1 + x_0y_0' + x_1x_0y_0' \)

\(L = x'_1y'_1 + x'_0x'd_0 + x_0y'_1y_0 \)

Truth Table

Logic Schematic
8-bit Magnitude Comparator

- Larger magnitude comparators can be constructed from basic 2-bit comparators using the following equations:

\[G_i = (x_i > y_i) \text{ OR } ((x_i = y_i) \text{ AND } (G_{i-1} > L_{i-1})) \]

\[L_i = (x_i < y_i) \text{ OR } ((x_i = y_i) \text{ AND } (G_{i-1} < L_{i-1})) \]
8-bit Shifter

- 1-bit left or right shift or rotation

<table>
<thead>
<tr>
<th>S_2</th>
<th>S_1</th>
<th>S_0</th>
<th>Y</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>X</td>
<td>D</td>
<td>No Shift</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>X</td>
<td>Not Used</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>$\text{shl}(D)$</td>
<td>Shift Left</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>$\text{rtl}(D)$</td>
<td>Rotate Left</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>$\text{shr}(D)$</td>
<td>Shift Right</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>$\text{rtr}(D)$</td>
<td>Rotate Right</td>
</tr>
</tbody>
</table>

Shifter Implemented with 4-to-1 Selectors
8-bit Barrel Right Rotator

- Right rotation from 0 to 7 bit position

<table>
<thead>
<tr>
<th>S_2</th>
<th>S_1</th>
<th>S_0</th>
<th>y_7</th>
<th>y_6</th>
<th>y_5</th>
<th>y_4</th>
<th>y_3</th>
<th>y_2</th>
<th>y_1</th>
<th>y_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>d_7</td>
<td>d_6</td>
<td>d_5</td>
<td>d_4</td>
<td>d_3</td>
<td>d_2</td>
<td>d_1</td>
<td>d_0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>d_0</td>
<td>d_7</td>
<td>d_6</td>
<td>d_5</td>
<td>d_4</td>
<td>d_3</td>
<td>d_2</td>
<td>d_1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>d_1</td>
<td>d_0</td>
<td>d_7</td>
<td>d_6</td>
<td>d_5</td>
<td>d_4</td>
<td>d_3</td>
<td>d_2</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>d_2</td>
<td>d_1</td>
<td>d_0</td>
<td>d_7</td>
<td>d_6</td>
<td>d_5</td>
<td>d_4</td>
<td>d_3</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>d_3</td>
<td>d_2</td>
<td>d_1</td>
<td>d_0</td>
<td>d_7</td>
<td>d_6</td>
<td>d_5</td>
<td>d_4</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>d_4</td>
<td>d_3</td>
<td>d_2</td>
<td>d_1</td>
<td>d_0</td>
<td>d_7</td>
<td>d_6</td>
<td>d_5</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>d_5</td>
<td>d_4</td>
<td>d_3</td>
<td>d_2</td>
<td>d_1</td>
<td>d_0</td>
<td>d_7</td>
<td>d_6</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>d_6</td>
<td>d_5</td>
<td>d_4</td>
<td>d_3</td>
<td>d_2</td>
<td>d_1</td>
<td>d_0</td>
<td>d_7</td>
</tr>
</tbody>
</table>

Truth Table

Rotator Implemented with 2-to-1 Selectors
Read-Only Memory (ROM)

- ROMs can be used for implementation of SOP forms

<table>
<thead>
<tr>
<th>Computational Symbols</th>
<th>Programmable Symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td>A B C D</td>
<td>A B C D</td>
</tr>
</tbody>
</table>

Truth Table

OR Array

16 × 4 ROM

F₀ F₁ F₂ F₃
Adder/Subtractor Bit-slice Using a 16×4 ROM

Truth Table

<table>
<thead>
<tr>
<th>A_3 (S)</th>
<th>A_2 (a_i)</th>
<th>A_1 (b_i)</th>
<th>A_0 (c_i)</th>
<th>F_3</th>
<th>F_2</th>
<th>F_1</th>
<th>F_0 (c_{i+1})</th>
<th>s_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>X</td>
<td>X</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>X</td>
<td>X</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>X</td>
<td>X</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>X</td>
<td>X</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>X</td>
<td>X</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>X</td>
<td>X</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

OR Array

16 × 4 ROM
Programmable Logic Arrays (PLA)

- Contrary to ROMs, PLA’s have a programmable decoder
- In comparison to ROMs, PLA’s can implement Boolean functions with more variables, but less terms
Full-Adder with a PLA

![Diagram](image)

Truth Table

<table>
<thead>
<tr>
<th>A_3</th>
<th>A_2</th>
<th>A_1</th>
<th>A_0</th>
<th>F_3</th>
<th>F_2</th>
<th>F_1</th>
<th>F_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>X</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>X</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>X</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>X</td>
<td>X</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>X</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>X</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>X</td>
<td>X</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>X</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>X</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>X</td>
<td>X</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Map Representation

$s_i = x_i \oplus y_i \oplus c_i$

$e_{i+1} = x_i y_i + c_i (x_i \oplus y_i)$

PLA Implementation

- **OR Array**
- **AND Array**
- **Output Array**

Copyright © 2004-2005 by Daniel D. Gajski

Slides by Philip Pham, University of California, Irvine
Chapter Summary

- Described basic combinatorial components:
 - Adders
 - Subtractors
 - ADLUs
 - Logic Units
 - Decoders
 - Selectors
 - Buses
 - Encoders
 - Comparators
 - Shifters
 - ROMs
 - PLAs

- Presented design for combinatorial components

- Discussed procedures for building larger components from smaller ones