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Chapter 1. Introduction

The basic purpose of this tutorial is to guide a user through our Embedded System En-
vironment (ESE) Front End. ESE helps designers to take C/C++ application processes
and graphical platform capture and automatically produce Transaction Level Models
(TLMs) for functional verification and performance estimation. Extensive information
about ESE and its projected impact on embedded system design processes is available
on our website at htt://www.cecs.uci.edu/~ese

The tutorial demostrates ESE Front End being used for TLM generation using the JPEG
encoder and MP3 decoder applications. Three platforms are used for this purpose. The
first platform consists of five microprocessors connected via a shared bus and commu-
nicating each other using a memory architecture. This platform is representative of a
multi-processor design where all components are programmable. The second platform
demonstrates usage of ESE for heterogeneous system design with one microprocessor
and four HW accelerators. The HW Intellectual Properties (IPs) have a proprietary bus
protocol which requires a protocol convertor between the processor bus and IP bus. The
last platforms has two multi-threaded microprocessors to which several processes are
mapped, thus it needs a Real-Time Operating System (RTOS) model to control the ex-
ecution of the processes in a microprocessor. The design examples show the versatility
of ESE, which is a huge benefit over manually written virtual platforms.

The tutorial gives a step by step illustration of using ESE Front End. Screenshots of
the Graphical User Interface (GUI) are presented to aid the user in using the various
features of ESE. Please note that, depending on your specific version of ESE and your
system settings, the screen shots shown in this document may be slightly different from
the actual display on your screen. The screenshots at each design step are supplemented
with brief observations about the specific ESE feature. This would help the designer
to gain an insight into the design process instead of merely following the demostration
steps. We wind up the tutorial with a conclusion and references.

1.1. Motivation

The rise in complexity of modern design has forced system designers to move to higher
levels of abstraction above Register Transfer Level (RTL) and traditional cycle accurate
design. Therefore, models such as TLMs that provide manyfold speedup over RTL sim-
ulation are being used. However, in order for TLMs to be synthesizable to Hardware
(HW) and Software (SW) implementation, they must follow well defined semantics.
These semantics are currently missing in the industry and TLM standards. Moreover,
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enforcing semantics is not easy with manual modeling.

Secondly, embedded application developers come from a variety of different engineering
backgrounds and are not necessarily adept at electronic deign. Model automation tools
are needed for such developers so that they do not need to learn modeling languages
such as SystemC.

Thirdly, businesses that use external suppliers for their embedded system designs need
unabmiguous executable specifications for design hand-off. An even better proposition
would be to build pre-silicon board prototypes in house. This would reduce the chances
for mis-communication in requirement specification and lead to a more robust design
process. Consequently, tools are required that take abstract applications and platforms
and quikcly produce fast TLMs and board prototypes.

It is with these challenges in mind that we have come up with ESE that takes off the
drudgery of manual modeling from system designers. It enables non-experts to create
system models and generate board prototypes using a convenient graphical interface.

1.2. Embedded System Environment

Figure 1-1. ES Environment

o
s
a

User ser
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C +RTL

ESE consists of a Front-End and a Back-End supported by two interfaces as shown in
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Section 1.2 Embedded System Environment (page 2). The Front-End consists of System
Capture, which is a GUI for capturing the definition of the platform architecture and
product application code. Platform Development tool generates timed TLMs of the plat-
form architecture executing the product application defined by the capture tool. These
timed TLMs provide reliable performance metrics and are used for early exploration of
design choices. In the Back-End, the HW Development component is used to generate
cycle-accurate or RTL description of the HW components which can be further refined
by commercially available tools for Application-Specific Integrated Cuircuit (ASIC) or
Field Programmable Gate Array (FPGA) manufacturing. SW Development generate
firmware necessary to run communication and application SW on the platform. Vali-
dation User Interface is used to debug and validate developed SW and HW. Decision
User Interface is used by the designer, to estimate the quality metrics and make deci-
sions such as component selection, task scheduling, mapping of SW functions to HW
components and others.

1.3. ESE Front End Design Flow

Figure 1-2. ES Environment

PE/RTOS
Models

— )
Bus/Bridge
Models

SystemC
Simulation

The inputs to ESE Front-End are the system definition consisting of a platform and
application code. A library of processing elements, buses, bridges and RTOS is provided
in ESE to develop such a platform. The retargetable timing estimation tool in ESE is
used to annotate timing to the application code based on the mapping of application
code on the platform components. The timed application and platform are input to the
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TLM generator tool that uses the bus and bridge models to generate a SystemC TLM.
This SystemC TLM can be simulated by any commercial or freely available SystemC
simulator to provide the performance metrics. The designer can use the metrics to make
to application code and/or the platform in order to optimize the system for a particular
metric.

1.4. Design Example

To demonstrate the usefulness of ESE, two applications were chosen, JPEG encoder and
MP3 decoder. JPEG encoder is used to demonstrate multiprocessor system design and
system design including RTOS with ESE. MP3 decoder is used to demonstrate hetero-
geneous system design with ESE.

1.4.1. JPEG Encoder

Figure 1-3. JPEG Encoder

oMP | Ima Zi E peg
ge . igzag ntropy "
{ Read g Suanize Scan Coder

Figure 1-3 shows the block diagram of JPEG encoder. It takes a BMP as an input and
outputs an encoded JPEG file. In general, JPEG encoder consists of five processes.
First, it partitions the image into 8x8 blocks of pixels and the blocks are applied to a
2-dimensional DCT. Next, the transform matrix is normalized by an 8x8 quantization
matrix and the quantized DCT coefficients form a matrix. The elements of the matrix
are ordered in a zigzag scan. Then, an entropy coder combined with a run-length coding
of the zeros generates an efficient representation of the quantized coefficients to be trans-
mitted or stored. The C model is used to create test benches with golden JPEG output
files. These test benches are used later to verify the ESE generated TLMs.



1.4.2. MP3 Audio Decoder
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Figure 1-4. MP3 Decoder
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MP3 decoder first reads a codeword via synchronous and error checker. Next, huffman
decoder translates the codeword to several symbols using variable length decoding al-
gorithm and sends it to next stages for requantizing and reordering. Then, the decoded
frequency line is sent to alias reduction and IMDCT. Finally, DCT produces the output
samples. The block diagram in Figure 1-4 shows the IMDCT and DCT transforms that
are applied during the stereo decoding on the left and right channels of the MP3 input.
These function blocks are the most time consuming part of the decoding and are hence
ideal for implementation using custom HW for faster decoding. The C model is also
used to create test benches with golden PCM output files. These test benches are used

later to verify the ESE generated TLMs.
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Chapter 2. Multi-Processor System Design with
ESE

This section deals with design of JPEG encoder on a platform consisting of five Mi-
croBlaze processors. The JPEG application code is available as a C model. The JPEG
encoder has five processes and each process is mapped to a unique processor, thus the
processes can be executed concurrently. The communication between the processes can
take place through pairs of various channels such as process-to-process (or point-to-
point) massege passing channel, shared memory channel and First-In-First-Out (FIFO)
channel. In this Chapter, all the channels in the JPEG encoder are via the FIFO channels.
ESE provides well defined communication APIs for this purpose. The encoded output is
shown graphically during the TLM simulation of the JPEG encoder.

The chapter starts by explaining the set up for ESE. It then shows, using screenshots, how
the platform is created. To speed up the demostration, and to emphasize on the features,
we start with an existing partial platform that is upgraded with additional processors
and a bus. Then we show the application mapping on the platform, followed by TLM
generation, simulation and performance estimation. Thus, we present the core capabil-
ities of the ESE Front-End tools in easy platform design & upgrade, model generation,
validation and estimation.
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2.1. ESE Startup and Settings

Before starting the demonstration, please ensure that you have the ESE software in-
stalled in the right location at "/home/ese/local.” Also make sure that you have an
"/home/ese/local” directory containing the SystemC 2.2.0 libraries and Simple Direct-
media Layer (SDL) libraries that are needed for simulation of generated TLMs. Also
make sure that you have GCC version 3.4 or higher because it is needed to correctly
compile the generated TLMs. The demonstration shown here assumes the user to have
a bourne shell. For C shell, the user may call the ".csh” version of the setup scripts.
Alternately, just use "sh" to create a new bourne shell and follow the tutorial directions.
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2.1.1. Environment Setup

yiahn@ dent:~/work/esedemo/esedemo

File Edit Wiew Terminal Tabs Help
[vjahn@dent esedemo]$ source /home/ese/local/bin/setup.sh [+]

:

We start by setting up the environment variables to access ESE binaries. This is
provided by the "setup.sh™ script in your installation. Typically, the installation path
would be "/home/ese/local.” The script is in the "bin" directory in the installation. The
script modifies your PATH environmental variable to include path to ESE as well as the
LD_LIBRARY_PATH variable to access the shared libraries that ESE depends on. Run
the command "source /home/ese/local/bin/setup.sh™ and create a new local directory for
the demo.
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2.1.2. ESE Demonstration Setup

yiahn@ dent:~/work/esedemo/esedemo

File Edit Wiew Terminal Tabs Help

[vjahn@dent esedemo]$ source /home/ese/local/bin/setup.sh [+]
Setting up environment variables for ESE
[vjahn@dent esedemo]$ esedemo_jpeg.sh

:

Once the environmental variables have been set, the user is ready to launch ESE and
create his or her design. For the purposes of this tutorial, we will start with a partial
design to quickly demonstrate the key capabilities of the toolset. We have created a shell
script called "esedemo_mpd.sh" that prepares a partial design to start the demo for the
JPEG encoder. At this point, run the "esedemo_mpd.sh" script after changing into the
local directory created for the demo.

10
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2.1.3. Launching ESE

yiahn@dent:~/work/esedemo/esedemo

File Edit Wiew Terminal Tabs Help

[vjahn@dent esedemol]$ source /home/ese/local/bin/setup.sh

Setting up environment variables for ESE

[vjahn@dent esedemo]} esedemo_jpeg.sh

ESE demonstration setup for JPEG ENCODER is ready

[vjahn@dent esedemo]$ 1s

./ Jjpeg_platform.eds jpeg_platform_partial srcs@ jpeg_srcs@
../ Jjpeg_platform_partial.eds jpeg_platform_srcs/

[vjahn@dent esedemol$ ese&

[+]

] =]

After running the "esedemo_mpd.sh™ script, you will notice several files in the working
directory. Some of these files will have a ".eds" extension. They are the ESE design
files for the JPEG encoder design that we will be using for this demo. You may also
see links to source directories. These point to the C code for the processes of the JPEG
application. To launch the ESE GUI, simply run "ese" from your shell.

11
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2.1.4. ESE GUI

Eile Edit View Synthesis Validation Windows

EICEN-

Unmapped I

!

Name |Dela\\s |
Processes
Memories Size

Channels

x

Unmapped I

Channel | Source | Destina
Eprocess Channels

Memory Channels
FIFO Channels

x
|

v
Processing ICummumcatmn |Mer<

Hardware IPs
t\MDCTBG B Y|

DCT32 = i = : —
Custom Hardware Compile IS\muIate |Venfy | Analyze | Refine | Synthesize | Shell |

tmsc
Forte
SW Processor
’—ARMQ

[Ready

The ESE GUI should now appear as shown in the screenshot. The GUI has several menu
items that we shall explore over this tutorial. It is divided into five windows. The top left
window is the "PE" window. It organizes the various application processes mapped to
the Processing Elements (PEs) in the design. The mid-left window is the "Channel”
window that organizes the various channels used for communication between the appli-
cation processes. The tabs represent the physical communication links in the platform.
The bottom left window is the "Database" window that organizes the PE, Communcation
Element (CE), memory and RTOS model. The top right window is the "Platform Can-
vas" on which the platform architecture is edited graphically. The bottom right window
is the "Logging" window that logs the messages from various ESE tools.

12
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2.1.5. Editing Database Preferences

(untitled).eds - ESE Environment

File Edit | View Synthesis Validation Windows Help
|0 & & Find... Ctri+F

S Find Next F3 —

Unm:

Find Previous Shift+F3

| Import design... :,

Nami
Pr———————————————

—@ Preferences...
Channels

X

Unmapped I

Channel | Source | Destina
EProcess Channels

Memory Channels
FIFQ Channels

x
'
Processing |Cnmmuni::atinn |Mer< |

Hardware IPs

t\MDCTﬂE S —
DCT32 -

Custom Hardware | complle | Simulate | Verity | Analyze | Refine | Synthesize | Shell |

tmsc |
Forte

SW Processor

’»ARMS

i

|Ready

Before creating a new design, we must ensure that the components needed for our JPEG
platform are accessible by the GUI. To do so, we edit the database preferences by se-
lecting Edit— Preferences from the menu bar.

13
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2.1.6. Select Database File

- (untitled).eds - ESE Environment NEIR

Eile Edit View Synthesis Validation Windows Help
T EIN

Unmapped I

!

Name |Dela\\s |

Processes

Memories Size SSSSSES———————
Channels Preferences (x]

Compiler | I

D

’VIfdataﬂusersﬂese/lcca\fdbfese.sdb Select...

x

Unmapped I

Channel | Source | Destina
Eprocess Channels

Memory Channels
FIFO Channels

x
Processing |Cummumcatmn |Mer1‘ | M ﬁ ﬂl

Hardware IPs

7]
tmocme = ]
DCT32

Custom Hardware 2 Gompile ISimuIats | verity | Analyze | Refine | Synthesize | Shell |
NISC

4

Forte
SW Processor
’—ARMQ

[Ready

In the Preferences dialog, select the tab for Database. This will allow the user to
browse for the database file that has a ".edb" extension. The database file needed for the
JPEG demonstration already comes with the ESE installation. Typically, this file will be
called "ese.edb™ and will be located at "'/data/users/ese/local/db/ese.edb."” If the selection
is not already there, please browse for the file and press OK. All the elelements should
now be visible in the database window, if they weren’t already.

14
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2.2. Platform Creation

We will start by loading the multi-processor design of the JPEG encoder into ESE. As
mentioned earlier, we will start with a partial platform consisting of three Microblaze
processors. Each processor carries the application code for each process in the JPEG
encoder. Two Microblaze processors for “zigzag" and "huffencode™ processes will be
added to the platform. In this section, we will show how to use the database and platform
editor canvas to upgrade a multi-processor platform in ESE.

15
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2.2.1. Open Partial Design

bz (untitled).eds - ESE Environment = GE

File Edit View Synthesis Validation Windows

BEEEI

Unmapped I

Help

!

Name |Data\\5 |
Processes
Memories Size
Channels

(]
Look in: |E:alusersMahn/wnrkﬂesedemcﬂesedemcﬂ _’l - | | ﬁ”_ =

=1

| (& jpeg_platform_partial_srcs
x (Hjpeg_srcs

Unmapped I I jpeg_platform_partial.eds

Channel | Source | Destina
Process Channels

EMemory Channels
FIFQ Channels

File name: ijeg_p\aﬁurm_pama\.eds Open

File type: ~ESE Design Files (*.eds) _’l Cancel |
£

_Ia‘[!

Processing |Cnmmuninaﬂun |Mer< |

Hardware IPs

|
t\MDCTﬂE S —
DCT32

Custom Hardware | complle |Simulate | Verity | Analyze | Refine | Synthesize | Shell |

tmsc |
Forte

SW Processor

’»ARMS

i

|Ready

We begin by adding the already created partial design. The ESE designs are stored in
XML based files with the extension ".eds."” Select File—Open from the menu bar.
Browse into the demo working directory and select "jpeg_mpd_platform_partial.eds."”
This is the design with the partial multi-processor design example. Press Open to open
the design.

16
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2.2.2. View Partial Design

B Jpeg_platform_partial.eds - ESE Environment i
File Edit View Synthesis Validation Windows Help

BEEEI
Xl &
e cPUD cPU1 cPU2
Unmapped | |cPut |cpur | MICROBLAZE MICROBLAZE MICROBLAZE
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The partial platform will appear in the canvas as shown in the above screenshot. We
can see three Microblaze processors CPUO , CPUL and CPU2 in the platform. These
processors are connected via the Open Peripheral Bus (OPB). There are two FIFO chan-
nels in this partial design. Each process has its own process port and the process port is
connected through the FIFO channel. For example, as shown in PE window, CPUQ has
a process named "readbmp™ and the process has a process port named "r2c_if" which is
for sending data from “readbmp” to “chendct”. And the process port is connected to a
FIFO channel named "r2c" as shown in Channel window. Note that these processors are
both connected as "Masters" as indicated by an "M™" at the connecting port. Since bus
masters cannot communicate directly over the bus, we provide a transducer (Tx0) which
consists of a FIFO controller and FIFO memories. It acts as a shared memory for data
transfer between CPUOQ, CPU1 and CPU2.
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2.2.3. Add Processing Element
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Adding a new PE to the platform is very easy. Browse the database under the Process-
ing tab and select Microblaze. Now drag and drop the selection into the platform canvas.
The new PE of type "Microblaze" will be added to the platform!. We need to add two
new PEs for the JPEG encoder.
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2.2.4. View PE Properties
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After the drag-drop, the user will find two new PEs called PEO and PE1 in the platform.
These are the PEs that will host the "zigzag" and "huffencode™ processes in the design.
We start by providing an appropriate names to the new PEs to be consisten with the
rest of the design. To do so, right click on the PEO box and the PE1 box and select
Properties.
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2.2.5. Assign New Name to PE
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In the properties dialog, change the PE name of the PEOQ to "CPU3" and that of the PE1
to "CPUA4" to be consistent with the other PE names.
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2.2.6. Add Port to PE
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The new PEs, CPU3 and CPU4 are not yet connected to the rest of the design. Since the
application processes meant to execute on these PEs will need communication with pro-
cesses on other processors, we must physically connect CPU3 and CPU4 to the shared
OPB bus in the platform. For this physical connection, each port is required for CPU3
and CPU4, respectively. To add the port, simply right-click on the CPU3 and CPU4 box
and select Add Port.

21



Chapter 2. Multi-Processor System Design with ESE

2.2.7. Connect PE to Bus
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The created port must be connected to the OPB bus to be able to communicate with the
rest of the system. Note that CPU3 and CPU4 are Microblaze cores. This means that
they can only connect to the OPB bus as a Master. To connect CPU3 and CPU4, right-
click on the port and select Connect To—OPB0——M from the menu choice. This
will create the bus connection and complete the platform design step. Next, we will look
at application input and its mapping to the created platform.
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2.3. Mapping Application to Platform

The application input model for ESE is C/C++ processes communicating through FIFO
channels. Since most legacy application is written in C, this is an advantage over other
forms of input styles or languages. For communication, the user does not need to write
any SystemC channel code. ESE provides very simple APIs for inter-process communi-
cation as we will see in this section.
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2.3.1. Add Application Process
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The PE window on the top left corner organizes the processes mapped to the various PEs
in the design. In general, several processes may be added for execution on a PE where
RTOS should be involved. The platform which has such multi-threaded processors will
be demonstrated in Chapter 4. In this section, we assume that there is only one process
per PE. To add a new process executing on CPU3, change to the CPUS3 tab. Then right-
click and select Add Process. This will create a new process with a default name. The
same goes for CPUA4.
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2.3.2. Assign Name to New Process
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Change the name of the new process to “zigzag". This is the process for the zigzag scan
in the JPEG encoder application. Please ensure that the process is named correctly since
there exist references to it in the existing partial design. If the process is not named as
suggested, the generated models will not compile. The name of the new process for the
CPU4 is "huffencode™.
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2.3.3. Add C Source File
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The process added in the last step is only symbolic. The user must associate the actual
C/C++ code with it for the models to be functionally correct. In this case, we add C code
by right-clicking on the process name in the PE window and selecting Add .C File for
adding ".c" files. And we can also add ".h" files by selecting Add .H File. This will open
the file browser.
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Source File

-
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Select .c file to add...

Go to the demo directory and follow the symbolic link to "jpeg_srcs". For the
"zigzag" proecss, select two ".c" files, "zigzag.c" and "Zigzag_aux.c" ,and one ".h"
file, "Zigzag_aux.h", and then click Open. In the same way, for the "huffencode”
process on CPU4, select three files, "HuffEncode_aux.c”, "huffencode.c”, and
"HuffEncode_aux.h". The files will be added under the new process in the PE window.
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2.3.5. Add Process Ports
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After, the C code for the process is added, we need to add the application level com-
munication to the design. First of all, we need to add the process port for each process,
which will be connected to a channel for data transfer to another process. To add the
process port for the new process, click on the new process and select the Add Process
Port. This will open the window to add the process port. We can create any name for
the process port and select the type of it. There are ten possible types. We can categorize
them into three kinds. The "Send", "Receive"”, and "Send/Receive" are used for double
handshake channels. The "Read", "Write", and "Read/Write" are used for shared mem-
ory. And the others are for the FIFO channels. Finally, we need to assign its function
name to be what is actually used in C code. Please ensure that the function name is the
same as that used in C code. If the name is not correct, the generated models will not
compile.

The "zigzag" process has two process ports. One is for receiving data from "quantize"
process and the other is for sending data to "huffencode™ process. Assign the process port
name to be "g2z_if" for the former and "z2h_if" for the latter. Since we are using FIFO
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channels, select the type to be "blocking_read" for the former and "blocking_write" for
the latter, respectively. Also, assign the function name to be "recv_g2z" and "send_z2h",
respectively. The "huffencode” process on CPU4 has only one process port which is for
receiveing data from “zigzag". Its process port name is “z2h_if" and its function name
is "recv_z2h". Please add all the process ports for all the new processes using the given
names.
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2.3.6. View Application Channels
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After, the process port for the process is added, we need to create the channels for the
communication between processes. To view the existing channels, click on the TxO tab.
This will display the existing FIFO channels between processes in CPUO, CPU1 and
CPU2, including the source and destination names as well as the route used to im-
plement the channel in the communication platform. All the channels in ESE can be
uni-directional or bi-directional channels. If the user clicks on a PE in the platform can-
vas, all the channels originating or terminating at the PE will be selected. All other PEs
that the clicked PE communicates with will be highlighted in light yellow. All physical
connections, including buses and transducers used by the PE for communication will be
highlighted in green.
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2.3.7. Add New Application Channel
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Please click on CPU3 and CPU4 and see the Channel window. We can know that they
are currently not connected at the application level to any other PE. Since we need com-
munication between the "quantize™ process in CPU2 and the "zigzag" process in CPU3,
we will add the application level channels, by right-clicking in the channel window and
selecting Add Channel. This will pop up the channel wizard for adding application
level channels.
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2.3.8. Channel Wizard
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In the channel wizard dialog, we first need to select the channel type. Choose "FIFO
Channel" since we are using FIFOs. Then, assign the channel name to be "g2z" for con-
sistency with existing channels and also assign the FIFO size to be "256" bytes since the
processes send/receive an 64-array integer data each other. Next, since the process will
send data in one way from "quantize" to "zigzag", select "Unidirectional™ using the pull
down menu. Then, use the pull down menu to select the first communicating process as
"guantize™ and also use the next pull down menu to select the process port as "q2z_if". In
the same way, select the other communicating process as "'zigzag" and select the process
porst as "g2z_if". Next, select the mapping to be "TRANSDUCER" since we are using
a transducer for the inter-process communication. Once the communicating processes
and process ports are decided, ESE automatically filters all the possible physical routes
on the platform that can implement the channels. For this example, it shows that there is
only one route for each direction that goes over the OPB bus from the sender PE to the
transducer Tx0 and back to the receiver PE on the OPB bus. The route goes through the
transducer because all PEs in the platform are connected as masters, which does not al-
low direct communication. The slave interface of Tx0, thus makes the routing possible.
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Click Add to add the channel. The same goes for the channel for the communication
from "zigzag" to "huffencode”. Please create the channel for its name to be "z2h" in the
same way.
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2.3.9. View New Channel Communication
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The newly created channels will now be visible in the channel window under the Tx0
tab. Once the channels are selected, the communicating PEs will be highlighted. This
shows that the new PEs, CPU3 and CPU4 are now "connected" with the rest of the
system on an application level.
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2.4. Generating Functional and Timed TLMs

The previous steps complete the platform and application input that is necessary for gen-
eration of TLMs. We will show generation of two types of SystemC TLMs. The first one
is called the "Functional TLM™" because it is used for the validation of design functional-
ity only. It is completely un-timed and simulates the design based on causal dependency
only. A universal bus channel is used to model the system bus and the mapping of chan-
nels on the bus.

The second TLM is called the "Timed TLM" and is used for performance estimation of
the design. It relies on timing data models of PEs and Buses that are available in the ESE
database. The data models are used by our estimation and annotation technique to apply
"wait" statements in the application C code. The technique is retargetable and applicable
to processors as well as HW IPs. A retargetable bus timing annotation modifies the bus
channel to apply "wait" statements for inter-PE communication.
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2.4.1. Generate Functional TLM
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After the platform and application input is complete, the functional TLM can be gen-
erated automatically by selecting Synthesis— Generate Functional TLM from the
menu bar. This will generate the SystemC code needed for platform modeling, includ-
ing PEs, buses and transducers. The generated code is then compiled natively along with
the C application code and linked to the SystemC libraries to produce a single binary.
This process can be viewed in the log window.
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2.4.2. Simulate Functional TLM
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Conpilation ended.

Simulate Functional TLM

Once the compilation has completed, the generated TLM can be executed from the GUI
by selecting Validation— Simulate Functional TLM from the menu bar.
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2.4.3. View Functional Simulation Results

-
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9 Xterm -title jpeg_platform -e /bm/sh - 51m fune_TLM /data/users/yJahn/worl«/esedemo/esedemo/Jpag platform, eds; ech
o "Simulation exited with status $77 j;echo "Press return to continue ,
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A

[Ready

The simulation pops up a terminal that shows the picture size of BMP input that has
been encoded. The JPEG encoder we are using deals with BMP inputs of 640x480 size.
An additional window shows the picture of the encoded JPEG which is the output of the
simulation. The pop up windows can now be killed simply by pressing "Enter" in the
simulation logging terminal.
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2.4.4. Generate Timed TLM
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Generate Timed TLM

Similar to the functional TLM generation, the Timed TLM can be generated automat-
ically by selecting Synthesis— Generate Timed TLM from the menu bar. The bus
channels generated for timed TLM will include timing for synchronization, arbitration
and data transfer. The timing parameters are imported into the TLM from the bus data
model. For the computation part, we use a retargetable source level timing estimation
technique that utilizes the PE data models. Naturally, the timed TLM generation and
compilation is significantly slower than functional TLM generation, but still in the order
of seconds.
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2.45. Simulate Timed TLM
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To simulate the generated timed TLM, simply select Validation— Simulate Timed
TLM from the menu bar, after the TLM compilation has ended.
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2.4.6. View Timed Simulation
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The timed TLM simulation looks very similar to the functional TLM simulation ex-
cept for one marked difference. Notice that timed simulation is significantly slower than
functional TLM simulation. This is natural since we are simulation a lot more "wait"
statements that are annotated to the application codes. However, our results show that
this is still several orders of magnitude faster than RTL simulation for the same design.

When the timed simulation ends, several statistical data are dumped in the simulation
logging terminal. These are the estimated cycles for CPU computation and communi-
cation, bus congestion estimates and so on. However, all these estimated performance
statistics can be viewed graphically as shown in next section.
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2.5. TLM Performance Estimation

The timed TLM produces several statistical data that is gathered during simulation. Since
the source annotation is fine grained, the TLM produces results for cycles used for invo-
cation of each function in the application code. Computation and communication cycles
for each PE can be viewed using pie charts. The distribution of cycles for each func-
tion amongst its sub-functions can be browsed recursively. Similarly, the distribution of
inter-PE bus traffic over inter-process channels can also be viewed graphically.

The performance estimates are useful for early platform and mapping evaluation. Since
the timed TLMs are generated automatically, and TLM simulation is very fast, early
design space exploration becomes feasible. Users may explore platforms manually or
plug in their exploration algorithms for system level design optimization.
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2.5.1. View Performance Estimates
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To view the PE performance statistics, right-click on the PE in the platform canvas and

select View Graph. In this case, we will select the CPU4 Microblaze processor.
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2.5.2. PE, Process and Function Level Estimates
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The first pie-chart window divides the total execution time into computation, communi-
cation and idle cycles. Double-clicking on the computation part of the pie chart pops up
the distribution of computation across different processes in the design. In this case,
we have only 1 process "huffencode” mapped to CPU4, hence it is 100%. Double-
clicking on the process in the pie chart produces the distribution of computation across
the top level functions in the process. These function(s) call lower level functions and
so on. Double-clicking on a function produces the pie chart for the distribution of cy-
cles amongst the sub-function invocations. Using this viewing feature, the user may go
down to any level in the function call hierarchy. If the pie chart appears too small, please
increase the window size to enlarge the chart.
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2.5.3. View Communication Estimates
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To view the bus communication statistics, right-click on the bus in the platform canvas
and select View Graph. In this case, we will select the only OPB bus.
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2.5.4. Bus and Channel Level Estimates
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The top level pie-chart for the bus shows the distribution of bus cycles in idle,
program/data access and inter-PE data transfer phases. Double-clicking on the
"data-transfer” part of the pie-chart produces the distribution of communication traffic
amongst the various application channels in the design.
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ESE

This section deals with design of MP3 decoder on a heterogeneous platform consisting
of one MicroBlaze processor and four HW accelerators. There are two buses in the plat-
form. The Microblaze processor uses its compatible OPB. The hardware accelerators on
the other hand, were manually designed and use their own proprietary Double Hand-
shake (DH) bus. Since the two bus protocols are incompatible, a transducer that acts as
a buffer and protocol converter, interfaces between the buses.

The MP3 application code is available as a C model. This C model was divided into five
processes, by separating the left/right channel DCT32 and IMDCT36 transforms into
separate processes. These new processes run concurrently to the main MP3 thread since
they are data independent. In this Chapter, the communication between the processes
takes place through pairs of message passing channels. ESE provides well defined com-
munication APIs for this purpose. The testbench includes an MP3 file that is decoded
into a corresponding PCM file by the design. The decoded output is shown graphically
during the TLM simulation of the MP3 decoder.

The chapter starts by explaining the set up for ESE. It then shows, using screenshots, how
the platform is created. To speed up the demostration, and to emphasize on the features,
we start with an existing partial platform that is upgraded with an additional processor.
Then we show the application mapping on the platform, followed by TLM generation,
simulation and performance estimation. Thus, we present the core capabilities of the
ESE Front-End tools in easy platform design & upgrade, model generation, validation
and estimation.
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3.1. ESE Startup and Settings

Before starting the demonstration, please ensure that you have the ESE software
installed in the right location at "/home/ese/local.” Also make sure that you have an
"/home/ese/local/pkg” directory containing the SystemC 2.2.0 libraries and SDL
libraries that are needed for simulation of generated TLMs. Also make sure that you
have GCC version 3.4 or higher because it is needed to correctly compile the generated
TLMs. The demonstration shown here assumes the user to have a bourne shell. For C
shell, the user may call the ".csh™ version of the setup scripts. Alternately, just use "sh"
to create a new bourne shell and follow the tutorial directions.
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3.1.1. Environment Setup

yiahn@ dent:~/work/esedemo/esedemo

File Edit Wiew Terminal Tabs Help
[vjahn@dent esedemo]$ source /home/ese/local/bin/setup.sh [+]

:

We start by setting up the environment variables to access ESE binaries. This is
provided by the "setup.sh™ script in your installation. Typically, the installation path
would be "/home/ese/local.” The script is in the "bin" directory in the installation. The
script modifies your PATH environmental variable to include path to ESE as well as the
LD_LIBRARY_PATH variable to access the shared libraries that ESE depends on. Run
the command "source /home/ese/local/bin/setup.sh™ and create a new local directory for
the demo.
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3.1.2. ESE Demonstration Setup

yiahn@ dent:~/work/esedemo/esedemo

File Edit Wiew Terminal Tabs Help

[vjahn@dent esedemo]$ source /home/ese/local/bin/setup.sh [+]
Setting up environment variables for ESE
[vjahn@dent esedemo]$ esedemo_mp3.sh

:

Once the environmental variables have been set, the user is ready to launch ESE and
create his or her design. For the purposes of this tutorial, we will start with a partial
design to quickly demonstrate the key capabilities of the toolset. We have created a shell
script called "esedemo_hsd.sh™ that prepares a partial design to start the demo for the
MP3 decoder. At this point, run the "esedemo_hsd.sh" script after changing into the local
directory created for the demo.
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3.1.3. Launching ESE

yiahn@dent:~/work/esedemo/esedemo

File Edit Wiew Terminal Tabs Help

[vjahn@dent esedemol]$ source /home/ese/local/bin/setup.sh
Setting up environment variables for ESE

[vjahn@dent esedemo]} esedemo_mp3.sh

ESE demonstration setup for MP3 DECODER is ready
[vjahn@dent esedemo]$ 1s

/ Jjpeg_platform_partial.eds Jpeg_srcs@
i Jpeg_platform_partial_srcs@ mp3_platform_partial.eds
jpeg_platform.eds jpeg_platform_srcs/ mp3_platform_partial_srcs@

[vjahn@dent esedemol$ ese&k

mp3_srcs@
test@

[+]

] =]

After running the "esedemo_hsd.sh" script, you will notice several files in the working
directory. Some of these files will have a ".eds" extension. They are the ESE design files
for the MP3 decoder designs that we will be using for this demo. You may also see links
to source directories. These point to the C code for the processes of the MP3 application.

To launch the ESE GUI, simply run "ese™ from your shell.
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3.1.4. ESE GUI
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The ESE GUI should now appear as shown in the screenshot. The GUI has several menu
items that we shall explore over this tutorial. It is divided into five windows. The top left
window is the "PE" window. It organizes the various application processes mapped to
PEs in the design. The mid-left window is the "Channel” window that organizes the
various channels used for communication between the application processes. The tabs
represent the physical communication links in the platform. The bottom left window
is the "Database"” window that organizes the PE, CE, memory and RTOS model. The
top right window is the "Platform Canvas" on which the platform architecture is edited
graphically. The bottom right window is the "Logging" window that logs the messages
from various ESE tools.
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3.1.5. Editing Database Preferences
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Before creating a new design, we must ensure that the components needed for our MP3
platform are accessible by the GUI. To do so, we edit the database preferences by se-
lecting Edit— Preferences from the menu bar.
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3.1.6. Select Database File
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In the Preferences dialog, select the tab for Database. This will allow the user to
browse for the database file that has a ".edb" extension. The database file needed for the
MP3 demonstration already comes with the ESE installation. Typically, this file will be
called "ese.edb™ and will be located at "/data/users/ese/local/db/ese.edb.” If the selec-
tion is not already there, please browse for the file and press OK. The PEs, buses and
transducers should now be visible in the database window, if they weren’t already.
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3.2. Platform Creation

We will start by loading the heterogeneous system design of the MP3 decoder into ESE.
As mentioned earlier, we will start with a partial platform consisting of one Microblaze
processor and three HW accelerator PEs. The Microblaze processor carries the appli-
cation code for all of the decoder, except the filter processes, which are the most com-
putationally intensive parts of the application. A new HW PE, customized for DCT32
function, will be added to the platform. In this section we will show how to use the
database and platform editor canvas to upgrade a heterogeneous platform in ESE.
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3.2.1. Open Partial Design
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We begin by adding the already created partial design. The ESE designs are stored in
XML based files with the extension ".eds."” Select File—Open from the menu bar.
Browse into the demo working directory and select "mp3_hsd_platform_partial.eds."
This is the design with the partial heterogeneous system design example. Press Open to

open the design.
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3.2.2. View Partial Design
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The partial platform will appear in the canvas as shown in the above screenshot. We can
see one Microblaze processor CPU and three HW filters in the platform. Filters LPCM
and RPCM are for the left and right channel IMDCT36 transforms. Filter RFIL perform
the right channel DCT32 transform. The HW accelerator for the left channel DCT32
transform is missing and will be added during this demonstration. The CPU connects to
the OPB, while the filters connect to the Double Handshake Bus (DHB). Also note that
all PEs are connected to their respective buses as "Masters™ as indicated by an "M" at
the connecting port. Since the DHB and OPB protocols are incompatible, we provide a
transducer (Tx1) that acts as a buffer and protocol converter for communication between
the CPU and the HW filters.
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3.2.3. Add Processing Element
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Adding a new PE to the platform is very easy. Browse the database under the Process-
ing tab and select DCT32. Now drag and drop the selection into the central platform
canvas. The new PE of type "DCT32" will be added to the platform!
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3.2.4. View PE Properties
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After the drag-drop, the user will find a new PE called PEO in the platform. This is the
PE that will host the missing DCT32 filter process in the design. We start by providing
an appropriate name to the new PE to be consisten with the rest of the design. To do so,
right click on the PEO box and select Properties.
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3.2.5. Assign New Name to PE
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In the properties dialog, change the PE name to "LFIL" to be consistent with the other

HW filter names.
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3.2.6. Add Port to PE
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The new PE, LFIL is not yet connected to the rest of the design. Since the application
process meant to execute on this PE will need communication with processes on CPU,
we must physically connect LFIL to the compatible DHB bus in the platform. For this
physical connection, a port is required for LFIL. To add the port, simply right-click on
the LFIL box and select Add Port.
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3.2.7. Connect PE to Bus
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The created port must be connected to the DH bus for LFIL to be able to communicate
with the rest of the system. LFIL connects to DH as a Master like other HW filters do.
To connect LFIL, right-click on the port and select Connect To—DH—M from the
menu choice. This will create the bus connection and complete the platform design step.
Next, we will look at application input and its mapping to the created platform.
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3.3. Mapping Application to Platform

The application input model for ESE is C/C++ processes communicating through ei-
ther synchronized double handshake channels or shared variables. Since most legacy
application is written in C, this is an advantage over other forms of input styles or lan-
guages. For communication, the user does not need to write any SystemC channel code.
ESE provides very simple APIs for inter-process communication as we will see in this
section.
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3.3.1. Add Application Process
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The PE window on the top left corner organizes the processes mapped to the various PEs
in the design. In general, several processes may be added for execution on a PE where
RTOS should be involved. The platform which has such multi-threaded processors will
be demonstrated in Chapter 4. In this section, we assume that there is only 1 process per
PE. To add a new process executing on LFIL, change to the LFIL tab. Then right-click
and select Add Process. This will create a new process with a default name.
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3.3.2. Assign Name to New Process
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Change the name of the new process to "Ifil_dct32". This is the process for the left side
DCT32 transform in the MP3 stereo decoder application. Please ensure that the process
is named correctly since there exist references to it in the existing partial design. If the

process is not named as suggested, the generated models will not compile.
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3.3.3. Add C Source File
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The process added in the last step is only symbolic. The user must associate the actual
C/C++ code with it for the models to be functionally correct. In this case, we add C code

by right-clicking on the process name in the PE window and selecting Add C File. This
will open the file browser.
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3.3.4. Select C Source File
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Select .c file to add...

Go to the demo directory and follow the symbolic link to "mp3_srcs". Select one ".c"
file, "Ifil_dct32.c", one ".h" file, "fixed.h", and click Open. The files will be added under
the new "Ifil_dct32" process in the PE window.
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3.3.5. Add Process Ports
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After, the C code for the process is added, we need to add the application level commu-
nication to the design. First of all, we add the process port for each process, which will
be connected to a channel for data transfer to another process. To add the process port
for the new process, click on the new process and select the Add Process Port. This
will open the window to add the process port. we can create any name for the process
port and select the type of it. There are ten possible types. We can categorize them into
three kinds. The "Send", "Receive", and "Send/Receive™ are used for double handshake
channels. The "Read", "Write", and "Read/Write" are used for shared memory. And the
others are for the FIFO channels. Finally, we need to assign its function name to be what
is actually used in C code. Please ensure that the function name is the same as that used
in C code. If the name is not correct, the generated models will not compile.

The "Ifil_dct32" process needs one process port for sending/receiving data from/to
"mp3_main". Assign the process port name to be "Ifil2m™ and select "Send/Receive"
type since we are using the bi-directional double handshake channel for the
communication between the "Ifil_dct32" process and "mp3_main" process. Assign the
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function names to be "recv_P_ID_Ifil_dct32_P_ID_mp3_main" for "Receive" type and
"send_P_ID_Ifil_dct32_P_ID_mp3_main" for "Send" type, respectively.
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3.3.6. View Application Channels
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After the process port for the process is added, we need to create the channels for the
communication between processes. To view the existing double handshake message
passing channels in ESE, click on the OPB tab. This will display the existing chan-
nels between all the processes in the design, including the source and destination names
as well as the route used to implement the channel in the communication platform. All
the channels in ESE are uni-directional. Bi-directional channels can be added as a pair
of "Forward" and "Backward" channels conveniently in the GUL.
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3.3.7. Add New Application Channel
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If the user clicks on a PE in the platform canvas, all the channels originating or terminat-
ing at the PE will be selected. All other PEs that the clicked PE communicates with will
be highlighted in light yellow. All physical connections, including buses and transduc-
ers used by the PE for communication will be highlighted in green. Note that clicking
on LFIL shows that it is not connected at the application level to any other PE. Since
we need communication between the "Ifil_dct32" process and the "mp3_main™ process
executing on CPU, we will add the application level channels, by right-clicking in the
channel window and selecting Add Channel. This will pop up the channel wizard for
adding application level channels.
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3.3.8. Channel Wizard
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In the channel wizard dialog, we first need to select the channel type. Choose "Process-
to-Process Channel” since we are using message passing channels. Then, assign the
name to be "CH_CPU_LFIL" for consistency with existing channels. Since, the pro-
cesses will send data both ways, select a bi-directional channel type. Use the pull down
menu to select the first communicating process as "mp3_main". This is the process run-
ning on CPU. Next, use the next pull down menu to select the other communicating
process "Ifil_dct32." Once the communicating processes are decided, ESE automatically
filters all the possible physical routes on the platform that can implement the channels.
For this example there is only one route from CPU to LFIL that goes over the OPB bus
via the transducer Tx1 and over the DH bus to the receiver LFIL. The route goes through
the transducer because CPU and LFIL are connected to different physical buses, which
does not allow direct communication. Similarly, there is only one route from LFIL to
CPU. Select the default routes and click Add to add the channels.
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3.3.9. View New Channel Communication

mp3_platiorm.eds - ESE Environment *

File Et Vi Synthesis Validation Windows Help
T EIN

unmapped | CPU | LPcM | RPCM | RFIL | LFIL |

LPCM RFIL RPCM
5 IMDCT38

s.. Memor..Chann,

Memor...Chann. Memor...Chann.

Name Details P

Processes
BY B il dct3?
Process Ports Channel Assignment(s)

L [ytfizm CH_CPU LFIL_F, CH_CPU_LFIL . . .
= Source Files = = =4
L@fil_dcta2.c
Memories Size
Channels Bﬂa [CH_CPU_LFIL_B, CH_CPU_LFIL_F, CH_CPU_LPCM_B, CH_CPU_LPCM_F. CH_CPU_RFIL_..|

ggg [CH_CPU_LFIL_B, CH_CPU_LFIL_F, CH_CPU_LPC|1_B, CH_CPU_LPCM_F, CH |CPU_RFIL .|

) 1

Unmapped |DH |OPB ITM |

Channel

= ) [
=}

CPU
MICROBLAZE ES
e
C
C
C

Proges... Memeor...Chann...
mp3_m

rpcm_imce

main

PU LPCM_F
Memory Channels
FIFQ Channels

Processing ICDmmuniuatiun | Memory | CE | Softw:

o-Hardware IPs BT 1 =

IMDCT36
_ A Compile ISimu\ate |Verify |Ana\yze |Reﬁne |Synthﬂsize |SheH |

% Custom Hardware
NISC

Forte

= SW Processor
A

[Ready

The newly created channels will now be visible in the channel window under the Tx1
tab. Note that the channel names have "_F" and "_B" appended to distinguish between
forward and backward channel, respectively. The user may alternately make unidirec-
tional channels one at a time. Once the channels are selected, the communicating PEs
will be highlighted. This shows that the new PE LFIL is now "connected"” with the rest
of the system on an application level.
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3.4. Generating Functional and Timed TLMs

The previous steps complete the platform and application input that is necessary for gen-
eration of TLMs. We will show generation of two types of SystemC TLMs. The first one
is called the "Functional TLM™" because it is used for the validation of design functional-
ity only. It is completely un-timed and simulates the design based on causal dependency
only. A universal bus channel is used to model the system bus and the mapping of chan-
nels on the bus.

The second TLM is called the "Timed TLM" and is used for performance estimation of
the design. It relies on timing data models of PEs and Buses that are available in the ESE
database. The data models are used by our estimation and annotation technique to apply
"wait" statements in the application C code. The technique is retargetable and applicable
to processors as well as HW IPs. A retargetable bus timing annotation modifies the bus
channel to apply "wait" statements for inter-PE communication.
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3.4.1. Generate Functional TLM
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Generate Functional TLM

After the platform and application input is complete, the functional TLM can be gen-
erated automatically by selecting Synthesis— Generate Functional TLM from the
menu bar. This will generate the SystemC code needed for platform modeling, includ-
ing PEs, buses and transducers. The generated code is then compiled natively along with
the C application code and linked to the SystemC libraries to produce a single binary.
This process can be viewed in the log window.
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3.4.2. Simulate Functional TLM
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Simulate Functional TLM

Once the compilation has completed, the generated TLM can be executed from the GUI
by selecting Validation— Simulate Functional TLM from the menu bar.
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3.4.3. View Functional Simulation Results

v mp3_platform.eds - ESE Environment ===
Eile Edit View Synthesis Validation Windows Help
T EIN

A
|LPcm | RPCM | RFIL | LFIL ||
Name |DetaHs m‘n Memor...Chann. Memor...Chann.
M- Processes -
I:*}“- ffl_dot32 | s Gnuplot =jojx
Proce arts _Channe
'“"34""’“""" FOH values
20000
Sustal 2,20 — Jun 13 2007 10:49:55
Copyri, Sﬁt tc) 1536-2008 ED all Con 15000
ALL RIGHTS RESERVED
Started decoding
tu % range [0:0], adjusting to [-131] 10000
5000
uuuuu L
il TLiVolassicl.out and ./np3_platforn_functional T ®
al
-5000,
-10000
©CH CPU RFILF _ mp3_m{ -15000
O CH_CPU_RPCM_B rpcm_im,
.0CH_CPU_RPCM_F mp3_m; =2TD + + + * * * * *
©CH_CPU_LPCM B Ipcm_im 0 50000 100000 150000 20000 250000 300000 350000 400000 450000
©@CH_CPU_LPCM_F  mp3_m: enplls wrep r|
- Il (= | =
| = —
£|— Compile ‘S\mulate IVenfy |Ana\yze |Reﬁne |Syntheswze |SheH |
Processing |(;m.mlmmam,n | Mer < [ | |% ztera -title opd_platform -e /bin/sh - =im func LM /data/users/yJahn/work/esedemo/esedeno/mp3_) platform eds; diff
-s . /up3_platforn functignal TLM/classicl. out /mp3 platform finctional TLH/classicl pon old; echo "Simulation exite
m-Hardware IPs d with status $7” ;echo "Press return to contimue . ;read confirm
t\MDCTBG
DCT32
B Custom Hardware
NISC
Forte
= SW Processor
’—ARMQ
[T rl
|
[Ready

The simulation pops up a terminal that logs the number of MP3 frames that have been
decoded. An additional window shows the simulation progress frame by frame. Each
decoded MP3 frame produces PCM output that can be fed to the audio output. The y-
axis values in the PCM output view shows the decoded values. The logging of PCM
output stops once all the frames have been decoded. The pop up windows can now be
killed simply by pressing "Enter" in the simulation logging terminal.
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3.4.4. Generate Timed TLM
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Generate Timed TLM

Similar to the functional TLM generation, the Timed TLM can be generated automat-
ically by selecting Synthesis— Generate Timed TLM from the menu bar. The bus
channels generated for timed TLM will include timing for synchronization, arbitration
and data transfer. The timing parameters are imported into the TLM from the bus data
model. For the computation part, we use a retargetable source level timing estimation
technique that utilizes the PE data models. Naturally, the timed TLM generation and

compilation is significantly slower than functional TLM generation, but still in the order
of seconds.
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3.4.5. Simulate Timed TLM
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To simulate the generated timed TLM, simply select Validation— Simulate Timed
TLM from the menu bar, after the TLM compilation has ended.
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3.4.6. View Timed Simulation
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The timed TLM simulation looks very similar to the functional TLM simulation ex-
cept for some marked differences. Firstly, notice that timed simulation is significantly
slower than functional TLM simulation. This is natural since we are simulation a lot
more "wait" statements that are annotated to the application codes. However, our results
show that this is still several orders of magnitude faster than RTL simulation for the
same design. Secondly, note that the X-axis on the PCM viewing window now shows
estimated cycles instead of frame numbers. This is because the estimated cycles for each
frame are available at runtime as a result of our source level "wait" annotations.

When the timed simulation ends, several statistical data are dumped in the simulation
logging terminal. These are the estimated cycles for CPU computation and communi-
cation, bus congestion estimates and so on. However, all these estimated performance
statistics can be viewed graphically as shown in next section.
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3.5. TLM Performance Estimation

The timed TLM produces several statistical data that is gathered during simulation. Since
the source annotation is fine grained, the TLM produces results for cycles used for invo-
cation of each function in the application code. Computation and communication cycles
for each PE can be viewed using pie charts. The distribution of cycles for each func-
tion amongst its sub-functions can be browsed recursively. Similarly, the distribution of
inter-PE bus traffic over inter-process channels can also be viewed graphically.

The performance estimates are useful for early platform and mapping evaluation. Since
the timed TLMs are generated automatically, and TLM simulation is very fast, early
design space exploration becomes feasible. Users may explore platforms manually or
plug in their exploration algorithms for system level design optimization.
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3.5.1. View Performance Estimates
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To view the PE performance statistics, right-click on the PE in the platform canvas and
select View Graph. In this case, we will select the CPU Microblaze processor.
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3.5.2. PE, Process and Function Level Estimates
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The first pie-chart window divides the total execution time into computation, communi-
cation and idle cycles. Double-clicking on the computation part of the pie chart pops up
the distribution of computation across different processes in the design. In this case, we
have only 1 process "mp3_main" mapped to CPU, hence it is 100%. Double-clicking on
the process in the pie chart produces the distribution of computation across the top level
functions in the process. These function(s) call lower level functions and so on. Double-
clicking on a function produces the pie chart for the distribution of cycles amongst the
sub-function invocations. Using this viewing feature, the user may go down to any level
in the function call hierarchy. If the pie chart appears too small, please increase the
window size to enlarge the chart.
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3.5.3. View Communication Estimates
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To view the bus communication statistics, right-click on the bus in the platform canvas
and select View Graph. In this case, we will select the OPB bus.
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3.5.4. Bus and Channel Level Estimates
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The top level pie-chart for the bus shows the distribution of bus cycles in idle,
program/data access and inter-PE data transfer phases. Double-clicking on the
"data-transfer” part of the pie-chart produces the distribution of communication traffic
amongst the various application channels in the design.
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Chapter 4. Multi-threaded System Design with
ESE

This section deals with design of JPEG encoder on a platform consisting of two multi-
threaded MicroBlaze processors and one OPB. The JPEG application code is available
as a C model. The JPEG encoder has five processes. Three processes are mapped into
one processor and two processes are mapped into the other processor. Since they are
multi-threaed in a processor, we need a RTOS model to control and schedule the execu-
tion of the processes. ESE provides two kinds of scheduling policies, Round-Robin and
Priority-based scheduling. Users can select one out of the two policies.The communi-
cation between the processes can take place through pairs of various channels such as
process-to-process (or point-to-point) massege passing channel, shared memory chan-
nel and FIFO channel. In this section, all the channels in the JPEG encoder are via FIFO
channels. ESE provides well defined communication APIs for this purpose. The encoded
output is shown graphically during the TLM simulation of the JPEG encoder.

The chapter starts by explaining the set up for ESE. It then shows, using screenshots, how
the platform is created. To speed up the demostration, and to emphasize on the features,
we start with an existing partial platform that is upgraded with additional processors
and a bus. Then we show the application mapping on the platform, followed by TLM
generation, simulation and performance estimation. Thus, we present the core capabil-
ities of the ESE Front-End tools in easy platform design & upgrade, model generation,
validation and estimation.
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4.1. ESE Startup and Settings

Before starting the demonstration, please ensure that you have the ESE software in-
stalled in the right location at "/home/ese/local.” Also make sure that you have an
"/home/ese/local” directory containing the SystemC 2.2.0 libraries and SDL libraries
that are needed for simulation of generated TLMs. Also make sure that you have GCC
version 3.4 or higher because it is needed to correctly compile the generated TLMs. The
demonstration shown here assumes the user to have a bourne shell. For C shell, the user
may call the ".csh” version of the setup scripts. Alternately, just use "sh" to create a new
bourne shell and follow the tutorial directions.
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4.1.1. Environment Setup

yjahn@ dent:~work/esedemo/esedemo

Eile Edit Wiew Terminal Tabs Help
[vjahn@dent esedemo]$ source /home/ese/local/bin/setup.sh

l

We start by setting up the environment variables to access ESE binaries. This is
provided by the "setup.sh™ script in your installation. Typically, the installation path
would be "/home/ese/local.” The script is in the "bin" directory in the installation. The
script modifies your PATH environmental variable to include path to ESE as well as the
LD _LIBRARY_PATH variable to access the shared libraries that ESE depends on. Run
the command "source /home/ese/local/bin/setup.sh™ and create a new local directory for
the demo.
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4.1.2. ESE Demonstration Setup

yjahn@ dent:~work/esedemo/esedemo

Eile Edit Wiew Terminal Tabs Help

[vjahn@dent esedemo]$ source /home/ese/local/bin/setup.sh
Setting up environment variables for ESE

[vjahn@dent esedemo]$ esedemo_rtos.sh

l

Once the environmental variables have been set, the user is ready to launch ESE and
create his or her design. For the purposes of this tutorial, we will start with a partial
design to quickly demonstrate the key capabilities of the toolset. We have created a shell
script called "esedemo_mtd.sh" that prepares a partial design to start the demo for the
JPEG encoder. At this point, run the "esedemo_mtd.sh" script after changing into the
local directory created for the demo.
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4.1.3. Launching ESE

yjahn@ dent:~work/esedemo/esedemo

Eile Edit Wiew Terminal Tabs Help

[vjahn@dent esedemo]$ source /home/ese/local/bin/setup.sh x|
Setting up environment variables for ESE

[vjahn@dent esedemo]$ esedemo_rtos.sh

ESE demonstration setup for System Design with RT0S is ready
[vjahn@dent esedemo]$ 1s

jpeg_platform_timed_TLM/ mp3_platform_partial srcs@
A jpeg_rtos_platform_partial.eds mp3_platform_srcs/
jpeg_platform.eds jpeg_rtos_platform_partial_srcs@ mp3_platform_timed_TLM/
jpeg_platform_functional TLM/ jpeg_srcs@ mp3_srcs@
jpeg_platform_partial.eds mp3_platform.eds test@
jpeg_platform_partial_srcs@ mp3_platform_functional TLM/
jpeg_platform_srcs/ mp3_platform_partial.eds

[vjahn@dent esedemo]$ ese&

] == ]

After running the "esedemo_mtd.sh™ script, you will notice several files in the working
directory. Some of these files will have a ".eds" extension. They are the ESE design
files for the JPEG encoder design that we will be using for this demo. You may also
see links to source directories. These point to the C code for the processes of the JPEG
application. To launch the ESE GUI, simply run "ese" from your shell.
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4.1.4. ESE GUI
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The ESE GUI should now appear as shown in the screenshot. The GUI has several menu
items that we shall explore over this tutorial. It is divided into five windows. The top left
window is the "PE" window. It organizes the various application processes mapped to
PEs in the design. The mid-left window is the "Channel” window that organizes the
various channels used for communication between the application processes. The tabs
represent the physical communication links in the platform. The bottom left window
is the "Database"” window that organizes the PE, CE, memory and RTOS model. The
top right window is the "Platform Canvas" on which the platform architecture is edited
graphically. The bottom right window is the "Logging" window that logs the messages
from various ESE tools.
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4.1.5. Editing Database Preferences
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Before creating a new design, we must ensure that the components needed for our JPEG
platform are accessible by the GUI. To do so, we edit the database preferences by se-
lecting Edit— Preferences from the menu bar.
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4.1.6. Select Database File
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In the Preferences dialog, select the tab for Database. This will allow the user to
browse for the database file that has a ".edb" extension. The database file needed for the
JPEG demonstration already comes with the ESE installation. Typically, this file will be
called "ese.edb™ and will be located at "'/data/users/ese/local/db/ese.edb."” If the selection
is not already there, please browse for the file and press OK. All the elelements should
now be visible in the database window, if they weren’t already.
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4.2. Platform Creation

We will start by loading the design of the JPEG encoder into ESE. As mentioned earlier,
we will start with a partial platform consisting of one multi-threaded Microblaze proces-
sor and one OPB. The processor carries the application code for three processes in the
JPEG encoder. One Microblaze processor for "'zigzag™ and "huffencode™ processes will
be added to the platform and then the two processes will be multi-threaded by adding a
RTOS model. In this section, we will show how to use the database and platform editor
canvas and how to upgrade a platform in ESE.
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4.2.1. Open Partial Design

v
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We begin by adding the already created partial design. The ESE designs are stored in
XML based files with the extension ".eds."” Select File—Open from the menu bar.
Browse into the demo working directory and select "jpeg_mtd_platform_partial.eds."”
This is the design with the partial design example including RTOS. Press Open to open

the design.
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4.2.2. View Partial Design
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File Edit View Synthesis Validation Windows Help

BEEEI
] |

Unmapped ICPUD |

Name |Dela\\5 |
Epracesses

TX0

ead ESETX
Memories Size Chann
Channels

e
E]

Bus0
oPB |

Unmapped IBusU |TXD |

Channel |Suurce |Deslina
Process Channels

EMemory Channels
FIFQ Channels

) 1

b7k

Processing |Cummunicaﬂun Mer

Hardware IPs

t\MDCTaE 5 : o 7|
DCT32 = : : . ‘ N

Custom Hardware % Compile |Simulate | Verity | Analyze | Refine | Synthesize | Shel |

tmsc |
Forte

SW Processor

’»ARMS

|Ready

The partial platform will appear in the canvas as shown in the above screenshot. We can
see one multi-threaded Microblaze processors CPUO in the platform. The processor is
connected via the Open Peripheral Bus (OPB). There are two local FIFO channels in this
partial design. Each process has its own process port and the process port is connected
through the FIFO channel. For example, as shown in PE window, CPUO has three pro-
cesses, "readbmp”, "chendct" and "huffencode”. Among them, the "readbmp™ process
has a process port which is for sending data from “readbmp” to "chendct". And the pro-
cess port is connected to a local FIFO channel named "r2c" as shown at the bottom in
PE window. Since this channel is for the intra-process communication in a processor, the
channel is located to a local memory and is shown in the PE window not the Channel
window which only shows the channels for the inter-process communication. Note that
the processor is both connected as "Master" as indicated by an "M" at the connecting
port. Since bus master cannot communicate directly over the bus, we provide a trans-
ducer (Tx0) which consists of a FIFO controller and FIFO memories. It acts as a shared
memory for data transfer between CPUO and CPUL.
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4.2.3. Add Processing Element

Jpeg_rtos_platform_partial.eds - ESE Environment
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Adding a new PE to the platform is very easy. Browse the database under the Process-
ing tab and select Microblaze. Now drag and drop the selection into the platform canvas.
The new PE of type "Microblaze™ will be added to the platform!.
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4.2.4. View PE Properties
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After the drag-drop, the user will find the new PE called PEO in the platform. This is
the PE that will host the “zigzag" and "huffencode" processes in the design. We start by
providing an appropriate name to the new PE to be consisten with the rest of the design.
To do so, right click on the PEO box and select Properties.
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4.2.5. Assign New Name to PE
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In the properties dialog, change the PE name of the PEOQ to "CPU1" to be consistent with
the other PE names.
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4.2.6. Add Port to PE
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The new PEs, CPUL is not yet connected to the rest of the design. Since the application
processes meant to execute on the PE will need communication with processes on other
processor, we must physically connect CPU1 to the shared OPB bus in the platform. For
this physical connection, a port is required for CPUL. To add the port, simply right-click
on the CPU1 box and select Add Port.
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4.2.7. Connect PE to Bus
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The created port must be connected to the OPB bus to be able to communicate with
the rest of the system. Note that CPU1 is Microblaze core. This means that it can only
connect to the OPB bus as a Master. To connect CPU1, right-click on the port and select
Connect To—OPB0——M from the menu choice. This will create the bus connection
and complete the platform design step. Next, we will look at application input and its
mapping to the created platform.
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4.3. Mapping Application to Platform

The application input model for ESE is C/C++ processes communicating through FIFO
channels. Since most legacy application is written in C, this is an advantage over other
forms of input styles or languages. For communication, the user does not need to write
any SystemC channel code. ESE provides very simple APIs for inter-process communi-
cation as we will see in this section.
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4.3.1. Add Application Process
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The PE window on the top left corner organizes the processes mapped to the various
PEs in the design. To add a new process executing on CPU1, change to the CPUL1 tab.
Then right-click and select Add Process. This will create a new process with a default

name.
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4.3.2. Assign Name to New Process
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Change the name of the new process to “zigzag". This is the process for the zigzag scan
in the JPEG encoder application. Please ensure that the process is named correctly since
there exist references to it in the existing partial design. If the process is not named as
suggested, the generated models will not compile. Create one more process for its name
to be "huffencoder"” in the same way.
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4.3.3. Add C Source File
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The process added in the last step is only symbolic. The user must associate the actual
C/C++ code with it for the models to be functionally correct. In this case, we add C code
by right-clicking on the process name in the PE window and selecting Add .C File for
adding ".c" files. And we can also add ".h" files by selecting Add .H File. This will open

the file browser.
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Source File
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Go to the demo directory and follow the symbolic link to "jpeg_srcs". For the “zigzag"
proecss, select two ".c" files, “zigzag.c" and "Zigzag aux.c" ,and one ".h" file,
"Zigzag_aux.h", and then click Open. In the same way, for the "huffencode” process,
select three files, "HuffEncode_aux.c", "huffencode.c”, and "HuffEncode_aux.h". The
files will be added under the new process in the PE window.
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4.3.5. Add Process Ports
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After, the C code for the process is added, we need to add the application level com-
munication to the design. First of all, we need to add the process port for each process,
which will be connected to a channel for data transfer to another process. To add the
process port for the new process, click on the new process and select the Add Process
Port. This will open the window to add the process port. We can create any name for
the process port and select the type of it. There are ten possible types. We can categorize
them into three kinds. The "Send", "Receive"”, and "Send/Receive" are used for double
handshake channels. The "Read", "Write", and "Read/Write" are used for shared mem-
ory. And the others are for the FIFO channels. Finally, we need to assign its function
name to be what is actually used in C code. Please ensure that the function name is the
same as that used in C code. If the name is not correct, the generated models will not
compile.

The "zigzag" process has two process ports. One is for receiving data from "quantize"
process and the other is for sending data to "huffencode” process. Assign the process
port name to be "g2z_if" for the former and "z2h_if" for the latter. Since we are us-
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ing FIFO channels, select the type to be "blocking_read" for the former and "block-
ing_write" for the latter, respectively. Also, assign the function name to be "recv_g2z"
and "send_z2h", respectively. The "huffencode™ process has only one process port which
is for receiveing data from "“zigzag". Its process port name is "z2h_if" and its function
name is "recv_z2h". Please add all the process ports for all the new processes using the
given names.
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4.3.6. View Application Channels
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After, the process port for the process is added, we need to create the channels for the
communication between processes. To view the existing channels, click on the CPUO
tab in PE window. This will display the existing FIFO channels between processes in
CPUO, including the source and destination names as well as the route used to implement
the channel in the communication platform. In the partial platform, there exist only local
FIFO channels for intra-process communication. All the channels in ESE can be uni-
directional or bi-directional channels. If the user clicks on a PE in the platform canvas,
all the channels originating or terminating at the PE will be selected. All other PEs
that the clicked PE communicates with will be highlighted in light yellow. All physical
connections, including buses and transducers used by the PE for communication will be
highlighted in green.
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4.3.7. Add New Application Channel
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Please click on CPU1 and see the Channel window. We can know that they are currently
not connected at the application level to any other PE. Since we need communication be-
tween the "quantize™ process in CPUO and the "'zigzag" process in CPU1, we will add the
application level channels, by right-clicking in the channel window and selecting Add
Channel. This will pop up the channel wizard for adding application level channels.
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4.3.8. Channel Wizard for Inter-Process Communication
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In the channel wizard dialog, we first need to select the channel type. Choose "FIFO
Channel" since we are using FIFOs. Then, assign the channel name to be "g2z" for con-
sistency with existing channels and also assign the FIFO size to be "256" bytes since the
processes send/receive an 64-array integer data each other. Next, since the process will
send data in one way from "quantize" to "zigzag", select "Unidirectional™ using the pull
down menu. Then, use the pull down menu to select the first communicating process as
"guantize™ and also use the next pull down menu to select the process port as "q2z_if". In
the same way, select the other communicating process as "'zigzag" and select the process
porst as "g2z_if". Next, select the mapping to be "TRANSDUCER" since we are using
a transducer for the inter-process communication. Once the communicating processes
and process ports are decided, ESE automatically filters all the possible physical routes
on the platform that can implement the channels. For this example, it shows that there is
only one route for each direction that goes over the OPB bus from the sender PE to the
transducer Tx0 and back to the receiver PE on the OPB bus. The route goes through the
transducer because all PEs in the platform are connected as masters, which does not al-
low direct communication. The slave interface of Tx0, thus makes the routing possible.
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Click Add to add the channel.
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4.3.9. Channel Wizard for Intra-Process Communication
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In order to add the channel for the communication between "zigzag" and "huffencode”,
right-click in the Channel window and select Add Channel. In the channel wizard di-
alog, assign the channel name to be “z2h". From the next step, everything is the same
as the previous section except the channel mapping and route. Since it is for the intra-
communcation, the mapping and route will be automatically set to "LOCAL ACCESS"
as shown in the above screenshot. Select the default mapping and route. Finally, click
Add to add the channel.
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4.3.10. View New Channel Communication
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The newly created channels will now be visible in the channel window under the Tx0
tab. Once the channels are selected, the communicating PEs will be highlighted. This
shows that the new PE, CPU1 is now "“connected” with the rest of the system on an
application level.
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4.3.11. Add RTOS
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As mentioned before, since CPU1 has more than one process and the proecesses should
be multi-threaded, we need a RTOS model to control the execution of the processes.
To add the RTOS model, right-click on the PE box and select Properties. Then, en-
able RTOS by clicking the small sqare box. There are two scheduling policies, "Round-
Robin™ and "Priority". Select one from the two scheduling policies. If you select "Prior-
ity" scheduling, then the priority of the processes in the PE will be shown in order. Users
can change the priority by using the arrow buttons located at the right side.
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4.4. Generating Functional and Timed TLMs

The previous steps complete the platform and application input that is necessary for gen-
eration of TLMs. We will show generation of two types of SystemC TLMs. The first one
is called the "Functional TLM™" because it is used for the validation of design functional-
ity only. It is completely un-timed and simulates the design based on causal dependency
only. A universal bus channel is used to model the system bus and the mapping of chan-
nels on the bus.

The second TLM is called the "Timed TLM" and is used for performance estimation of
the design. It relies on timing data models of PEs and Buses that are available in the ESE
database. The data models are used by our estimation and annotation technique to apply
"wait" statements in the application C code. The technique is retargetable and applicable
to processors as well as HW IPs. A retargetable bus timing annotation modifies the bus
channel to apply "wait" statements for inter-PE communication.
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4.4.1. Generate Functional TLM
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Generate Functional TLM

After the platform and application input is complete, the functional TLM can be gen-
erated automatically by selecting Synthesis— Generate Functional TLM from the
menu bar. This will generate the SystemC code needed for platform modeling, includ-
ing PEs, buses and transducers. The generated code is then compiled natively along with
the C application code and linked to the SystemC libraries to produce a single binary.
This process can be viewed in the log window.
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4.4.2. Simulate Functional TLM
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Simulate Functional TLM

Once the compilation has completed, the generated TLM can be executed from the GUI
by selecting Validation— Simulate Functional TLM from the menu bar.
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4.4.3. View Functional Simulation Results
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The simulation pops up a terminal that shows the picture size of BMP input that have
been encoded. The JPEG encoder we are using deals with BMP inputs of 640x480 size.
An additional window shows the picture of the encoded JPEG which is the output of the
simulation. The pop up windows can now be killed simply by pressing "Enter" in the
simulation logging terminal.
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4.4.4. Generate Timed TLM
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Generate Timed TLM

Similar to the functional TLM generation, the Timed TLM can be generated automat-
ically by selecting Synthesis— Generate Timed TLM from the menu bar. The bus
channels generated for timed TLM will include timing for synchronization, arbitration
and data transfer. The timing parameters are imported into the TLM from the bus data
model. For the computation part, we use a retargetable source level timing estimation
technique that utilizes the PE data models. Naturally, the timed TLM generation and
compilation is significantly slower than functional TLM generation, but still in the order
of seconds.
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4.45. Simulate Timed TLM
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Simulate Timed TLM

To simulate the generated timed TLM, simply select Validation— Simulate Timed
TLM from the menu bar, after the TLM compilation has ended.
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4.4.6.View Timed Simulation
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[Ready

The timed TLM simulation looks very similar to the functional TLM simulation ex-
cept for one marked difference. Notice that timed simulation is significantly slower than
functional TLM simulation. This is natural since we are simulation a lot more "wait"
statements that are annotated to the application codes. However, our results show that
this is still several orders of magnitude faster than RTL simulation for the same design.

When the timed simulation ends, several statistical data are dumped in the simulation
logging terminal. These are the estimated cycles for CPU computation and communi-
cation, bus congestion estimates and so on. However, all these estimated performance
statistics can be viewed graphically as shown in next section.
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4.5. TLM Performance Estimation

The timed TLM produces several statistical data that is gathered during simulation. Since
the source annotation is fine grained, the TLM produces results for cycles used for invo-
cation of each function in the application code. Computation and communication cycles
for each PE can be viewed using pie charts. The distribution of cycles for each func-
tion amongst its sub-functions can be browsed recursively. Similarly, the distribution of
inter-PE bus traffic over inter-process channels can also be viewed graphically.

The performance estimates are useful for early platform and mapping evaluation. Since
the timed TLMs are generated automatically, and TLM simulation is very fast, early
design space exploration becomes feasible. Users may explore platforms manually or
plug in their exploration algorithms for system level design optimization.
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45.1. View Performance Estimates
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To view the PE performance statistics, right-click on the PE in the platform canvas and
select View Graph. In this case, we will select the CPU1 Microblaze processor.
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45.2. PE, Process and Function Level Estimates
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The first pie-chart window divides the total execution time into computation, communi-
cation and idle cycles. Double-clicking on the computation part of the pie chart pops up
the distribution of computation across different processes in the design. In this case,
we have only two processes, “zigzag" and "huffencode™ mapped to CPUL. Double-
clicking on the process in the pie chart produces the distribution of computation across
the top level functions in the process. These function(s) call lower level functions and
so on. Double-clicking on a function produces the pie chart for the distribution of cy-
cles amongst the sub-function invocations. Using this viewing feature, the user may go
down to any level in the function call hierarchy. If the pie chart appears too small, please
increase the window size to enlarge the chart.
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45.3. View Communication Estimates

jpeg_mid_platiorm.eds ESE Environment

Eile Edit View Synthesis Validation Windows

Help
T EIN
I
CPUT CPUD
Unmapped | CPUD | I MICROBLAZE
Name |Dah Proces.. Memor...Chann.
quantiz 0
B-Processes ESETX
C;\aﬂﬂ -
a5 Process Ports o
[Mqg2z_if q2z N A
Mz2h if z2h = o
o[ Source Files
[d1Zigzag_aux.c
[Hzigzag.c (E)"‘)Eu i ez I
[dl Zigzag_auxh Remove Bus
S = View Graph...
= Plot...
=) Properties
MICROBLAZE
s.. Memor...Chann
A
L =

< Compile ‘Simulate IVenfy |Ana\yze |Synthesize |SheH |

# zterm -titls jpez_mtd_platform —e /bin/sh -c sim_perf TLM /data/users/yiahn/work/essdenc/ssedenc/jpeg_mtd_platform.
eds; echo "Simulation exited with status $77 secho “Press return to continue ...” sread confirm
Simdation exited, exit status: 0

x
v
Processing ICummumsatmn |Mer< |

Hardware IPs
IMDCT36
DCT32

Custom Hardware
NISC
Forte

SW Processor

To view the bus communication statistics, right-click on the bus in the platform canvas
and select View Graph. In this case, we will select the only OPB bus.
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45.4. Bus and Channel Level Estimates
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The top level pie-chart for the bus shows the distribution of bus cycles in idle,
program/data access and inter-PE data transfer phases. Double-clicking on the
"data-transfer” part of the pie-chart produces the distribution of communication traffic
amongst the various application channels in the design.
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Chapter 5. Conclusion

In this tutorial we presented the ESE Front-End design methodology and tool set. ESE
produces two types of TLMs; one for untimed functional verification and a timed TLM
for performance estimation. The C/C++ and graphical input not only allows non-experts
to create system models, but it also supports reuse of legacy code for product upgrades.
The TLMs generated by ESE Front-End can be synthesized into board prototype models
by ESE Back-End. This feature is not available in any commercial or academic offering.

To draw the conclusion, ESE enables embedded system developers to use the following
powerful advantages that have never been available before.

1. Automatic TLM generation.

New TLMs are generated automatically from a mapping of C/C++ application to an
abstract graphical platform. This means that the designer may use existing applica-
tion code and map it to different platforms without having to manually modify any
SystemC code.

2. Eliminates SLDL learning.

ESE eliminates the need for system-level design languages to be learnt by the de-
signer. Only the knowledge of C for creating application specification is required.

3. Enables non-expertsto design.

This also enables non-experts to design systems. There is no need for the designer
to worry about design details like protocol timing diagrams, low level interfaces etc.
Consequently, software developers can design systems.

4. Supports platforms.

ESE is great for platform based design . System platforms can be graphically cre-
ated and modified. Pre-existing platforms can be reused and upgraded. All of these
tasks are orthogonal to the application development itself.

5. Customized methodology.
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ESE can also be customized to any methodology as per the designer’s choice of
components, system architecture, models and levels of abstraction.

. Enables | P reuse.

ESE simplifies IP reuse to a great extent by allowing import of RTL components at
system level. With C models of the IP, the designer can generate high speed TLMs
for verification and performance estimation.

. Supports interoperability.

ESE supports interoperability with industry standard languages and tools . The
input is C/C++ which is the language of choice for embedded applications. The
output is SystemC which is the de-facto system level design language. The Back-
End in ESE allows generation RTL blocks from C code using third party high level
synthesis tools, such as Forte. The final output of ESE Back-End is a Xilinx project
that can be input to the Xilinx Embedded Development Kit (EDK) for push button
FPGA prototyping.
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