Embedded System Environment
(Front End)

ESE Version 2.0 evaluation

Tutorial

Yongjin Ahn

Samar Abdi
Daniel Gajski

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-2620
+1 (949) 824-8919
http://www.cecs.uci.edu/~ese

Embedded System Environment (Front End): ESE Version 2.0 evaluation;
Tutorial
by Yongjin Ahn, Samar Abdi, and Daniel Gajski

Center for Embedded Computer Systems
University of California, Irvine

Irvine, CA 92697-2620

+1 (949) 824-8919
http://www.cecs.uci.edu/~ese

Published October 10, 2008

Copyright © 2008 CECS, UC Irvine

Table of Contents

O g1 4 0o (8 Tox 1 o] o RSP 1
1.1 MOTIVALION ...ttt sb s 1
1.2. Embedded System ENVIFONMENT...........ccooiiiiiiiiiiee e 2
1.3. ESE Front End Design FIOW.........ccoiieiiiiiiccececc e 3
1.4, DeSIgN EXAMPIE ...cvviieiecicie ettt sttt ene s 4

1.4.0. JPEG ENCOUET ..ottt 4
1.4.2. MP3 AUIO DECOUENcvviviiiiiiiiiiiesie e 4

2. Multi-Processor System Design With ESE ..o 7

2.1. ESE Startup and SEttiNGSccoveverieeieiiiieie e se e 8
2.1.1. ENVIFONMENT SEIUP...covviivieeeie et ene s 9
2.1.2. ESE Demonstration SEtUP........cccccevvereririieseeieie e esiese e 10
2.1.3. LaunChing ESEcooiiiiieecee e 11
214, ESE GUI ..ottt 12
2.1.5. Editing Database Preferencesccoceeieiieiencnienineee e 13
2.1.6. Select Database File ... 14

2.2. Platform Creationccooeiieriiiieie et 15
2.2.1. Open Partial DEeSIGNccoviiieieieiiesie e 16
2.2.2. VieW Partial DESIQNcceveiieieieciesie e 17
2.2.3. Add Processing EIement..........cccooeiveiiiiiiieie e 18
2.2.4. VIEW PE PrOPEITIES ...cveivveiecieeie e seeste et 19
2.2.5. Assign New Name tO PE.........ccco oo 20
2.2.6. ADA POt tO PE ... 20
2.2.7. CONNECE PE 10 BUS ... e 22

2.3. Mapping Application to Platform ..o 23
2.3.1. Add ApPPLICAtION PrOCESS.coveiieiiieiesiisie st 24
2.3.2. AsSIgN Name t0 NEW PrOCESSccveiierieierieeniesie e 25
2.3.3. Add C SOUICE File.....ceiiiieiiiiei e 26
2.3.4. Select C SOUICE File.......ccoveieiiiisise e 27
2.3.5. Add ProCesSs POIScveuieiiiieiiiisie s 28
2.3.6. View Application Channelsc.cccooveeiiiiieieic e 30
2.3.7. Add New Application Channelcccccevviiieiiiiiiniceee e, 31
2.3.8. Channel WIzZard..........cooeveiiiiiiie e 32
2.3.9. View New Channel Communication..........ccocevvveriininnnsienninisie s 34

2.4. Generating Functional and Timed TLMS.......cccccoviiiiiinennneneee e 35
2.4.1. Generate FUNctional TLIM........cccooiiiiiinine e 36
2.4.2. Simulate Functional TLM ..o 37
2.4.3. View Functional Simulation ResSUltS..........ccocvviviiiiniiiiiieiceee 38
2.4.4. Generate TIMEd TLMooiiiiii e 39

2.4.5. Simulate TiIMEA TLM ..o e 40

2.4.6. View Timed SIMUIAtIONccovviiiiiiiiccciic e 41

2.5. TLM Performance EStIMationccoviviiiiiiiiiic e 42
2.5.1. View Performance EStIMAatesSccoveivviiiciiiiiiiicie e 43
2.5.2. PE, Process and Function Level EStimates..........ccoceevvvvicveeicvieivee e, 44
2.5.3. View Communication EStIMateS.........cccvvviiiiiiiiiee e 45
2.5.4. Bus and Channel Level EStImates........coccovveeivvieiiee e 46

3. Heterogeneous System Design With ESE ... 47
3.1. ESE Startup and SEttiNGSccueveirerieiiriieie e se e 48
3.1.1. ENVIFONMENT SEIUP...ceviitieiecieeie ettt 49
3.1.2. ESE Demonstration SELUP........ccccovivereririeieerieie s esiesie e sie e eee e 50
3.1.3. LauNChiNG ESEccuoiiiiieee e 51
TN B] = €16 1 PP 52
3.1.5. Editing Database PreferencCesccoceereiiereienienineee e 53
3.1.6. Select Database File.......c..ccviiiiiieiie et 54

3.2. Platform Creation..........cocoueieiiiiie ettt 55
3.2.1. Open Partial DeSIQNccvcvvieeeceeiese e 56
3.2.2. VieW Partial DeSIQNccoviveieceeiese e 57
3.2.3. Add Processing EIement..........cccoovvveieiiniieni e 58
3.2.4. VIEW PE PrOPEITIES ...cveivveiiecieeie e seeste et 59
3.2.5. Assign New Name tO PE.........ccco o 60
I ST Yo [=0T (0 1 60
3.2.7. CONNECL PE 10 BUSvvviiiiiiiiiiiiiic it sbbaae e 62

3.3. Mapping Application to Platform ..o 63
3.3.1. Add ApPPLICAtION PrOCESS.c.eeeeieeriieiisieniie e 64
3.3.2. AsSIgN Name t0 NEW PrOCESScoveriieirierieerienie e siesieeee e 65
3.3.3. Add C SOUICE FilB.....uviecieeeiiee et 66
3.3.4. SeleCt C SOUICE File.....cocviiirii e 67
3.3.5. Add PrOCESS POITSvviiiiiiiieiie ettt st 68
3.3.6. View Application Channelscccoovveiiiiieieie e 70
3.3.7. Add New Application Channelccccceoviieieiniiecceee e, 71
3.3.8. Channel WIzZard........c...oovuiiiiiiiie et 72
3.3.9. View New Channel Communication............cccocueevveeiiieiiiee e, 73

3.4. Generating Functional and Timed TLMS........ccccoviiiriiieninninee e 74
3.4.1. Generate FUNCLIONAl TLM.......cooiiiiiii e 75
3.4.2. Simulate Functional TLMoooiiiiiicie e 76
3.4.3. View Functional Simulation ReSUItS..........ccccoeveevieeiiieiee e, 77
3.4.4. Generate TIMEA TLIM ...ccvvviiiiiceeece et 78
3.4.5. Simulate TIMEd TLM....ocii e 79

3.4.6. View TIimed SIMUIATION ...oeeee et e e 80

3.5. TLM Performance EStIMAtionc..cooivviiiiiiiie i 81
3.5.1. View Performance EStIMAatesSccoveivviiiiiiiiiiiicie et 82
3.5.2. PE, Process and Function Level EStimates..........cccceevvvvicveeicvie e, 83
3.5.3. View Communication EStIMateS.........ccovivviiiiiiiiiie et 84
3.5.4. Bus and Channel Level EStImates........coccovvveiivieiiee e 85

4. Multi-threaded System Design With ESEcccocceviieeie s 87

4.1. ESE Startup and SEttiNgSccvvoeeieieeie e 88
4.1.1. ENVIFONMENT SELUDecvveiieiieierieee e sie e sie e ene e e 89
4.1.2. ESE DemonStration SEUP........ccvreieereeieeiesieeieesieseesie e sesseesnaeneesnens 90
4.1.3. LauNCNING ESEooiiiieie et 91
414 ESE GUI ..ottt sttt 92
4.1.5. Editing Database PreferenCescccoveeiiiienene e 93
4.1.6. Select Database File ... 94

N o 1 0] 1 A N OA (=T L1 o T 95
4.2.1. Open Partial DESIQNcoviiiieiiiieie e 96
4.2.2. View Partial DESIQNccviveieiieieeic e 97
4.2.3. Add Processing EIBMENtcccooeieeieiii i 98
4.2.4. VIEW PE PrOPEITIES ...ccvveveiiieiieciece ettt 99
4.2.5. Assign New Name t0 PE........cccccovviiiiieeieec e 100
ST AN [0 I =0T (o N = 100
4.2.7. CONNECELPE tO BUS ...ttt 102

4.3. Mapping Application to PlIatform ... 103
4.3.1. Add APPlICAtioN PrOCESS......ccveiiiriiriierieeieie st 104
4.3.2. AsSign Name t0 NEeW PrOCESSccccveiererieniiieie e 105
4.3.3. Add C SOUICE File.....ooiiiiiiiicie e 106
4.3.4. SElect C SOUICE FllB ... 107
4.3.5. Add ProCeSS POISccuvieiciie ittt 108
4.3.6. View Application Channelscccccoieveiiiiiie s, 110
4.3.7. Add New Application Channelccccccevviiiieiie i 111
4.3.8. Channel Wizard for Inter-Process Communicationccc.cceueeveeen. 112
4.3.9. Channel Wizard for Intra-Process Communication..........c...ceeeevee. 114
4.3.10. View New Channel Communication...........ccceeevvvireiiieneeiiiie s, 115
4.3.11. AdA RTOS ...t ae e b 116

4.4. Generating Functional and Timed TLMS.........ccccovviiiieiinieereeee e 117
4.4.1. Generate FUNCLIONAl TLM.....ccvviiiiiiii i 118
4.4.2. Simulate Functional TLM ..o 119
4.4.3. View Functional Simulation ReSUItS..........ccceeveiiviiii i, 120
4.4.4. Generate TIMEAd TLM ..ooooiiiie e 121

4.45. SIMUIAte TIMEA TLIM ...ttt e 122

4.4.6. View Timed SIMUIAtioNcccoeiivviiiiiiie e 123

4.5. TLM Performance EStiMationccccveviviiiiieciie e 124
4.5.1. View Performance EStIMatesccccvvveivieiiic it 125

4.5.2. PE, Process and Function Level EStimatesccccveveveeivvveceieecineenns 126

4.5.3. View Communication EStIMateS.........cocvveivriiiiieiiie e 127

4.5.4. Bus and Channel Level EStimates.........cocvvvveiiieiiec i 128

LT OFo] [ox 11 1 o o [P 129
S 1 = 0RO 131

vi

Chapter 1. Introduction

The basic purpose of this tutorial is to guide a user through our Embedded System En-
vironment (ESE) Front End. ESE helps designers to take C/C++ application processes
and graphical platform capture and automatically produce Transaction Level Models
(TLMs) for functional verification and performance estimation. Extensive information
about ESE and its projected impact on embedded system design processes is available
on our website at htt://www.cecs.uci.edu/~ese

The tutorial demostrates ESE Front End being used for TLM generation using the JPEG
encoder and MP3 decoder applications. Three platforms are used for this purpose. The
first platform consists of five microprocessors connected via a shared bus and commu-
nicating each other using a memory architecture. This platform is representative of a
multi-processor design where all components are programmable. The second platform
demonstrates usage of ESE for heterogeneous system design with one microprocessor
and four HW accelerators. The HW Intellectual Properties (IPs) have a proprietary bus
protocol which requires a protocol convertor between the processor bus and IP bus. The
last platforms has two multi-threaded microprocessors to which several processes are
mapped, thus it needs a Real-Time Operating System (RTOS) model to control the ex-
ecution of the processes in a microprocessor. The design examples show the versatility
of ESE, which is a huge benefit over manually written virtual platforms.

The tutorial gives a step by step illustration of using ESE Front End. Screenshots of
the Graphical User Interface (GUI) are presented to aid the user in using the various
features of ESE. Please note that, depending on your specific version of ESE and your
system settings, the screen shots shown in this document may be slightly different from
the actual display on your screen. The screenshots at each design step are supplemented
with brief observations about the specific ESE feature. This would help the designer
to gain an insight into the design process instead of merely following the demostration
steps. We wind up the tutorial with a conclusion and references.

1.1. Motivation

The rise in complexity of modern design has forced system designers to move to higher
levels of abstraction above Register Transfer Level (RTL) and traditional cycle accurate
design. Therefore, models such as TLMs that provide manyfold speedup over RTL sim-
ulation are being used. However, in order for TLMs to be synthesizable to Hardware
(HW) and Software (SW) implementation, they must follow well defined semantics.
These semantics are currently missing in the industry and TLM standards. Moreover,

Chapter 1. Introduction

enforcing semantics is not easy with manual modeling.

Secondly, embedded application developers come from a variety of different engineering
backgrounds and are not necessarily adept at electronic deign. Model automation tools
are needed for such developers so that they do not need to learn modeling languages
such as SystemC.

Thirdly, businesses that use external suppliers for their embedded system designs need
unabmiguous executable specifications for design hand-off. An even better proposition
would be to build pre-silicon board prototypes in house. This would reduce the chances
for mis-communication in requirement specification and lead to a more robust design
process. Consequently, tools are required that take abstract applications and platforms
and quikcly produce fast TLMs and board prototypes.

It is with these challenges in mind that we have come up with ESE that takes off the
drudgery of manual modeling from system designers. It enables non-experts to create
system models and generate board prototypes using a convenient graphical interface.

1.2. Embedded System Environment

Figure 1-1. ES Environment

o
s
a

User ser
Interface Interface
(DUIy (VI

C +RTL

ESE consists of a Front-End and a Back-End supported by two interfaces as shown in

Chapter 1. Introduction

Section 1.2 Embedded System Environment (page 2). The Front-End consists of System
Capture, which is a GUI for capturing the definition of the platform architecture and
product application code. Platform Development tool generates timed TLMs of the plat-
form architecture executing the product application defined by the capture tool. These
timed TLMs provide reliable performance metrics and are used for early exploration of
design choices. In the Back-End, the HW Development component is used to generate
cycle-accurate or RTL description of the HW components which can be further refined
by commercially available tools for Application-Specific Integrated Cuircuit (ASIC) or
Field Programmable Gate Array (FPGA) manufacturing. SW Development generate
firmware necessary to run communication and application SW on the platform. Vali-
dation User Interface is used to debug and validate developed SW and HW. Decision
User Interface is used by the designer, to estimate the quality metrics and make deci-
sions such as component selection, task scheduling, mapping of SW functions to HW
components and others.

1.3. ESE Front End Design Flow

Figure 1-2. ES Environment

PE/RTOS
Models

—)
Bus/Bridge
Models

SystemC
Simulation

The inputs to ESE Front-End are the system definition consisting of a platform and
application code. A library of processing elements, buses, bridges and RTOS is provided
in ESE to develop such a platform. The retargetable timing estimation tool in ESE is
used to annotate timing to the application code based on the mapping of application
code on the platform components. The timed application and platform are input to the

Chapter 1. Introduction

TLM generator tool that uses the bus and bridge models to generate a SystemC TLM.
This SystemC TLM can be simulated by any commercial or freely available SystemC
simulator to provide the performance metrics. The designer can use the metrics to make
to application code and/or the platform in order to optimize the system for a particular
metric.

1.4. Design Example

To demonstrate the usefulness of ESE, two applications were chosen, JPEG encoder and
MP3 decoder. JPEG encoder is used to demonstrate multiprocessor system design and
system design including RTOS with ESE. MP3 decoder is used to demonstrate hetero-
geneous system design with ESE.

1.4.1. JPEG Encoder

Figure 1-3. JPEG Encoder

oMP | Ima Zi E peg
ge . igzag ntropy "
{ Read g Suanize Scan Coder

Figure 1-3 shows the block diagram of JPEG encoder. It takes a BMP as an input and
outputs an encoded JPEG file. In general, JPEG encoder consists of five processes.
First, it partitions the image into 8x8 blocks of pixels and the blocks are applied to a
2-dimensional DCT. Next, the transform matrix is normalized by an 8x8 quantization
matrix and the quantized DCT coefficients form a matrix. The elements of the matrix
are ordered in a zigzag scan. Then, an entropy coder combined with a run-length coding
of the zeros generates an efficient representation of the quantized coefficients to be trans-
mitted or stored. The C model is used to create test benches with golden JPEG output
files. These test benches are used later to verify the ESE generated TLMs.

1.4.2. MP3 Audio Decoder

Chapter 1. Introduction

Figure 1-4. MP3 Decoder

mp3
P N Sync. and
error checking

Huffman
| decoding

H Requantize H Reordering]7

IMDCT

1

_ Alias
‘ reduction

DCT]7
‘ pem
= Pcm >

Left Channel

‘ .| Joint stereo |
decoding

Alias
reduction

-
| =) =)

L

Right Channel

MP3 decoder first reads a codeword via synchronous and error checker. Next, huffman
decoder translates the codeword to several symbols using variable length decoding al-
gorithm and sends it to next stages for requantizing and reordering. Then, the decoded
frequency line is sent to alias reduction and IMDCT. Finally, DCT produces the output
samples. The block diagram in Figure 1-4 shows the IMDCT and DCT transforms that
are applied during the stereo decoding on the left and right channels of the MP3 input.
These function blocks are the most time consuming part of the decoding and are hence
ideal for implementation using custom HW for faster decoding. The C model is also
used to create test benches with golden PCM output files. These test benches are used

later to verify the ESE generated TLMs.

Chapter 1. Introduction

Chapter 2. Multi-Processor System Design with
ESE

This section deals with design of JPEG encoder on a platform consisting of five Mi-
croBlaze processors. The JPEG application code is available as a C model. The JPEG
encoder has five processes and each process is mapped to a unique processor, thus the
processes can be executed concurrently. The communication between the processes can
take place through pairs of various channels such as process-to-process (or point-to-
point) massege passing channel, shared memory channel and First-In-First-Out (FIFO)
channel. In this Chapter, all the channels in the JPEG encoder are via the FIFO channels.
ESE provides well defined communication APIs for this purpose. The encoded output is
shown graphically during the TLM simulation of the JPEG encoder.

The chapter starts by explaining the set up for ESE. It then shows, using screenshots, how
the platform is created. To speed up the demostration, and to emphasize on the features,
we start with an existing partial platform that is upgraded with additional processors
and a bus. Then we show the application mapping on the platform, followed by TLM
generation, simulation and performance estimation. Thus, we present the core capabil-
ities of the ESE Front-End tools in easy platform design & upgrade, model generation,
validation and estimation.

Chapter 2. Multi-Processor System Design with ESE

2.1. ESE Startup and Settings

Before starting the demonstration, please ensure that you have the ESE software in-
stalled in the right location at "/home/ese/local.” Also make sure that you have an
"/home/ese/local” directory containing the SystemC 2.2.0 libraries and Simple Direct-
media Layer (SDL) libraries that are needed for simulation of generated TLMs. Also
make sure that you have GCC version 3.4 or higher because it is needed to correctly
compile the generated TLMs. The demonstration shown here assumes the user to have
a bourne shell. For C shell, the user may call the ".csh” version of the setup scripts.
Alternately, just use "sh" to create a new bourne shell and follow the tutorial directions.

Chapter 2. Multi-Processor System Design with ESE

2.1.1. Environment Setup

yiahn@ dent:~/work/esedemo/esedemo

File Edit Wiew Terminal Tabs Help
[vjahn@dent esedemo]$ source /home/ese/local/bin/setup.sh [+]

:

We start by setting up the environment variables to access ESE binaries. This is
provided by the "setup.sh™ script in your installation. Typically, the installation path
would be "/home/ese/local.” The script is in the "bin" directory in the installation. The
script modifies your PATH environmental variable to include path to ESE as well as the
LD_LIBRARY_PATH variable to access the shared libraries that ESE depends on. Run
the command "source /home/ese/local/bin/setup.sh™ and create a new local directory for
the demo.

Chapter 2. Multi-Processor System Design with ESE

2.1.2. ESE Demonstration Setup

yiahn@ dent:~/work/esedemo/esedemo

File Edit Wiew Terminal Tabs Help

[vjahn@dent esedemo]$ source /home/ese/local/bin/setup.sh [+]
Setting up environment variables for ESE
[vjahn@dent esedemo]$ esedemo_jpeg.sh

:

Once the environmental variables have been set, the user is ready to launch ESE and
create his or her design. For the purposes of this tutorial, we will start with a partial
design to quickly demonstrate the key capabilities of the toolset. We have created a shell
script called "esedemo_mpd.sh" that prepares a partial design to start the demo for the
JPEG encoder. At this point, run the "esedemo_mpd.sh" script after changing into the
local directory created for the demo.

10

Chapter 2. Multi-Processor System Design with ESE

2.1.3. Launching ESE

yiahn@dent:~/work/esedemo/esedemo

File Edit Wiew Terminal Tabs Help

[vjahn@dent esedemol]$ source /home/ese/local/bin/setup.sh

Setting up environment variables for ESE

[vjahn@dent esedemo]} esedemo_jpeg.sh

ESE demonstration setup for JPEG ENCODER is ready

[vjahn@dent esedemo]$ 1s

./ Jjpeg_platform.eds jpeg_platform_partial srcs@ jpeg_srcs@
../ Jjpeg_platform_partial.eds jpeg_platform_srcs/

[vjahn@dent esedemol$ ese&

[+]

] =]

After running the "esedemo_mpd.sh™ script, you will notice several files in the working
directory. Some of these files will have a ".eds" extension. They are the ESE design
files for the JPEG encoder design that we will be using for this demo. You may also
see links to source directories. These point to the C code for the processes of the JPEG
application. To launch the ESE GUI, simply run "ese" from your shell.

11

Chapter 2. Multi-Processor System Design with ESE

2.1.4. ESE GUI

Eile Edit View Synthesis Validation Windows

EICEN-

Unmapped I

!

Name |Dela\\s |
Processes
Memories Size

Channels

x

Unmapped I

Channel | Source | Destina
Eprocess Channels

Memory Channels
FIFO Channels

x
|

v
Processing ICummumcatmn |Mer<

Hardware IPs
t\MDCTBG B Y|

DCT32 = i = : —
Custom Hardware Compile IS\muIate |Venfy | Analyze | Refine | Synthesize | Shell |

tmsc
Forte
SW Processor
’—ARMQ

[Ready

The ESE GUI should now appear as shown in the screenshot. The GUI has several menu
items that we shall explore over this tutorial. It is divided into five windows. The top left
window is the "PE" window. It organizes the various application processes mapped to
the Processing Elements (PEs) in the design. The mid-left window is the "Channel”
window that organizes the various channels used for communication between the appli-
cation processes. The tabs represent the physical communication links in the platform.
The bottom left window is the "Database" window that organizes the PE, Communcation
Element (CE), memory and RTOS model. The top right window is the "Platform Can-
vas" on which the platform architecture is edited graphically. The bottom right window
is the "Logging" window that logs the messages from various ESE tools.

12

Chapter 2. Multi-Processor System Design with ESE

2.1.5. Editing Database Preferences

(untitled).eds - ESE Environment

File Edit | View Synthesis Validation Windows Help
|0 & & Find... Ctri+F

S Find Next F3 —

Unm:

Find Previous Shift+F3

| Import design... :,

Nami
Pr———————————————

—@ Preferences...
Channels

X

Unmapped I

Channel | Source | Destina
EProcess Channels

Memory Channels
FIFQ Channels

x
'
Processing |Cnmmuni::atinn |Mer< |

Hardware IPs

t\MDCTﬂE S —
DCT32 -

Custom Hardware | complle | Simulate | Verity | Analyze | Refine | Synthesize | Shell |

tmsc |
Forte

SW Processor

’»ARMS

i

|Ready

Before creating a new design, we must ensure that the components needed for our JPEG
platform are accessible by the GUI. To do so, we edit the database preferences by se-
lecting Edit— Preferences from the menu bar.

13

Chapter 2. Multi-Processor System Design with ESE

2.1.6. Select Database File

- (untitled).eds - ESE Environment NEIR

Eile Edit View Synthesis Validation Windows Help
T EIN

Unmapped I

!

Name |Dela\\s |

Processes

Memories Size SSSSSES———————
Channels Preferences (x]

Compiler | I

D

’VIfdataﬂusersﬂese/lcca\fdbfese.sdb Select...

x

Unmapped I

Channel | Source | Destina
Eprocess Channels

Memory Channels
FIFO Channels

x
Processing |Cummumcatmn |Mer1‘ | M ﬁ ﬂl

Hardware IPs

7]
tmocme =]
DCT32

Custom Hardware 2 Gompile ISimuIats | verity | Analyze | Refine | Synthesize | Shell |
NISC

4

Forte
SW Processor
’—ARMQ

[Ready

In the Preferences dialog, select the tab for Database. This will allow the user to
browse for the database file that has a ".edb" extension. The database file needed for the
JPEG demonstration already comes with the ESE installation. Typically, this file will be
called "ese.edb™ and will be located at "'/data/users/ese/local/db/ese.edb."” If the selection
is not already there, please browse for the file and press OK. All the elelements should
now be visible in the database window, if they weren’t already.

14

Chapter 2. Multi-Processor System Design with ESE

2.2. Platform Creation

We will start by loading the multi-processor design of the JPEG encoder into ESE. As
mentioned earlier, we will start with a partial platform consisting of three Microblaze
processors. Each processor carries the application code for each process in the JPEG
encoder. Two Microblaze processors for “zigzag" and "huffencode™ processes will be
added to the platform. In this section, we will show how to use the database and platform
editor canvas to upgrade a multi-processor platform in ESE.

15

Chapter 2. Multi-Processor System Design with ESE

2.2.1. Open Partial Design

bz (untitled).eds - ESE Environment = GE

File Edit View Synthesis Validation Windows

BEEEI

Unmapped I

Help

!

Name |Data\\5 |
Processes
Memories Size
Channels

(]
Look in: |E:alusersMahn/wnrkﬂesedemcﬂesedemcﬂ _’l - | | ﬁ”_ =

=1

| (& jpeg_platform_partial_srcs
x (Hjpeg_srcs

Unmapped I I jpeg_platform_partial.eds

Channel | Source | Destina
Process Channels

EMemory Channels
FIFQ Channels

File name: ijeg_p\aﬁurm_pama\.eds Open

File type: ~ESE Design Files (*.eds) _’l Cancel |
£

_Ia‘[!

Processing |Cnmmuninaﬂun |Mer< |

Hardware IPs

|
t\MDCTﬂE S —
DCT32

Custom Hardware | complle |Simulate | Verity | Analyze | Refine | Synthesize | Shell |

tmsc |
Forte

SW Processor

’»ARMS

i

|Ready

We begin by adding the already created partial design. The ESE designs are stored in
XML based files with the extension ".eds."” Select File—Open from the menu bar.
Browse into the demo working directory and select "jpeg_mpd_platform_partial.eds."”
This is the design with the partial multi-processor design example. Press Open to open
the design.

16

Chapter 2. Multi-Processor System Design with ESE

2.2.2. View Partial Design

B Jpeg_platform_partial.eds - ESE Environment i
File Edit View Synthesis Validation Windows Help

BEEEI
Xl &
e cPUD cPU1 cPU2
Unmapped | |cPut |cpur | MICROBLAZE MICROBLAZE MICROBLAZE

Memor...Chann Pr Memor...Chann

5. Memor...Chann.

Proces.
quantiz.

Wj
Wj
Wj

[2c

Unmapped | OPBO X0 =]
ESETX
Ghann...

Channel

Memory Channels
FIFQ Channels

IEli'rox:ess Channels

Processing |Cummunicaﬂun Mer

Hardware IPs

t\MDGTaE S ; =
DCT32 =
Custom Hardware A compie ISimuIate | Verity | Analyze | Refine | Synthesize | Shell |
tmsc |

Forte
SW Processor

’»ARMS

e i

=

|Ready

The partial platform will appear in the canvas as shown in the above screenshot. We
can see three Microblaze processors CPUO , CPUL and CPU2 in the platform. These
processors are connected via the Open Peripheral Bus (OPB). There are two FIFO chan-
nels in this partial design. Each process has its own process port and the process port is
connected through the FIFO channel. For example, as shown in PE window, CPUQ has
a process named "readbmp™ and the process has a process port named "r2c_if" which is
for sending data from “readbmp” to “chendct”. And the process port is connected to a
FIFO channel named "r2c" as shown in Channel window. Note that these processors are
both connected as "Masters" as indicated by an "M™" at the connecting port. Since bus
masters cannot communicate directly over the bus, we provide a transducer (Tx0) which
consists of a FIFO controller and FIFO memories. It acts as a shared memory for data
transfer between CPUOQ, CPU1 and CPU2.

17

Chapter 2. Multi-Processor System Design with ESE

2.2.3. Add Processing Element

B jpeg_platiorm_partial.eds - ESE Environment * B

D=zd e

[CPUO cPU1 CPU2
o | cput | cPu2 | PED | PET |»
| | | | = MICROBLAZE MICROBLAZE MICROBLAZE

Memor..Chann.

Proces.. Memor..Chann Proces.. Memor..Chann Proces.
fifo_ma. chendc. quantiz
readb.

Wj
Wj
e

ore | 2l

Unmapped IOPBO |TXO | ™0 = PEO PE1
ESETX Microblaze Microblaze
Chann Proces.. Memor..Chann Proces.. Memer...Chann.

Channel |Suurce |Deshna
EProcess Channels

Memory Channels
FIFO Channels

x
|
Processing ICummunicatiun |Mer< !

I:\MDCT&G

DCT32 = =

Custom Hardware
I:NISC
Forte

SW Processor

A GCompile ISimuIate | Verity | Analyze | Refine | Synthesize | Sheil |

e

Adding a new PE to the platform is very easy. Browse the database under the Process-
ing tab and select Microblaze. Now drag and drop the selection into the platform canvas.
The new PE of type "Microblaze" will be added to the platform!. We need to add two
new PEs for the JPEG encoder.

18

Chapter 2. Multi-Processor System Design with ESE

2.2.4. View PE Properties

jpeg_platiorm_partial.eds - ESE Environment *
File Edit View Synthesis Validation Windows Help
D=zd e
x|
[CPUO cPU1 CPU2
0 | CPU1 | CPU2 | PEO |PE1 >
| | | I | MICROBLAZE MICROBLAZE MICROBLAZE
Name Details Proces.. Memor...Chann Proces.. Memor..Chann Proces.. Memer...Chann.
n TI!‘) ma. chendc. quantiz.
Processes readb.
Memories Size
Channels
Il Il [
= = =
OPEBO
ore | 2l
9] 5
Unmapped IOPBO |TXO | ™0 = PEO PE1
Channel |Suurce |Deshna ESETX Microblaze Microblaze
Chann. Proces.. Memor...Chann, Proces.. Memer...Chann.
Process Channels c2q
Memory Channels Add Port
FIFO Channels
Remove Port
, Remove PE
ConnectTo »
View Graph...
Properties
T |
x
|
Processing ICummunicatiun |Mer< !
I:\MDCT&G
DCT32 = _H
c“:r;g Hardware = Gompile ISimuIate | Verity | Analyze | Refine | Synthesize | Sheil |
I:Fcrte
SW Processor
-ARM9
Read
|Re=dy - 1

After the drag-drop, the user will find two new PEs called PEO and PE1 in the platform.
These are the PEs that will host the "zigzag" and "huffencode™ processes in the design.
We start by providing an appropriate names to the new PEs to be consisten with the
rest of the design. To do so, right click on the PEO box and the PE1 box and select
Properties.

19

Chapter 2. Multi-Processor System Design with ESE

2.2.5. Assign New Name to PE

~ ipeg_platform_partial.eds - ESE Environment * ==
File Edit View Synthesis Validation Windows Help
D=zd e
CPUO CPU1 CPU2
MICROBLAZE MICROBLAZE MICROBLAZE
es.. Memor...Chann Proces.. Memor..Chann Proces.. Memer...Chann.
chendc. quantiz.
Il Il
= =50 Frer— T
PEO |RTOS |
oFRY | W6, | PE Options
PE Name: [CPU3
= PE Type: |MICROBLAZE
o
Unmapped IOPBO |Tx0 | ™o T ET _| Enable Board Debug
Channel |Suurce |Deshna ESETX eI [Cache
Chann. Proces.. Mem{
Process Channels c2q | Cache Size:
Memory Channels)
FIFO Channels DlcachaSze]

= Help Ok Cancel

= 4

|
Processing ICummunicatiun |Mer< !

IMDCT36

DCT32 = |
Cuzlt;g Hardware A Gompile ISimuIate | Verity | Analyze | Refine | Synthesize | Shell |

Forte

SW Processor

I:ARMQ
d

[Ready

A

In the properties dialog, change the PE name of the PEOQ to "CPU3" and that of the PE1
to "CPUA4" to be consistent with the other PE names.

20

Chapter 2. Multi-Processor System Design with ESE

2.2.6. Add Port to PE

7 jpeg_platiorm_partial.eds - ESE Environment *
File Edit View Synthesis Validation Windows Help
DeE| o 1
x|
[CPUO CPU2
CPU3
|CPU1 |CPu2 ‘ ICPU4 MICROBLAZE OBLAZE MICROBLAZE
Memor...Chann s.. Memor..Chann Proces.. Memer...Chann.
C quantiz.
Il Il [
= = =
OPEBO
ore | 2l
A o)
Unmapped | oPBO | TX0 | @0 Ll cPU3 7 [cpua
Channel |Suurce |Deshna ESETX Microblaze Microblaze
Chann. Proces.. Memor...Chann, Proces.. Memer...Chann.
Process Channels c2q
Memory Channels Add Port
FIFO Channels ; ort
Remove Fol
Remove PE
Connect To
View Graph...
Properties
Bl] >
x
|
Processing ICummunicatiun Mer !
I:\MDCT&G
DCT32 = | =]
c“:gg Hardware X Gompile Isimulate | Verity | Analyze | Refine | Synthesize | Shell |
I:Forte
SW Processor
I:ARMQ
rl
[Ready

The new PEs, CPU3 and CPU4 are not yet connected to the rest of the design. Since the
application processes meant to execute on these PEs will need communication with pro-
cesses on other processors, we must physically connect CPU3 and CPU4 to the shared
OPB bus in the platform. For this physical connection, each port is required for CPU3
and CPU4, respectively. To add the port, simply right-click on the CPU3 and CPU4 box
and select Add Port.

21

Chapter 2. Multi-Processor System Design with ESE

2.2.7. Connect PE to Bus

7 jpeg_platiorm_partial.eds - ESE Environment *
File Edit View Synthesis Validation Windows Help
DeE| o 1
x|
[CPUO cPU1 CPU2
CPU1 | GCPU2 | CPU3 |CPU4
| ‘ I | MICROBLAZE MICROBLAZE MICROBLAZE
Name Details femor...Chann. Proces.. Memor..Chann Proces.. Memer...Chann.
n chendc. quantiz.
Processes
Memories Size
Channels
Il Il [
= = =
OPEBO
ore | 2l
o
Unmapped | oPBO | TX0 | @0 Ll cpus " cPus ©
Channel |Suurce |Deshna ESETX Microblaze = o Microblaze
Chann. Proces.. Me Remove Port || Proces.. Memor..Chann
Process Channels c2q
Memory Channels Remove PE
FIFO Channels Connect Tol™ OPBOr s
View Graph... (none) M
Properties s
Bl] >
x
|
Processing ICummunicatiun Mer !
I:\MDCT&G
DCT32 = | =]
c“:gg Hardware = Gompile Isimulate | Verity | Analyze | Refine | Synthesize | Sheil |
I:Forte
SW Processor
I:ARMQ
rl
[Ready

The created port must be connected to the OPB bus to be able to communicate with the
rest of the system. Note that CPU3 and CPU4 are Microblaze cores. This means that
they can only connect to the OPB bus as a Master. To connect CPU3 and CPU4, right-
click on the port and select Connect To—OPB0——M from the menu choice. This
will create the bus connection and complete the platform design step. Next, we will look
at application input and its mapping to the created platform.

22

Chapter 2. Multi-Processor System Design with ESE

2.3. Mapping Application to Platform

The application input model for ESE is C/C++ processes communicating through FIFO
channels. Since most legacy application is written in C, this is an advantage over other
forms of input styles or languages. For communication, the user does not need to write
any SystemC channel code. ESE provides very simple APIs for inter-process communi-
cation as we will see in this section.

23

Chapter 2. Multi-Processor System Design with ESE

2.3.1. Add Application Process

jpeg_platiorm.eds - ESE Environment

File Edit View Synthesis Validation Windows Help
D=zd e
x|

[CPUO cPU1 CPU2
CPU1 | cPU2 | CPU3 |cPus |- »
| ‘ I | MICROBLAZE MICROBLAZE MICROBLAZE

Proces.. Memor..Chann Proces.. Memor..Chann Proces.. Memer...Chann
fito ma chendc. quantiz
reab.

Memories Add Process

Ct |s Remove All Pr

Wj
Wj
e

OPBO

[= =

@0 = cruz ¢ cpus
ESETX Microblaze Microblaze

Chann. Proces.. Memor..Chann Proces.. Memor...Chann.
c2q

Unmapped IOPBO |TXO |

Channel |Suurce |Deshna
Process Channels
Memory Channels
FIFO Channels

=
x
|

Processing ICummunicatiun |Mer< !

I:\MDCT&G

DCT32 =

Cuzlt;g Hardware A Gompile ISimuIate | Verity | Analyze | Refine | Synthesize | Shell |

I:Fcrte

SW Processor
ARMY

[y - A

The PE window on the top left corner organizes the processes mapped to the various PEs
in the design. In general, several processes may be added for execution on a PE where
RTOS should be involved. The platform which has such multi-threaded processors will
be demonstrated in Chapter 4. In this section, we assume that there is only one process
per PE. To add a new process executing on CPU3, change to the CPUS3 tab. Then right-
click and select Add Process. This will create a new process with a default name. The
same goes for CPUA4.

24

Chapter 2. Multi-Processor System Design with ESE

2.3.2. Assign Name to New Process

ipeq_platiorm.eds - ESE Environment
File Edit View Synthesis Validation Windows Help
D=zd e
x|
[CPUO cPU1 CPU2
CPU3 Ld
CPuU1 |CPU2 ‘ ICPLM | MICROBLAZE MICROBLAZE MICROBLAZE
Name Details Proces.. Memor...Chann Proces.. Memor..Chann Proces.. Memer...Chann.
fifo_ma. chendc. quantiz.
reaib.
Il Il [
= = =
OPEBO
orB | L EE
% = =
unmapped | oPBO | TX0 | @0 Ll cpuz ¥ cpus O
Channel |Suurce |Deshna ESETX Microblaze Microblaze
Chann. Proces.. Memor..Chann, Proces.. Memer...Chann.
Process Channels c2q ipH
Memory Channels
FIFO Channels
T |
x
|
Processing ICummunicatiun |Mer< !
I:\MDCT&G
DCT32 = _H
c“;f;g Hardware A GCompile ISimuIate | Verity | Analyze | Refine | Synthesize | Shell |
I:Fcrte
SW Processor
I:ARMQ
rl
\Ready A

Change the name of the new process to “zigzag". This is the process for the zigzag scan
in the JPEG encoder application. Please ensure that the process is named correctly since
there exist references to it in the existing partial design. If the process is not named as
suggested, the generated models will not compile. The name of the new process for the
CPU4 is "huffencode™.

25

Chapter 2. Multi-Processor System Design with ESE

2.3.3. Add C Source File

ipeg_platiorm.eds - ESE Environment *

[CPUO cPU1 CPU2
MICROBLAZE MICROBLAZE MICROBLAZE

Memor...Chann. Proces.. Memor..Chann Memor..Chann.

Proces Proces
fifo_ma. chendc. quantiz.
reaib

Name Details

4 Rename Process
Memor
Channe Add Process

Wj
Wj
e

Remove Process(es)
Add .C File(s)

Add .H File(s) OPBO
Remove All Source Files

Add Process Port

Remove All Process Port(s)

% = =
unmapped | oPBO | TX0 | @0 Ll cpuz ¥ cpus O
ESETX Microblaze Microblaze

Chann. Proces.. Memor...Chann. Proces.. Memor...Chann.
c2q zigzag

Channel |Suurce |Deshna
Process Channels
Memory Channels
FIFO Channels

=

x
|

Processing ICummunicatiun |Mer< !

I:\MDCTGG
DCT32 = =

Cuzlt;g Hardware A Gompile ISimuIate | Verity | Analyze | Refine | Synthesize | Shell |
I:Fcrte

SW Processor

-ARM9

[y S |

The process added in the last step is only symbolic. The user must associate the actual
C/C++ code with it for the models to be functionally correct. In this case, we add C code
by right-clicking on the process name in the PE window and selecting Add .C File for
adding ".c" files. And we can also add ".h" files by selecting Add .H File. This will open
the file browser.

26

2.3.4. Select C

Chapter 2. Multi-Processor System Design with ESE

Source File

-

ipeq_platform.eds - ESE Environment *

File Edit View Synthesis Validation Windows

D=zd e

X!

[CPUO cPU1 CPU2
CPU1 | GCPU2 | CPU3 |CPU4
| ‘ I | MICROBLAZE MICROBLAZE MICROBLAZE
Name Details femor...Chann. Proces.. Memor..Chann Proces.. Memer...Chann.
I} chendc. quantiz.
iz Processes
L]
Memories Size
Channels o o &
OPBO([
OPB =
Look in: ‘Jng\mlexamp\esﬂpeg_p\aﬁormﬂpeg_srcs/jl <:=|| Ei(”_
= @&.. W zigzag.c
[chendcte
Unmapped IOPBO |TXO | [HuffEncode_aux.c
Channel |Suurce | Destina 1 huffencode.c ‘
i hann.
Process Channels B Quamf\zeiaux.c
Memory Channels quantize.c
FIFO Channels L) ReadBmp_aux.c
° [readbmp.c
File name: I'Zigzag_aux.c" "zigzag.c” Open
File type: C Source File (*.c) jl Cancel |
4
Bl] >
x
|
Processing ICummunicatiun Mer !
I:\MDCT&G
DCT32 = =
cu:r;g Hardware 2 Compile ISimuIate |Vsrify |Analyze |Rsﬁne |Synthesizs |Sth |
I:Forte
SW Processor
I:ARMQ
rl

Select .c file to add...

Go to the demo directory and follow the symbolic link to "jpeg_srcs". For the
"zigzag" proecss, select two ".c" files, "zigzag.c" and "Zigzag_aux.c" ,and one ".h"
file, "Zigzag_aux.h", and then click Open. In the same way, for the "huffencode”
process on CPU4, select three files, "HuffEncode_aux.c”, "huffencode.c”, and
"HuffEncode_aux.h". The files will be added under the new process in the PE window.

27

Chapter 2. Multi-Processor System Design with ESE

2.3.5. Add Process Ports

jpeg_platform_partial.eds - ESE Environment

File Edit View Synthesis Validation Windows Help
BEEEI
! — A
cput | cPuz [cpus |cpus |<Jv| Add ProcessPorl . ! oRuz ot
Name: |q22jf or..Chann. E\U-WL Memor...Chann.
quantiz.
Type: blocking_read ll
API: | Type Function Name
blocking_read recv_qg2z
Il
=
OP|
OP o
Heip | Add | gancel |
2| = 5
Unmapped | OPBO |TX0 | ™0 o cpuz ¥ cpua ¥
Channel ST |Deslina Et’xET‘A Microblaze) Microblaze)
Chann... Pr s.. Memor..Chann... Proces Memor...Chann...
Process Channels] ic huffenc
Memory Channels
FIFQ Channels
Dr2c readbmp chendct
oc2q chendct quantize =
) [=
' I
Processing |Cummumcatmn Mer
t\MDCTSG ']
DCT32 R] =
C“Nslt;rc'; Hardware = compile ISimuIate | Verity | Analyze | Refine | Synthesize | Shell |
Forte .
SW Processor
ARMQ

|Ready

After, the C code for the process is added, we need to add the application level com-
munication to the design. First of all, we need to add the process port for each process,
which will be connected to a channel for data transfer to another process. To add the
process port for the new process, click on the new process and select the Add Process
Port. This will open the window to add the process port. We can create any name for
the process port and select the type of it. There are ten possible types. We can categorize
them into three kinds. The "Send", "Receive"”, and "Send/Receive" are used for double
handshake channels. The "Read", "Write", and "Read/Write" are used for shared mem-
ory. And the others are for the FIFO channels. Finally, we need to assign its function
name to be what is actually used in C code. Please ensure that the function name is the
same as that used in C code. If the name is not correct, the generated models will not
compile.

The "zigzag" process has two process ports. One is for receiving data from "quantize"
process and the other is for sending data to "huffencode™ process. Assign the process port
name to be "g2z_if" for the former and "z2h_if" for the latter. Since we are using FIFO

28

Chapter 2. Multi-Processor System Design with ESE

channels, select the type to be "blocking_read" for the former and "blocking_write" for
the latter, respectively. Also, assign the function name to be "recv_g2z" and "send_z2h",
respectively. The "huffencode” process on CPU4 has only one process port which is for
receiveing data from “zigzag". Its process port name is “z2h_if" and its function name
is "recv_z2h". Please add all the process ports for all the new processes using the given
names.

29

Chapter 2. Multi-Processor System Design with ESE

2.3.6. View Application Channels

File Edit View Synthesis Validation Windows

Help
BEEEI
&I' A
cPUO |cPu1 |cPu2 | cpus |cp CERUD LA CEU2
| I | | | = MICROBLAZE MICROBLAZE MICROBLAZE
Name |Details Proces... Memor...Chann. Proces... Memor...Chann. Proces.. Memor...Chann.
B readb. chendc quantiz.
m-Processes
s B readbmp
Process Ports Channel A
L [Brze_if r2c N e =
Source Files = = =
[6lReadBmp_aux.c
[dreadbmp.c
OPBO
[i] ReadBmp_aux.h ore 1 29, 20 il
—Memories Size 'l
. - : =
[2) =
Unmapped | OPBO | Tx0 | =T o P U
Channel ESETX R
T Chann, Memor...Chann.
Process Channels T
Memory Channels
x
'
Processing |Cummunicaﬂun Memory]
Hardware IPs
t\MDCTaE B ’ i
=
DCT32 Eai
Custom Hardware X Compile ISimu\ale | Verity | Analyze | Refine | Synthesize | Shell |
tmsc]
Forte
SW Processor
-ARMS
P .

|Ready

After, the process port for the process is added, we need to create the channels for the
communication between processes. To view the existing channels, click on the TxO tab.
This will display the existing FIFO channels between processes in CPUO, CPU1 and
CPU2, including the source and destination names as well as the route used to im-
plement the channel in the communication platform. All the channels in ESE can be
uni-directional or bi-directional channels. If the user clicks on a PE in the platform can-
vas, all the channels originating or terminating at the PE will be selected. All other PEs
that the clicked PE communicates with will be highlighted in light yellow. All physical
connections, including buses and transducers used by the PE for communication will be
highlighted in green.

30

Chapter 2. Multi-Processor System Design with ESE

2.3.7. Add New Application Channel

Jpeg_platform_partial.eds - ESE Environment *]
File Edit View Synthesis Validation Windows Help
BEEEI
x|
| CPUO cPU1 CPU2
CPUO |CPU1 | CPU2 | CPU3 | CP
| I | | | ™~ MICROBLAZE MICROBLAZE MICROBLAZE
Name |Detai|5 Proces... Memor...Chann. Proces... Memor...Chann. Proces.. Memor...Chann.
B readb. chendc quantiz.
m-Processes
& Freadbmp
Process Ports Channel A
L @rze_if rzc . . .
Source Files = = =
[6lReadBmp_aux.c
[dreadbmp.c
OPBO
[i] ReadBmp_aux.h ore 1 w2q, 20 il
—Memories Size 'l
— - _‘
A % E 3
Unmapped | OPBO | Tx0 | ™0 o cpuz ¥ cpua ¥
Channel ST |Daslinatiun [ESETX Microblaze Microblaze
Chann. Proces.. Memor...Chann, Proces... Memor..Chann,
Process Channels {-:fl zigzag huffenc.
Memory Channels
FIFQ Channels
t@r?c readbmp chendct
oc2q chendct quantize
Add Channel
x
'
Processing |Cummuni::atiun Memory <]
Hardware IPs
t‘MDmE = —
=
DCT32 Eai
Custom Hardware X Compile |Simmate | Verity | Analyze | Refine | Synthesize | Shell |
tmsc]
Forte
SW Processor
-ARMS

|Ready

Please click on CPU3 and CPU4 and see the Channel window. We can know that they
are currently not connected at the application level to any other PE. Since we need com-
munication between the "quantize™ process in CPU2 and the "zigzag" process in CPU3,
we will add the application level channels, by right-clicking in the channel window and
selecting Add Channel. This will pop up the channel wizard for adding application
level channels.

31

Chapter 2. Multi-Processor System Design with ESE

2.3.8. Channel Wizard

jpeg_platform_partial.eds - ESE Environment *

Eile Edit View Synthesis Validation Windows Help
T EIN
I A
cPU4 CPUO cPU1 cPU2
=g |CPU1 |CPU2 |CPU3 | MICROBLAZE MICROBLAZE MICROBLAZE
Name |Detai|s Proces... Memor..Cnann Proges.. Memor...Chann F\Ln?\ Memor...Chann.
eadb. chendc quantz
B-Processes
® B huffencode
Process Ports Channel A.
Lmthiif e Add Channel o
Souice Files ~Channel Options =
HuffEncode_aux.c
uffencode.c annel Type: annel £
[Ehuff d Ch I T FIFO Ch; | ‘!
[d HuffEncode_aux.h 8;50 I Process-to-Process Channel I
—Memories Size vl Memory Channel
= = ! > Name: FIFO Channel
g Size: 256 bytes =
Unmapped | OPBO |TX0 | Writer: quantize ll us O
Channel Source |Destinaticn [Port: q2z_if I| 'roh\az” cr
3 | = oo emor...Chann
Process Channels - =
Memory Channels Reacsiylainesg *l
FIFO Channels Port g2z if K|
c2q chendct quantize Mapping: TRANSDUCER ,l
o2 readbmp chendct e = =
Mapping Options
Route: CPU2->0PB0->TX0->0PB0->CPU3 ll
E Help Add Cancel
I 4
Processing ICummunmamn Memory !
Hardware IPs
t\MDCTaG T 1 ‘
=
DCTa2 7
Custom Hardware A Compile |Simu\ale |Vﬂrify |Ana\yze | Refine | Synthesize |She|l |
NISC
Forte
SW Processor
-ARMS

[Ready

In the channel wizard dialog, we first need to select the channel type. Choose "FIFO
Channel" since we are using FIFOs. Then, assign the channel name to be "g2z" for con-
sistency with existing channels and also assign the FIFO size to be "256" bytes since the
processes send/receive an 64-array integer data each other. Next, since the process will
send data in one way from "quantize" to "zigzag", select "Unidirectional™ using the pull
down menu. Then, use the pull down menu to select the first communicating process as
"guantize™ and also use the next pull down menu to select the process port as "q2z_if". In
the same way, select the other communicating process as "'zigzag" and select the process
porst as "g2z_if". Next, select the mapping to be "TRANSDUCER" since we are using
a transducer for the inter-process communication. Once the communicating processes
and process ports are decided, ESE automatically filters all the possible physical routes
on the platform that can implement the channels. For this example, it shows that there is
only one route for each direction that goes over the OPB bus from the sender PE to the
transducer Tx0 and back to the receiver PE on the OPB bus. The route goes through the
transducer because all PEs in the platform are connected as masters, which does not al-
low direct communication. The slave interface of Tx0, thus makes the routing possible.

32

Chapter 2. Multi-Processor System Design with ESE

Click Add to add the channel. The same goes for the channel for the communication
from "zigzag" to "huffencode”. Please create the channel for its name to be "z2h" in the
same way.

33

Chapter 2. Multi-Processor System Design with ESE

2.3.9. View New Channel Communication

e jpeg_platform_partial.eds - ESE Environment ¢

Eile Edit View Synthesis Validation Windows Hi

EICEN-

[CPUD CPU2
CPU4
LY | SR | CRY2 | ShE | MICROBLAZE E MICROBLAZE
Name | Details Proces.. Memor...Chann. Memor...Chann Proces.. Memor..Chann.
readb. quantz
B-Processes
L8 Bi huffencode
w-[2] Process Ports Channel A,
L Mzzh_if z2h - - -
= Source Files = = =
HuffEncode_aux.c
huffencode.c
[d HuffEncode_aux.h 8;50 i c2q, 92z, r2¢, Z2h
—Memories Size]
= - | >
[=
Unmapped ‘ OPBO |TX[) | X0 [} CPU4 o
Channel ESETX Microblaze
[——r—— :,:h;mn Proges.. Memor..Chann
Memory Channels ‘ih

I
Processing ICummunmamn Memory

Hardware IPs

t\MDCTBG
DCT32

Custom Hardware

A Compile |Simu\ale |Vﬂrify |Ana\yze |Reﬁne |Synlhssizs |She|l |

SW Processor
-ARMS

[Ready

The newly created channels will now be visible in the channel window under the Tx0
tab. Once the channels are selected, the communicating PEs will be highlighted. This
shows that the new PEs, CPU3 and CPU4 are now "connected" with the rest of the
system on an application level.

34

Chapter 2. Multi-Processor System Design with ESE

2.4. Generating Functional and Timed TLMs

The previous steps complete the platform and application input that is necessary for gen-
eration of TLMs. We will show generation of two types of SystemC TLMs. The first one
is called the "Functional TLM™" because it is used for the validation of design functional-
ity only. It is completely un-timed and simulates the design based on causal dependency
only. A universal bus channel is used to model the system bus and the mapping of chan-
nels on the bus.

The second TLM is called the "Timed TLM" and is used for performance estimation of
the design. It relies on timing data models of PEs and Buses that are available in the ESE
database. The data models are used by our estimation and annotation technique to apply
"wait" statements in the application C code. The technique is retargetable and applicable
to processors as well as HW IPs. A retargetable bus timing annotation modifies the bus
channel to apply "wait" statements for inter-PE communication.

35

Chapter 2. Multi-Processor System Design with ESE

2.4.1. Generate Functional TLM

jpeq_platiorm.eds - ESE Environment
File Edit View Synthesis | Validation Windows Help
|1 B | @ Generate Functional TLM...

Generate Timed TLM...
CPUO CPU1 CPU2

Select Board... -~ MICROBLAZE MICROBLAZE MICROBLAZE

Name Proces.. Memor...Chann Proces.. Memor..Chann Proces.. Memer...Chann.
Synthesize to Board... readb. chendc. quantiz.

Unmapped | CP

Y- Pri
#-Breadbmp O stop
I Process Ports

L [Ar2c_if 2c
Source Files
ReadBmp_aux.c
Ereadbmp.c
[HIReadBmp_aux.h
~Memories

Wj
Wj
e

29, 92z, 12c, 2h

Size

[= =

0 H pus U cpus U
ESETX MICROBLAZE MICROBLAZE

Unmapped | OPBO Txol

Channel Source |Deshna
Process Channels
Memory Channels
FIFO Channels
Eﬂ)z% zigzag huffencol

Proces.. Memor...Chann.
huffenc.

Chann. Proces.. Memor...Chann.
c2g zigzag
4

z2h

g2z quantize zigzag
oc2q chendct quantize
or2c readbmp chendct

ET _»}
% Compile | Simuiate | Veriy | Analyze | Refine | Synthesize | shell |

x
|
Processing ICummunicatiun |Mer< !

Hardware IPs

I:\MDCTBS
DCT32

Custom Hardware
NISC
Forte

SW Processor

|»ARM9
ireii s |

Generate Functional TLM

— A

After the platform and application input is complete, the functional TLM can be gen-
erated automatically by selecting Synthesis— Generate Functional TLM from the
menu bar. This will generate the SystemC code needed for platform modeling, includ-
ing PEs, buses and transducers. The generated code is then compiled natively along with
the C application code and linked to the SystemC libraries to produce a single binary.
This process can be viewed in the log window.

36

Chapter 2. Multi-Processor System Design with ESE

2.4.2. Simulate Functional TLM

File Edit View Synthesis

7 jpeq_platiorm.eds - ESE Environment s

Memory Channels

£Process Channels
FIFO Channels

©z2h zigzag huffencol
g2z quantize zigzag

oc2q chendct quantize
or2c readbmp chendct

EEEEIR Simulate Functional TLM
- Simulate Timed TLM cPUT cPU2
U d | CPUO |CPU1 |
%,_ Open Terminal MICROBLAZE MICROBLAZE
Name T Memor..Chann Proces.. Memor...Chann
v Processes \; " o
#-Breadbmp tewLog...
Process Ports
L [Ar2c_if 2c o o .
Source Files = =4 =
ReadBmp_aux.c
[readbmp.c
[HIReadBmp_aux.h gggo I <2q, a2z, 20, 22h
~Memories Size
% = =
Unmapped | OPBO | Tx0 | o cpPuz ¥ =
Channel e |Deshna MICROBLAZE MICROBLAZE

Memor..Chann. Memor..Chann.

Compile | Simulate |Ven‘fy | Anayze | Refine | Synthesize | shell |

|
Processing ICummunicatiun |Mer< !

Hardware IPs
IMDCT386
DCT32

Custom Hardware
NISC
Forte

SW Processor

|»ARM9
R |

egbpl?ﬁflutﬂ 51cs/CPU2/quant1ze/h 1les -T.. /dpeg_platforn_. srcs/CPUl/chendct/h iles -T.. /jpeg_platfora_. srcs/GPUO/re
adbup, =

goo g -I8C - .. /dpeg_platform_sros/CPU3/zigzas/c_files/Fiezag_au ¢ .. /Jpeg_platforn_sros/CPUS/zigzag/c_files/zi
gzae.C -1, /jpee platforn srcs/CPU4/huffancode/n files L. /jpeg platforn srs/CRU3/zizzag/h Tiles -L . /Jpes_platf
oT, srcs/CPUZ/quﬁntlze/h files -1, /jpeg_platform : srcs/CPUl/chendct/h filss -1, /Jpeg_platform : srcs/CPUO/readbmp/h

J_les

goo —g -ISC —c ., /dpeg_platform_srcs/CPU4 /huffencode/c files/HuffEncode_aug, o .. /Jpeg_platform srcs/CPUS/huffencod

e/c fﬂes/huffencode ¢ -L./Jpeg_platform_srcs/CPU4/huffencode/h_files -1../jpeg_platform_srcs/CPU3/zigzag/h_files
. /Jpeg_p. latform srcs/CPUZ/quantlze/h files -1../Jpesg_platform_. srcs/CPUl/chendct/h files -I../Jpeg_platform_srcs

/CPUO/Ieadbmp/h

gt —g I/optfpkg/systemc £, 2, 0/Include -o sres/tlm cc -Iincs

g+t -Lfopt/phe/aystenc-2, 2, 0/11b-Hmm -o tln tlm o ReadBup_awr o readbmp, o chendet.o Quantize aum o quantize, o Zig

zag_auk. o zlgzag. o HuffEncode_awk o huffencode.o -lsysteme -ln -lpthread

Conpilation ended.

Simulate Functional TLM

Once the compilation has completed, the generated TLM can be executed from the GUI
by selecting Validation— Simulate Functional TLM from the menu bar.

37

Chapter 2. Multi-Processor System Design with ESE

2.4.3. View Functional Simulation Results

-

File Edit View Synthesis Validation Windows

jpeg_platform.eds - ESE Environment

D=zd e

X

|
Unmapped | CPUO ICPU1 | cPi<] achSOBLAZE
Name |Detsi ﬁa‘;j\s Memor...Chann.
#Processes

Copyri. ght()

ipeg_platiorm

--- Jun 13 2007 10 49 55
iﬂSE 2006 by all Contribute

ALL RIGHTS RESERVED

0" JPEG inage, color space Grayscale, 1 comp, Huffnan cod

zigzag huffencol
quantize zigzag

chendct quantize
readbmp chendct

ET

.foutput.jpg

= Compile ‘Slmula(e IVenfy |Ana|yze |Reﬁne |Syr|thes|ze |Shel| |

|
Processing ICummunicsﬁun |Mer< !

Hardware IPs
I:\MDCTC!S
DCT32
Custom Hardware
NISC
Forte
SW Processor
|»ARM9

9 Xterm -title jpeg_platform -e /bm/sh - 51m fune_TLM /data/users/yJahn/worl«/esedemo/esedemo/Jpag platform, eds; ech
o "Simulation exited with status $77 j;echo "Press return to continue ,

sread confirm

A

[Ready

The simulation pops up a terminal that shows the picture size of BMP input that has
been encoded. The JPEG encoder we are using deals with BMP inputs of 640x480 size.
An additional window shows the picture of the encoded JPEG which is the output of the
simulation. The pop up windows can now be killed simply by pressing "Enter" in the
simulation logging terminal.

38

Chapter 2. Multi-Processor System Design with ESE

2.4.4. Generate Timed TLM

Z ipeg_platiorm eds - ESE Environment
File Edit View Synthesis | Validation Windows Help

|z B $ | @ Generate Functional TLM... I
Generate Timed TLM...

CPU2
MICROBLAZE MICROBLAZE

s.. Memor...Chann Memor...Chann.

Unmapped | CP

BLAZE

Memor...Chann.

Select Board... -

Name
Y- Pri
#-Breadbmp O stop
I Process Ports

Synthesize to Board... ﬁl‘nnﬂ:

L [Ar2c_if 2c
Source Files
ReadBmp_aux.c
Ereadbmp.c
[HIReadBmp_aux.h
~Memories Size

Wj
Wj
e

oPR | ©2q, q2z, 12c, 22h

[=S

0 = 5]
H cpuz O cpus U

MICROBLAZE MICROBLAZE
Pr

s.. Memor...Chann Memor..Chann.

Unmapped | OPBO Txol

Channel Source |Deshna
Process Channels
Memory Channels
FIFO Channels
Eﬂ)z% zigzag huffencol

Proces.
huffenc.

g2z quantize zigzag
oc2q chendct quantize
or2c readbmp chendct

= | =
Compile ‘S\mulalﬂ IVerify |Analyze |Reﬁne |Synthesize |SheH |

: % xtern -title Jpeg_platform —e /bin/sh - sim fime TIM /data/users/yjahn/work/esedeno/esedenc/ jpeg_platform eds; ech
x o "simulation exited with status $7” jecho "Press return to comtinue ,..” ;read confirm
Simulation exited, exit status: 0

Ix

B |

|
Processing ICummunicatiun |Mer W

Hardware IPs
I:\MDCT%
DCT32
Custom Hardware
NISC
Forte
SW Processor
|»ARM9
YT |

Generate Timed TLM

Similar to the functional TLM generation, the Timed TLM can be generated automat-
ically by selecting Synthesis— Generate Timed TLM from the menu bar. The bus
channels generated for timed TLM will include timing for synchronization, arbitration
and data transfer. The timing parameters are imported into the TLM from the bus data
model. For the computation part, we use a retargetable source level timing estimation
technique that utilizes the PE data models. Naturally, the timed TLM generation and
compilation is significantly slower than functional TLM generation, but still in the order
of seconds.

39

Chapter 2. Multi-Processor System Design with ESE

2.45. Simulate Timed TLM

Jpeg_platiorm.eds - ESE Environment
File Edit View Synthesis M‘ Windows Help
=R Simulate Functional TLM
- Simulate Timed TLM buo cPUT cPU2
Ui d | CPUO |CPU1™___ _— |
%,_ Open Terminal ~ |CROBLAZE MICROBLAZE MICROBLAZE
Name] oces.. Memor...Chann Proces.. Memor...Chann Proces.. Memor..Chann
Kill simulation ~ |adb. c quantiz.
r-Processes View L
#-Breadbmp tewLog...
Process Ports
L [Ar2c_if 2c .
Source Files = =4
ReadBmp_aux.c
[readbmp.c
[HIReadBmp_aux.h
~Memories Size
% =
Unmapped | OPBO | Tx0 | ™0 CPUZ cpus U
S S [ESETX MICROBLAZE MICROBLAZE
Chann Proces.. Memor...Chann Proces.. Memor..Chann
Process Channels ¢ zigzag hufern
£Memcry Channels
FIFO Channels
©z2h zigzag huffencol
g2z quantize zigzag
oc2q chendct quantize
or2c readbmp chendct
= M
% Compile | Simuiate | Veriy | Analyze | Refine | Synthesize | sheil |
T | ForE e o -
; zag_aux. o zigzag. o HuffEncode_aux o huffencode.o -lsystemc -Im -lpthread
A tnnotating Processes :: huffencode
Processing Ic‘.ummunicatiun |Mer< | “HuffEncodeWaL_m is being estimated
. huffencode” 1s being estinated
Hardware IPs Phase 2 is complste
IMDCT386
DCT32
Custom Hardware Phase 3: Generating SystenC code to Estimate Communication Time
NISC Phase 3 is complete
Forte
SW Processor A Tasks are successful
|>ARM9 Compliation endsd
wa i]
Simulate Timed TLM

To simulate the generated timed TLM, simply select Validation— Simulate Timed
TLM from the menu bar, after the TLM compilation has ended.

40

Chapter 2. Multi-Processor System Design with ESE

2.4.6. View Timed Simulation

~ jpeg_mpd_platiorm.eds - ESE Environment ==
Eile Edit View Synthesis Validation Windows Help
T EIN

CPUO [armia [ariia _
MICROBLAZE .foutput.jpg

Proces.. Memor...Chann.
readb

Unmapped | cPuo | cPU1 | cPI4

Name |Dsla\\s |

(]
[ey

Jjpeg_mpd_ platform

**Transducers THO*
Fifo check tine;142982 -
1 ad write tinei13200

TIHE:15310EB45 ns
.dPg is & B40x480 JPEG image, color space Grauscale, 1 comp, Huffman cod

“ Compile ‘Simulate |Ver1'fy |Ana\yze |Reﬁne |Synthesize |SheH |

¥ zterm -title jpeg_mpd_platform —e /bin/sh -c¢ sim_perf_TIM /data/users/yjahn/work/essdenc/ssedenc/ jpeg_mpd_platform.
eds; echo "Simulaticn exited with status $7° ;echo “Press return to continue ,,,” jread confirm

IMDCT36
DCT32
Custom Hardware

tmsc
Forte
SW Processor

tARMS

[Ready

The timed TLM simulation looks very similar to the functional TLM simulation ex-
cept for one marked difference. Notice that timed simulation is significantly slower than
functional TLM simulation. This is natural since we are simulation a lot more "wait"
statements that are annotated to the application codes. However, our results show that
this is still several orders of magnitude faster than RTL simulation for the same design.

When the timed simulation ends, several statistical data are dumped in the simulation
logging terminal. These are the estimated cycles for CPU computation and communi-
cation, bus congestion estimates and so on. However, all these estimated performance
statistics can be viewed graphically as shown in next section.

41

Chapter 2. Multi-Processor System Design with ESE

2.5. TLM Performance Estimation

The timed TLM produces several statistical data that is gathered during simulation. Since
the source annotation is fine grained, the TLM produces results for cycles used for invo-
cation of each function in the application code. Computation and communication cycles
for each PE can be viewed using pie charts. The distribution of cycles for each func-
tion amongst its sub-functions can be browsed recursively. Similarly, the distribution of
inter-PE bus traffic over inter-process channels can also be viewed graphically.

The performance estimates are useful for early platform and mapping evaluation. Since
the timed TLMs are generated automatically, and TLM simulation is very fast, early
design space exploration becomes feasible. Users may explore platforms manually or
plug in their exploration algorithms for system level design optimization.

42

Chapter 2. Multi-Processor System Design with ESE

2.5.1. View Performance Estimates

jpeg_platiorm.eds - ESE Environment

File Edit View Synthesis Validation Windows

D=zd e

CPU1 | GPU2 | CPUB | CPU4

MICROBLAZE
Memor..Chann P

Memor...Chann.

CcPU1 CPU2
MICROBLAZE

s.. Memor...Chann

Il Il [
= = =
OPEBO
ore | 2h
% = =
Unmapped | OPBO | TXO | =T o cPus ¥ 1
Channel |Suurce |Deshna ESETX MICROBLAZE) MICROBLAZE
Chann. Memor...Chann Proces.. Memer...Chann.
Process Channels zZh huffenc,
Memory Channels
FIFO Channels Add Port
Remove Port
g2z quantize zigzag R PE
@c2q chendct quantize | GEWROHE |
or2c readbmp chendct Connect To ~
= ViewGraph.. [] =]
= Compile | Simulate IVerify |Analyze |Reﬁne |Synthesize |SheH | Properties
=) T |
x
|
Processing ICummunicatiun |Mer W
Hardware IPs
IMDCT386
DCT32
Custom Hardware
NISC
Forte
SW Processor
|»ARM9
YT |
—I|
[Ready

To view the PE performance statistics, right-click on the PE in the platform canvas and

select View Graph. In this case, we will select the CPU4 Microblaze processor.

43

Chapter 2. Multi-Processor System Design with ESE

2.5.2. PE, Process and Function Level Estimates

jpeg_mpd_platform.eds - ESE Envil huffencode Chart
File Edit View Synthesis Validation Windows Window Customize Help
DeE e 9 huftencode
I A
computation Chart M
CPU1 CPUA4 Chart
Window Customize MI| Window Customize |
_Name - Legends
[:ﬁ cPua computation [| Encodeac
B [] wriesits
i Legends Legends local cod
[idle hutfencode l:l ocal_coce
[comm H - EncodeDC
[comp [] JpegDefaulttutfman
000 Bl writeaPrO
] H I writeDHT
I Il wrienor
= l:| others B
EncodeAC Chart Ll
Ly Window Customize
Channe I o Vs e T
Process Chanmols EncodeAC fs.. Memor..Chann ‘ | Preces.. Memor...Chann...
Memory Channels EncodeHuffman_AC Chart
FIFQ Channels Legends Window Customize
local_code EncodeHuffman AC ____WriteBits Chart
I:l EncodeHuffm Window Customize
- o d
l:l WriteBits Legends WriteBits s
WriteBits et
|:| local codg
Legends
BT 9’.2%] local code -platforn.

QO%

t\MDCTSG
DCT32
Custom Hardware
NISC
Forte
SW Processor

tARMQ
4

|Ready

The first pie-chart window divides the total execution time into computation, communi-
cation and idle cycles. Double-clicking on the computation part of the pie chart pops up
the distribution of computation across different processes in the design. In this case,
we have only 1 process "huffencode” mapped to CPU4, hence it is 100%. Double-
clicking on the process in the pie chart produces the distribution of computation across
the top level functions in the process. These function(s) call lower level functions and
so on. Double-clicking on a function produces the pie chart for the distribution of cy-
cles amongst the sub-function invocations. Using this viewing feature, the user may go
down to any level in the function call hierarchy. If the pie chart appears too small, please
increase the window size to enlarge the chart.

44

Chapter 2. Multi-Processor System Design with ESE

2.5.3. View Communication Estimates

jpeg_platiorm.eds - ESE Environment

File Edit View Synthesis Validation Windows Help
=2~
x|
[CPUO cPU1 CPU2
CPU1 | GCPU2 | CPU3 | CPU4 >
| | | MICROBLAZE MICROBLAZE MICROBLAZE
Name |Deh P Memer...Chann.

es.. Memor..Chann. es.. Memor..Chann.

Proces
dc. quantiz.

readb.
r-Processes
8 Bj huffencode
o Process Ports Cha
L @zzn_it z2h - - -
=[5 Source Files = = =
HuffEncode_aux.c
[huffencode.c
[A HuffEncode_aux.h OPBO P T 1
— OPB l S— 2
~Memories Size, Remove Bus
— View Graph...
ol Plot... =
X0 u Properties cpus o
ESETX WMICROBLAZE MICROBLAZE
Chann. Proces.. Memor..Chann Proces.. Memer...Chann.
Bprocess Channels ‘ég zigzag hutfenc,
Memory Channels =5
FIFO Channels

|
Processing ICummunicatiun |Mer< !

Hardware IPs
IMDCT386
DCT32

Custom Hardware
NISC
Forte

SW Processor

|»ARM9
ireii s |

[Ready

— A

To view the bus communication statistics, right-click on the bus in the platform canvas
and select View Graph. In this case, we will select the only OPB bus.

45

Chapter 2. Multi-Processor System Design with ESE

2.5.4. Bus and Channel Level Estimates

2 jpeg_mpd_platiorm.eds - ESE Environment ==
Eile Edit View Synthesis Validation Windows Help
T EIN
! A
=l CPUD CPU1 CPU2
Unmapped 1
ped |cPUO | cPUT | CP BLAZE MICROBLAZE MICROBLAZE
Name |Deta\\s | Memor...Chann Proces.. Memor..Chann. Proces.. Memor..Chann.
chendc quantiz
Processes
Memories Size
Channels
Il
=4
= OPBO Chart =lB]x
Window Customize |_ Window Customize :I B
OPBo data transfer
Unmapped | OPBO | TXO Legends Legen:
| | | e b [z2n
Channel [data transfer [rze Chann
®process Channels q?_@e Haze
Memory Channels Beza
- A
= I =
ly4
yJatn/work/esedeno/egedeno/ dpeg_npd_plat forn.
&

o
Ty o0l GOIATION SEITed With STatus $77 ;echo "Press febun to continue ..." ;read confirm
Simulation exited, exit status: 0

&
ad |

_x b

==

Processing ICummunmamn |Mer

Hardware IPs
t\MDCTBG
DCT32
Custom Hardware
NISC
Forte
SW Processor
’—ARMQ

[Ready

The top level pie-chart for the bus shows the distribution of bus cycles in idle,
program/data access and inter-PE data transfer phases. Double-clicking on the
"data-transfer” part of the pie-chart produces the distribution of communication traffic
amongst the various application channels in the design.

46

Chapter 3. Heterogeneous System Design with
ESE

This section deals with design of MP3 decoder on a heterogeneous platform consisting
of one MicroBlaze processor and four HW accelerators. There are two buses in the plat-
form. The Microblaze processor uses its compatible OPB. The hardware accelerators on
the other hand, were manually designed and use their own proprietary Double Hand-
shake (DH) bus. Since the two bus protocols are incompatible, a transducer that acts as
a buffer and protocol converter, interfaces between the buses.

The MP3 application code is available as a C model. This C model was divided into five
processes, by separating the left/right channel DCT32 and IMDCT36 transforms into
separate processes. These new processes run concurrently to the main MP3 thread since
they are data independent. In this Chapter, the communication between the processes
takes place through pairs of message passing channels. ESE provides well defined com-
munication APIs for this purpose. The testbench includes an MP3 file that is decoded
into a corresponding PCM file by the design. The decoded output is shown graphically
during the TLM simulation of the MP3 decoder.

The chapter starts by explaining the set up for ESE. It then shows, using screenshots, how
the platform is created. To speed up the demostration, and to emphasize on the features,
we start with an existing partial platform that is upgraded with an additional processor.
Then we show the application mapping on the platform, followed by TLM generation,
simulation and performance estimation. Thus, we present the core capabilities of the
ESE Front-End tools in easy platform design & upgrade, model generation, validation
and estimation.

47

Chapter 3. Heterogeneous System Design with ESE

3.1. ESE Startup and Settings

Before starting the demonstration, please ensure that you have the ESE software
installed in the right location at "/home/ese/local.” Also make sure that you have an
"/home/ese/local/pkg” directory containing the SystemC 2.2.0 libraries and SDL
libraries that are needed for simulation of generated TLMs. Also make sure that you
have GCC version 3.4 or higher because it is needed to correctly compile the generated
TLMs. The demonstration shown here assumes the user to have a bourne shell. For C
shell, the user may call the ".csh™ version of the setup scripts. Alternately, just use "sh"
to create a new bourne shell and follow the tutorial directions.

48

Chapter 3. Heterogeneous System Design with ESE

3.1.1. Environment Setup

yiahn@ dent:~/work/esedemo/esedemo

File Edit Wiew Terminal Tabs Help
[vjahn@dent esedemo]$ source /home/ese/local/bin/setup.sh [+]

:

We start by setting up the environment variables to access ESE binaries. This is
provided by the "setup.sh™ script in your installation. Typically, the installation path
would be "/home/ese/local.” The script is in the "bin" directory in the installation. The
script modifies your PATH environmental variable to include path to ESE as well as the
LD_LIBRARY_PATH variable to access the shared libraries that ESE depends on. Run
the command "source /home/ese/local/bin/setup.sh™ and create a new local directory for
the demo.

49

Chapter 3. Heterogeneous System Design with ESE

3.1.2. ESE Demonstration Setup

yiahn@ dent:~/work/esedemo/esedemo

File Edit Wiew Terminal Tabs Help

[vjahn@dent esedemo]$ source /home/ese/local/bin/setup.sh [+]
Setting up environment variables for ESE
[vjahn@dent esedemo]$ esedemo_mp3.sh

:

Once the environmental variables have been set, the user is ready to launch ESE and
create his or her design. For the purposes of this tutorial, we will start with a partial
design to quickly demonstrate the key capabilities of the toolset. We have created a shell
script called "esedemo_hsd.sh™ that prepares a partial design to start the demo for the
MP3 decoder. At this point, run the "esedemo_hsd.sh" script after changing into the local
directory created for the demo.

50

Chapter 3. Heterogeneous System Design with ESE

3.1.3. Launching ESE

yiahn@dent:~/work/esedemo/esedemo

File Edit Wiew Terminal Tabs Help

[vjahn@dent esedemol]$ source /home/ese/local/bin/setup.sh
Setting up environment variables for ESE

[vjahn@dent esedemo]} esedemo_mp3.sh

ESE demonstration setup for MP3 DECODER is ready
[vjahn@dent esedemo]$ 1s

/ Jjpeg_platform_partial.eds Jpeg_srcs@
i Jpeg_platform_partial_srcs@ mp3_platform_partial.eds
jpeg_platform.eds jpeg_platform_srcs/ mp3_platform_partial_srcs@

[vjahn@dent esedemol$ ese&k

mp3_srcs@
test@

[+]

] =]

After running the "esedemo_hsd.sh" script, you will notice several files in the working
directory. Some of these files will have a ".eds" extension. They are the ESE design files
for the MP3 decoder designs that we will be using for this demo. You may also see links
to source directories. These point to the C code for the processes of the MP3 application.

To launch the ESE GUI, simply run "ese™ from your shell.

51

Chapter 3. Heterogeneous System Design with ESE

3.1.4. ESE GUI

(untitled).eds - ESE Environment

Eile Edit View Synthesis Validation Windows

EICEN-

Unmapped I

!

Name |Dela\\s |
Processes
Memories Size

Channels

x

Unmapped I

Channel | Source | Destina
Eprocess Channels

Memory Channels
FIFO Channels

x
|

v
Processing ICummumcatmn |Mer<

Hardware IPs
A
IMDCT36
i K

DCT32 = 5
Custom Hardware Gompile ISimuIate | verity | Analyze | Refine | Synthesize | Shell |

tmsc
Forte
SW Processor
’—ARMQ

[Ready

The ESE GUI should now appear as shown in the screenshot. The GUI has several menu
items that we shall explore over this tutorial. It is divided into five windows. The top left
window is the "PE" window. It organizes the various application processes mapped to
PEs in the design. The mid-left window is the "Channel” window that organizes the
various channels used for communication between the application processes. The tabs
represent the physical communication links in the platform. The bottom left window
is the "Database"” window that organizes the PE, CE, memory and RTOS model. The
top right window is the "Platform Canvas" on which the platform architecture is edited
graphically. The bottom right window is the "Logging" window that logs the messages
from various ESE tools.

52

Chapter 3. Heterogeneous System Design with ESE

3.1.5. Editing Database Preferences

(untitled).eds - ESE Environment

File Edit | View Synthesis Validation Windows Help
|0 & & Find... Ctri+F

B Find Next F3 —

Unm:

Find Previous Shift+F3

| Import design... :,

Nami
Pr———————————————

—@ Preferences...
Channels

X

Unmapped I

Channel | Source | Destina
EProcess Channels

Memory Channels
FIFQ Channels

x
'
Processing |Cnmmuni::atinn |Mer< |

Hardware IPs

t\MDCTﬂE S —
DCT32 -

Custom Hardware | complle | Simulate | Verity | Analyze | Refine | Synthesize | Shell |

tmsc |
Forte

SW Processor

’»ARMS

i

|Ready

Before creating a new design, we must ensure that the components needed for our MP3
platform are accessible by the GUI. To do so, we edit the database preferences by se-
lecting Edit— Preferences from the menu bar.

53

Chapter 3. Heterogeneous System Design with ESE

3.1.6. Select Database File

- (untitled).eds - ESE Environment NEIR

Eile Edit View Synthesis Validation Windows Help
T EIN

Unmapped I

!

Name |Dela\\s |

Processes
Memories Size SSSSSES———————
Channels Preferences (x]

Compiler | I

D

’VIfdataﬂusersﬂese/lcca\fdbfese.sdb Select...

x

Unmapped I

Channel | Source | Destina
Eprocess Channels

Memory Channels
FIFO Channels

x
Processing |Cummumcatmn |Mer1‘ | M ﬁ ﬂl

Hardware IPs

7]
tmocme =]
DCT32

Custom Hardware | compile | Simulate | Verity | Analyze | Refine | Synthesize | Shel |
NISC

Forte
SW Processor
’—ARMQ

4

[Ready

In the Preferences dialog, select the tab for Database. This will allow the user to
browse for the database file that has a ".edb" extension. The database file needed for the
MP3 demonstration already comes with the ESE installation. Typically, this file will be
called "ese.edb™ and will be located at "/data/users/ese/local/db/ese.edb.” If the selec-
tion is not already there, please browse for the file and press OK. The PEs, buses and
transducers should now be visible in the database window, if they weren’t already.

54

Chapter 3. Heterogeneous System Design with ESE

3.2. Platform Creation

We will start by loading the heterogeneous system design of the MP3 decoder into ESE.
As mentioned earlier, we will start with a partial platform consisting of one Microblaze
processor and three HW accelerator PEs. The Microblaze processor carries the appli-
cation code for all of the decoder, except the filter processes, which are the most com-
putationally intensive parts of the application. A new HW PE, customized for DCT32
function, will be added to the platform. In this section we will show how to use the
database and platform editor canvas to upgrade a heterogeneous platform in ESE.

55

Chapter 3. Heterogeneous System Design with ESE

3.2.1. Open Partial Design

v

(untitled).eds - ESE Environment

File Edit View Synthesis Validation Windows Help
BEEEI
!
Unmapped I
Name |Data\\5 |
Processes
Memories Size
Channels
Look in: [=y-aluserslyjahniworkiesedemolesedemol /| 4= | &| e
@. p3_platform_partial.eds
] (&l jpeg_platform_partial_srcs
X ’
(Jjpeg_platform_srcs
Unmapped I (&jpeg_srcs
Channel [source [Destina (8mp3_platiorm_partial_srcs
Process Channels (= mp3_srcs
Memory Channels (Htest
FIFO Channels L ipeg_platform.cds
(1 jpeg_platform_partial.eds
File name: Impaip\aﬁcrmipaﬂia\.eds Open
File type: ESE Design Files (*.eds) jl Cancel |
4
=
x
'
Processing |Cnmmuni::atiun |Mer< |
Hardware IPs
A
t\MDCTﬂE S —
DCT32 Eai
Custom Hardware X compile ISimuIate | Verity | Analyze | Refine | Synthesize | Shell |
tmsc]
Forte
SW Processor
’»ARMS
Y, rl
|Ready

We begin by adding the already created partial design. The ESE designs are stored in
XML based files with the extension ".eds."” Select File—Open from the menu bar.
Browse into the demo working directory and select "mp3_hsd_platform_partial.eds."
This is the design with the partial heterogeneous system design example. Press Open to

open the design.

56

Chapter 3. Heterogeneous System Design with ESE

3.2.2. View Partial Design

mp3_platform_partial.eds - ESE Environment.

File Edit View Synthesis Validation Windows

BEEEI

!
H LPCM RFIL RPCM

u d b

nmappe ICF’U |LPem | rPC LN DeTan IMDCT36

Name |Deta\\5 |
Processes
Memories Size
Channels

Proces.. Memor..Chann.
pem_I

Proces.. Memor...Chann. Proces.. Memor...Chann.
Ipem_i il_dct

]]]
= = =

BuB [EH_cPU_LPCM_B, CH_CPU_LPCM_F, CH_CPU_RFIL_B, CH_CPU_RFIL_F, CH_CPU_RPCM.]

Sgg [PH_CPU_LPCM_B., CH_GPU_LPCM_F, CH_CPU_RFIL_B, CH_GPU_RFIL_F, CH_GPU_RPCM.]

Unmapped IDH |ope | |

= o o

Channel |Suurce |Deslina

)
ci >1
Process Channels MICROBLAZE ESETX
Memory Channels Chann
§
C
¢

Proges.. Memor..Chann
FIFO Channels mp3_m...

_Ia‘[!

Processing |Cummuni::atiun |Mer< |

Hardware IPs

|
t\MDCTaE S —
DCT32

Custom Hardware | complle |Simulate | Verity | Analyze | Refine | Synthesize | Shell |

tmsc |
Forte

SW Processor

’»ARMS

i

|Ready

The partial platform will appear in the canvas as shown in the above screenshot. We can
see one Microblaze processor CPU and three HW filters in the platform. Filters LPCM
and RPCM are for the left and right channel IMDCT36 transforms. Filter RFIL perform
the right channel DCT32 transform. The HW accelerator for the left channel DCT32
transform is missing and will be added during this demonstration. The CPU connects to
the OPB, while the filters connect to the Double Handshake Bus (DHB). Also note that
all PEs are connected to their respective buses as "Masters™ as indicated by an "M" at
the connecting port. Since the DHB and OPB protocols are incompatible, we provide a
transducer (Tx1) that acts as a buffer and protocol converter for communication between
the CPU and the HW filters.

57

Chapter 3. Heterogeneous System Design with ESE

3.2.3. Add Processing Element

mp3_platform_partial.eds - ESE Environment *]
File Edit View Synthesis Validation Windows Help
BEEEI
!
| LPCM RFIL RPCM
LPCM | RPCM | RFIL | PEO Ld
| | | ‘ i~ IMDCT36 DCT32 IMDCT36
Name Details Proces.. Memor..Chann Proces.. Memor..Chann Proces.. Memor..Chann
] Ipem_i. il_dct. rpem_l
Processes
Memories Size
Channels
Il Il Il
= = =
Bt'lB [EH_cPU_LPCM_B, CH_CPU_LPCM_F, CH_CPU_RFIL_B, CH_CPU_RFIL_F, CH_CPU_RPCM.]
ors [FH_CPU_LPCM_B. CH_CPU_LPCM_F, CH_CPU_RFIL_B, CH_CPU_RFIL_F, CH_CPU_RPCM.]
OPB
x
Unmapped |DH | 0P8 | Tx1 |
Channel |Suurce |Deslina Eu o)u o)u
Process Channels CPU Tx1 RED
MICROBLAZE ESETX DCT32
Memory Channels Proges.. Memor...Chann Ghann, Proces.. Memor...Chann
FIFO Channels mp3_m... e
CH=CP.
=
x
'
Processing | Communication |Mer< |
Hardware IPs
A
BT ——
X compile ISimuIats | Verity | Analyze | Refine | Synthesize | Shell |
tmsc]
Forte
SW Processor :
’»ARMS :
Y, rl
|Ready

Adding a new PE to the platform is very easy. Browse the database under the Process-
ing tab and select DCT32. Now drag and drop the selection into the central platform
canvas. The new PE of type "DCT32" will be added to the platform!

58

Chapter 3. Heterogeneous System Design with ESE

3.2.4. View PE Properties

mp3_platform_partial.eds - ESE Environment *]
File Edit View Synthesis Validation Windows Help
O=a3o
!
| LPCM RFIL RPCM
LPCM | RPCM | RFIL | PEO Ld
| | | ‘ i~ IMDCT36 DCT32 IMDCT36
Name Details Proces.. Memor..Chann Proces.. Memor..Chann Proces.. Memor..Chann
§p Ipem_i. il_dct. rpem_l
rocesses
Memories Size
Channels
Il Il Il
= = =
Bt‘lB [EH_cPU_LPCM_B, CH_CPU_LPCM_F, CH_CPU_RFIL_B, CH_CPU_RFIL_F, CH_CPU_RPCM.]
ggg [FH_CPU_LPCM_B. CH_CPU_LPCM_F, CH_CPU_RFIL_B, CH_CPU_RFIL_F, CH_CPU_RPCM.]
x
Unmapped |DH | 0P8 | Tx1 |
Channel |Suurce |Deslina =]))
Process Channels CPU - Tx1 = = PEO
MICROBLAZE ESETX DCT32
Memory Channels Proges.. Memor..Chann Ghann, Proces.. Memor..Chann
FIFO Channels mp3_m... e
CH-CP.
Add Port
Remove Port
Remove PE
Connect To »
| View Graph...
> | e |
g Properties
'
Processing |Cummuni::atiun |Mer< |
Hardware IPs
A
IMDCT36 I -."—
Custom Hardware X compile ISimuIats | Verity | Analyze | Refine | Synthesize | Shell |
tmsc |
Forte
SW Processor
’»ARMS ;
A rl
|Ready

After the drag-drop, the user will find a new PE called PEO in the platform. This is the
PE that will host the missing DCT32 filter process in the design. We start by providing
an appropriate name to the new PE to be consisten with the rest of the design. To do so,
right click on the PEO box and select Properties.

59

Chapter 3. Heterogeneous System Design with ESE

3.2.5. Assign New Name to PE

v

File Edit View Synthesis Validation Windows

BEEEI

mp3_platform_partial.eds - ESE Environment

mIEE

!

Help

|LPcM | RPCM | RFIL | PEO »'

Name Details
H

Processes
Memories Size

Channels

DH

DHB
OPB
OPB

Unmapped |DH | 0P8 | Tx1 |
Channel
EProcess Channels

| Source | Destina

Memory Channels
FIFQ Channels

x
'
Processing |Cnmmuni::atinn |Mer< |

Hardware IPs
IMDCT36
R

LPCM RFIL
IMDCT36 DCT32
Proces.. Memor..Chann.

ipem_| il_dct

Proces.. Memor..Chann.

RPCM
IMDCT36

Proces.. Memor..Chann.
pem_i

PEQ |

PE Optons ————
PE Name: |LFIL
PE Type: |DCT32

Help | Ok | Qancell

4

PEO
DCT32

Proces.. Memor..Chann.

Custom Hardware

NISC

f‘ Compile ISimuIate | Verity | Analyze | Refine | Synthesize | Shell |

Forte
SW Processor
’»ARMS

i

|Ready

In the properties dialog, change the PE name to "LFIL" to be consistent with the other

HW filter names.

60

Chapter 3. Heterogeneous System Design with ESE

3.2.6. Add Port to PE

mp3_platform_partial.eds - ESE Environment *]
File Edit View Synthesis Validation Windows Help
O=a3o
!
| LPCM RFIL RPCM
LPCM | RPCM | RFIL | LFIL Ld
| | | ‘ i~ 36 DCT32 IMDCT36
Proces.. Memor..Chann Proces.. Memor..Chann
il_dct. rpem_l
Il Il Il
= = =
Bt‘lB [EH_cPU_LPCM_B, CH_CPU_LPCM_F, CH_CPU_RFIL_B, CH_CPU_RFIL_F, CH_CPU_RPCM.]
Sgg [FH_CPU_LPCM_B. CH_CPU_LPCM_F, CH_CPU_RFIL_B, CH_CPU_RFIL_F, CH_CPU_RPCM.]
x
Unmapped |DH | 0P8 | Tx1 |
Channel |Suurce |Deslina =]))
Process Channels CPU - Tx1 = = LFIL
MICROBLAZE ESETX DCT32
Memory Channels Proges.. Memor..Chann Ghann, Proces.. Memor..Chann
FIFO Channels mp3_m... e
CH=CP.
Add Port
Remove Port
Remove PE
Connect To ~
¢ View Graph...
§ Properties
'

Processing |Cummuni::atiun |Mer< |

Hardware IPs

A
t\MDCTﬁE I -."—

Custom Hardware | complle |Simulate | Verity | Analyze | Refine | Synthesize | Shell |
NISC |
Forte
SW Processor
’»ARMS

i

|Ready

The new PE, LFIL is not yet connected to the rest of the design. Since the application
process meant to execute on this PE will need communication with processes on CPU,
we must physically connect LFIL to the compatible DHB bus in the platform. For this
physical connection, a port is required for LFIL. To add the port, simply right-click on
the LFIL box and select Add Port.

61

Chapter 3. Heterogeneous System Design with ESE

3.2.7. Connect PE to Bus

G mp3_platform_partial.eds - ESE Environment =
Eile Edit View Synthesis Validation Windows Help
T EIN

x!
| LPCM RFIL RPCM
LFIL >
|LFCM | RRCH | AL ‘ - IMDCT36 DCT32 IMDCT36
Proces.. Memor..Chann Proces.. Memor..Chann Proces.. Memor..Chann
Ipem_i ril_det rpem_|
I} I} I}
= = =
B':lB [FH_CPU_LPCM_B. CH_CPU_LPCM_F. CH_CPU_RFIL_B, CH_CPU_RFIL_F, CH_CPU_RPCM.]
SEE [FH_cPU_LPCM_B, CH_CPU_LPCM_F, CH_CPU_RFIL_B, CH_CPU_RFIL_F, CH_CPU_RPCM.]
x
Unmapped |DH | 0P8 | Tx1 |
Channel |Soume |Destina‘ Eu mu mu =
- CPU Tx1 LFIL
Process Channels MICROBLAZE ESETX pcraz ~ AddPort
Memory Channels mogeg} Memor...Chann... ghangs Proces.. Me Remove Port
p3_| CH_Cl
FIFO Channels :‘QZEE Remove PE
Connect Tol* py ‘MS
View Graph... OPB.- M
Properties (none) g
x
v
Processing ICummumcatmn |Mer< |
Hardware IPs
A
IMDCT36 I -=;
Custom Hardware 2 Gompile ISimuIate | verity | Analyze | Refine | Synthesize | Shell |
NISC
Forte
SW Processor
’—ARMQ :
[Ready

The created port must be connected to the DH bus for LFIL to be able to communicate
with the rest of the system. LFIL connects to DH as a Master like other HW filters do.
To connect LFIL, right-click on the port and select Connect To—DH—M from the
menu choice. This will create the bus connection and complete the platform design step.
Next, we will look at application input and its mapping to the created platform.

62

Chapter 3. Heterogeneous System Design with ESE

3.3. Mapping Application to Platform

The application input model for ESE is C/C++ processes communicating through ei-
ther synchronized double handshake channels or shared variables. Since most legacy
application is written in C, this is an advantage over other forms of input styles or lan-
guages. For communication, the user does not need to write any SystemC channel code.
ESE provides very simple APIs for inter-process communication as we will see in this
section.

63

Chapter 3. Heterogeneous System Design with ESE

3.3.1. Add Application Process

mp3_platform.eds - ESE Environment

File Edit View Synthesis Validation Windows Help
O=a3o
!
LPCM RFIL RPCM
IMDCT36 DCT32 IMDCT36
Proces.. Memor..Chann Proces.. Memor..Chann Proces.. Memor..Chann
Ipem_i. il_dct. rpem_l
;, Add Process
Channe Remove All Processes
Il Il Il
= = =
Bt'lB [EH_cPU_LPCM_B, CH_CPU_LPCM_F, CH_CPU_RFIL_B, CH_CPU_RFIL_F, CH_CPU_RPCM.]
Sgg [FH_CPU_LPCM_B. CH_CPU_LPCM_F, CH_CPU_RFIL_B, CH_CPU_RFIL_F, CH_[CPU_RPCM. |
x
Unmapped |DH | 0P8 | Tx1 |
Channel |Suurce |Deslina =])) =]
Process Channels CPU - Tx1 = = LFIL =
MICROBLAZE ESETX DCT32
Memory Channels Proges.. Memor..Chann Ghann, Proces.. Memor..Chann
FIFO Channels mp3_m... e
CH=CP.
=
x
'
Processing |Cummuni::atiun |Mer< |
Hardware IPs
A
IMDCT36 I -.“—
Custom Hardware X compile ISimuIats | Verity | Analyze | Refine | Synthesize | Shell |
tmsc |
Forte
SW Processor
’»ARMS
A rl
|Ready

The PE window on the top left corner organizes the processes mapped to the various PEs
in the design. In general, several processes may be added for execution on a PE where
RTOS should be involved. The platform which has such multi-threaded processors will
be demonstrated in Chapter 4. In this section, we assume that there is only 1 process per
PE. To add a new process executing on LFIL, change to the LFIL tab. Then right-click
and select Add Process. This will create a new process with a default name.

64

Chapter 3. Heterogeneous System Design with ESE

3.3.2. Assign Name to New Process

mp3_platform.eds - ESE Environment *]
File Edit View Synthesis Validation Windows Help
O=a3o
!
| LPCM RFIL RPCM
LPCM | RPCM | RFIL | LFIL Ld
| | | ‘ i~ IMDCT36 DCT32 IMDCT36
Name Details Proces.. Memor..Chann Proces.. Memor..Chann Proces.. Memor..Chann
Ipem_i. il_dct. rpem_l
Il Il Il
= = =
Bt‘lB [EH_cPU_LPCM_B, CH_CPU_LPCM_F, CH_CPU_RFIL_B, CH_CPU_RFIL_F, CH_CPU_RPCM.]
Sgg [FH_CPU_LPCM_B. CH_CPU_LPCM_F, CH_CPU_RFIL_B, CH_CPU_RFIL_F, CH_[CPU_RPCM. |
x
Unmapped |DH | 0P8 | Tx1 |
Channel |Suurce |Deslina =])) =]
Process Channels CPU - Tx1 = = LFIL =
MICROBLAZE ESETX DCT32
Memory Channels Proges.. Memor..Chann Ghann, Proces,. Memor..Chann
FIFO Channels mp3_m... :gu_h[j Ifil _dlet3
CHCP
P
x
'
Processing |Cummuni::atiun |Mer< |
Hardware IPs
A
IMDCT36 I ——

Custom Hardware
tmsc

Forte
SW Processor
’»ARMS

i

f‘ Compile ISimuIats | Verity | Analyze | Refine | Synthesize | Shell |

|Ready

Change the name of the new process to "Ifil_dct32". This is the process for the left side
DCT32 transform in the MP3 stereo decoder application. Please ensure that the process
is named correctly since there exist references to it in the existing partial design. If the

process is not named as suggested, the generated models will not compile.

65

Chapter 3. Heterogeneous System Design with ESE

3.3.3. Add C Source File

mp3_platform.eds - ESE Environment ¢ =
Eile Edit View Synthesis Validation Windows Help
T EIN
x!
| LPCM RFIL RPCM
IMDCT36 DCT32 IMDCT36
Proces.. Memor..Chann Proces.. Memor..Chann Proces.. Memor..Chann
Ipem_i ril_det rpem_|
-, Rename Process
Channels Add Process
Remove Process(es)
Add .C File(s)
Add .H File(s) DH
Remove All Source Files DHB
-~ —— | oPB
Add Process Port OPB
st ... Remove All Process Port(s)
Unmapped |[DH | OPB | Tx1 |
Channel |Source |Desﬂna‘ =] m- i =]
CPU Tx1 LFIL
Process Channels MICROBLAZE ESETX DCT32
Memory Channels Proces.. Memor...Chann... Chanp... Proces,. Memor..Chann...
FIFO Channels mp3_m arek Ifil_ ot
CH=CP!
x
v
Processing ICummumcatmn |Mer< |
Hardware IPs
A
IMDCT36 I -=;
Custom Hardware 2 Gompile ISimuIﬂte | verity | Analyze | Refine | Synthesize | Shell |
NISC
Forte
SW Processor
’—ARMQ :
O ||}
[Ready

The process added in the last step is only symbolic. The user must associate the actual
C/C++ code with it for the models to be functionally correct. In this case, we add C code

by right-clicking on the process name in the PE window and selecting Add C File. This
will open the file browser.

66

Chapter 3. Heterogeneous System Design with ESE

3.3.4. Select C Source File

2 mp3_platform.eds - ESE Environment * ==
Eile Edit View Synthesis Validation Windows Help
T EIN
x!
| LPCM RFIL RPCM
LFIL >
|LFCM | RRCH | AL ‘ - IMDCT36 DCT32 IMDCT36
Name Details Proces.. Memor...Chann. Proces.. Memor..Chann. Proces.. Memor..Chann.
Ipem_i ril_det rpem_|
M Processes
B 5 15 _dlct3?
Memories Size
Channels o o o
a
DH RPCM
DHB | ook in: "igim‘examplesfmpﬁiplaﬁurm/mpaisms/ _’l C=| | EF”_ =
OoPB
oPg | 4. [lpem_imdct36.c RPCM
5 Obite [MP3Main.c
[1decoder.c [1rfil_dct32.c
Wiz IDH | OFB | T | [1fixed.c [rpem_imdct36.c
Channel |Soume |Destina‘ 1 frame.c [stream.c
Process Channels
Memory Channels EhEn
FIFO Channels

File name: I'Iﬁ_dctaz.c' Open

File type: C Source File (*.c) 4| cancel |
4

x
|

v
Processing ICummumsatmn |Mer<

Hardware IPs
7|
IMDCT36 =]
Custom Hardware 2 Gompile ISimuIate | verity | Analyze | Refine | Synthesize | Shell |
NISC
Forte
SW Processor
’—ARMQ :
O il

Select .c file to add...

Go to the demo directory and follow the symbolic link to "mp3_srcs". Select one ".c"
file, "Ifil_dct32.c", one ".h" file, "fixed.h", and click Open. The files will be added under
the new "Ifil_dct32" process in the PE window.

67

Chapter 3. Heterogeneous System Design with ESE

3.3.5. Add Process Ports

mp3_platform.eds - ESE Environment

File Edit View Synthesis Validation Windows Help

BEEEI

&I
L Lrcm RFIL RPCM
Unmapped | CPU |LPCM | RPCM | RFIL | | IMDCT36 DCT32 IMDCT36

Name Details Proces.. Memor..Chann. Proces.. Memor..Chann. Proces.. Memor..Chann.
Ipem_i ril_dct Tpom_l

M Processes

P By i_dct32

Wj
ol
ol

Memories Size
Channels

oH |
OB~ | Add Process Porl) B

ggg Name: I\ﬁIZm 7:PU7RP(:M““

x Type: Send/Receive |

Unmapped |DH |OFIB ITX1 | APl |Type Function Name |

Channel | Source | Destination Receive recv_P_ID_Ifi_dct32_P_ID_mp3_main f_,
B Process Channels Send send_P_ID_[fil_dct32_P_ID_mp3_main
©OCH_CPU_RFIL B rfil_dot32 mp3_main
©OCH CPU_RFIL F mp3_main rfil_dct32
‘0 CH_CPU_RPCM_B rpcm_imdct36 mp3_main
©CH_CPU_RPCM_F mp3_main rpem_imdect? =
©CH_CPU_LPCM_B Ipcm_imdct38 mp3_main
OCH_CPU_LPCM_F mp3_main lpem_imdct?
—Memory Channels

—FIFQ Channels

)]

emor... Chann.

x
' ’—

Processing |Cummumcatiun | Memory | CE |Su | Help Add Cancel

o-Hardware IPs

IMDCT36

NISC
Forte
- SW Processor
’»ARMS

KT
4 Custom Hardware 2 compie |smu|ate | Verity | Analyze | Refine | Synthesize | Shell |
il
l

|Ready

After, the C code for the process is added, we need to add the application level commu-
nication to the design. First of all, we add the process port for each process, which will
be connected to a channel for data transfer to another process. To add the process port
for the new process, click on the new process and select the Add Process Port. This
will open the window to add the process port. we can create any name for the process
port and select the type of it. There are ten possible types. We can categorize them into
three kinds. The "Send", "Receive", and "Send/Receive™ are used for double handshake
channels. The "Read", "Write", and "Read/Write" are used for shared memory. And the
others are for the FIFO channels. Finally, we need to assign its function name to be what
is actually used in C code. Please ensure that the function name is the same as that used
in C code. If the name is not correct, the generated models will not compile.

The "Ifil_dct32" process needs one process port for sending/receiving data from/to
"mp3_main". Assign the process port name to be "Ifil2m™ and select "Send/Receive"
type since we are using the bi-directional double handshake channel for the
communication between the "Ifil_dct32" process and "mp3_main" process. Assign the

68

Chapter 3. Heterogeneous System Design with ESE

function names to be "recv_P_ID_Ifil_dct32_P_ID_mp3_main" for "Receive" type and
"send_P_ID_Ifil_dct32_P_ID_mp3_main" for "Send" type, respectively.

69

Chapter 3. Heterogeneous System Design with ESE

3.3.6. View Application Channels

File Edit View Synthesis Validation Windows
BEEEI
! A

L Lrcm RFIL RPCM
Unmapped | CPU |LPCM | RPCM | RFIL | | IMDCT36 DCT32 IMDCT36

mp3_platform.eds - ESE Environment *

Name |Details IFIH.)—S Memor...Chann Memor..Chann Proces.. Memor..Chann.
pom_i

Proces.
il_dct. pem_

Processes
w-EIfil_dct3z
Process Ports Channel Assignment...
L[iizm - - -
Source Files = = =
L@Hi_detaz.c
Memories Size

Channels Bus [EH_cPU_LPCM_B, CH_CPU_LPCM_F, CH_CPU_RFIL_B, CH_CPU_RFIL_F, CH_CPU_RPCM.]

Opg [H_CPU_LPCM B, CH_CPU_LPCM_F, CH_CPU_RFIL B, CH_CPU_RFIL_F, CH [cPU_RPCM.|

Unmapped | DH | OPB ITx1 |

= o] [
=]

MICROBLAZE ESETX
Char
C
C
C

Channel

Proges.. Memor..Chann.
mp3_m..

Memory Channels
FIFO Channels

Processing |Cummumcatiun |Memury |CE |Su)

Hardware IPs
IMDCT36

KT
Custom Hardware 5‘ Compile |smu|ate | Verity | Analyze | Refine | Synthesize | Shell |

tmsc
Forte
SW Processor
’»ARMS

_ ||
—I|

|Ready

After the process port for the process is added, we need to create the channels for the
communication between processes. To view the existing double handshake message
passing channels in ESE, click on the OPB tab. This will display the existing chan-
nels between all the processes in the design, including the source and destination names
as well as the route used to implement the channel in the communication platform. All
the channels in ESE are uni-directional. Bi-directional channels can be added as a pair
of "Forward" and "Backward" channels conveniently in the GUL.

70

Chapter 3. Heterogeneous System Design with ESE

3.3.7. Add New Application Channel

File Edit View Synthesis Validation Windows

BEEEI
] |

L LPCM RFIL RPCM
Unmapped | CPU | LPCM | RPCM | RFIL | | IMDCT36 DCT32 IMDCT36
Name Details Proces.. Memor...Chann

mp3_platform.eds - ESE Environment *

o Proces.. Memor...Chann. Proces.. Memor...Chann.
Ipcm_i mil_dct pem_|

Processes
w-EIfil_dct3z
Process Ports Channel Assignment...
L [@fizm - - -
Source Files = = =
L@Hi_detaz.c
Memories Size
Channels

BuB [EH_cPU_LPCM_B, CH_CPU_LPCM_F, CH_CPU_RFIL_B, CH_CPU_RFIL_F, CH_CPU_RPCM.]

Sgg [EH_CPU_LPCM_B, GH_CPU_LPCM_F, CH_CPU_RFIL_B, CH_GPU_RFIL_F, CH_[GPU_RPCM_|

x

Unmapped | DH | OPB ITx1 |

= o o S|
L LFIL H
MICROBLAZE DCT32

Proges.. Memor..Chann.
mp3_m..

Channel Source Destination

S 1 X
ha¥

oooo M
S5 o
2 m
Uy
=

Proces.. Memor...Chann.
Ifil_dlct3

U

CPU_LPCM_F
Memory Channels
FIFQ Channels

)]

Processing |Cummunicaﬂun |Memury |CE |Su)

Hardware IPs

A
IMDCT36 T 5 >

Custom Hardware 2 compie ISimuIata | Verity | Analyze | Refine | Synthesize | Shell |

tmsc |
Forte

SW Processor

’»ARMS

_ ||
—I|

|Ready

If the user clicks on a PE in the platform canvas, all the channels originating or terminat-
ing at the PE will be selected. All other PEs that the clicked PE communicates with will
be highlighted in light yellow. All physical connections, including buses and transduc-
ers used by the PE for communication will be highlighted in green. Note that clicking
on LFIL shows that it is not connected at the application level to any other PE. Since
we need communication between the "Ifil_dct32" process and the "mp3_main™ process
executing on CPU, we will add the application level channels, by right-clicking in the
channel window and selecting Add Channel. This will pop up the channel wizard for
adding application level channels.

71

Chapter 3. Heterogeneous System Design with ESE

3.3.8. Channel Wizard

mp3_platform.eds - ESE Environment ¢

Eile Edit View Synthesis Validation Windows Help
T EIN
A

LFIL LPCM RFIL

Unmapped | CPU | LPCM | RPCM | RFIL | | e DCT32

Name Details Memor...Chann. Proces.. Memor..Chann Memor...Chann.
Processes .

B l_det32
Process Ports Channel Assignment...
L[izm
Source Files —
L@fil_dcta2.c ~Channel Options

Add| Channel

Bl
=

I\Cﬂ:morlles Size DH Channel Type: Process-to-Process Channel ¢
annels
DHB Process-to-Process Channel T G ETE
OoPB Memory Channel
OPB Name: CH_dr1Fo Channel ¥FIL_F, CH_|cPU_RPCM..|
A Direction: Bidirectional A

Unmapped |DH |OFB ITM | Process 1: mp3_main

Channel Source Destination
i Channels Process Port: ma2ifil A
CPU_RFIL_B 2 Process 2: [fil_dct32 _’l
Process Port: Hil2m o
- _—; / > acl Routing B
oM E) i 3) . F
CPU_LPCM_F 53 ma detd Process 1-> Process 2. CPU->OPB->Tx1->DH
—Memory Channels Process 2 -> Process 1: LFIL->DH->Tx1->0PB-
—FIFO Channels
)]
Help Add Cancel
v
Processing ICummunmatmn | Memory | CE |Su 4
m-Hardware IPs
A
IMDCT36 I r i
B Custom Hardware A Compile ISimuIatﬂ |Verify | Analyze | Refine | Synthesize | Shell |
NISC
Forte
= SW Processor
’—ARMQ
P TI— rl
—l|
[Ready

In the channel wizard dialog, we first need to select the channel type. Choose "Process-
to-Process Channel” since we are using message passing channels. Then, assign the
name to be "CH_CPU_LFIL" for consistency with existing channels. Since, the pro-
cesses will send data both ways, select a bi-directional channel type. Use the pull down
menu to select the first communicating process as "mp3_main". This is the process run-
ning on CPU. Next, use the next pull down menu to select the other communicating
process "Ifil_dct32." Once the communicating processes are decided, ESE automatically
filters all the possible physical routes on the platform that can implement the channels.
For this example there is only one route from CPU to LFIL that goes over the OPB bus
via the transducer Tx1 and over the DH bus to the receiver LFIL. The route goes through
the transducer because CPU and LFIL are connected to different physical buses, which
does not allow direct communication. Similarly, there is only one route from LFIL to
CPU. Select the default routes and click Add to add the channels.

72

Chapter 3. Heterogeneous System Design with ESE

3.3.9. View New Channel Communication

mp3_platiorm.eds - ESE Environment *

File Et Vi Synthesis Validation Windows Help
T EIN

unmapped | CPU | LPcM | RPCM | RFIL | LFIL |

LPCM RFIL RPCM
5 IMDCT38

s.. Memor..Chann,

Memor...Chann. Memor...Chann.

Name Details P

Processes
BY B il dct3?
Process Ports Channel Assignment(s)

L [ytfizm CH_CPU LFIL_F, CH_CPU_LFIL . . .
= Source Files = = =4
L@fil_dcta2.c
Memories Size
Channels Bﬂa [CH_CPU_LFIL_B, CH_CPU_LFIL_F, CH_CPU_LPCM_B, CH_CPU_LPCM_F. CH_CPU_RFIL_..|

ggg [CH_CPU_LFIL_B, CH_CPU_LFIL_F, CH_CPU_LPC|1_B, CH_CPU_LPCM_F, CH |CPU_RFIL .|

) 1

Unmapped |DH |OPB ITM |

Channel

=) [
=}

CPU
MICROBLAZE ES
e
C
C
C

Proges... Memeor...Chann...
mp3_m

rpcm_imce

main

PU LPCM_F
Memory Channels
FIFQ Channels

Processing ICDmmuniuatiun | Memory | CE | Softw:

o-Hardware IPs BT 1 =

IMDCT36
_ A Compile ISimu\ate |Verify |Ana\yze |Reﬁne |Synthﬂsize |SheH |

% Custom Hardware
NISC

Forte

= SW Processor
A

[Ready

The newly created channels will now be visible in the channel window under the Tx1
tab. Note that the channel names have "_F" and "_B" appended to distinguish between
forward and backward channel, respectively. The user may alternately make unidirec-
tional channels one at a time. Once the channels are selected, the communicating PEs
will be highlighted. This shows that the new PE LFIL is now "connected"” with the rest
of the system on an application level.

73

Chapter 3. Heterogeneous System Design with ESE

3.4. Generating Functional and Timed TLMs

The previous steps complete the platform and application input that is necessary for gen-
eration of TLMs. We will show generation of two types of SystemC TLMs. The first one
is called the "Functional TLM™" because it is used for the validation of design functional-
ity only. It is completely un-timed and simulates the design based on causal dependency
only. A universal bus channel is used to model the system bus and the mapping of chan-
nels on the bus.

The second TLM is called the "Timed TLM" and is used for performance estimation of
the design. It relies on timing data models of PEs and Buses that are available in the ESE
database. The data models are used by our estimation and annotation technique to apply
"wait" statements in the application C code. The technique is retargetable and applicable
to processors as well as HW IPs. A retargetable bus timing annotation modifies the bus
channel to apply "wait" statements for inter-PE communication.

74

Chapter 3. Heterogeneous System Design with ESE

3.4.1. Generate Functional TLM

mp3_platform eds - ESE Environment
Eile Edit View Synthesis | Validation Windows Help
NEEE [€ Generate Functional TLM...
Generate Timed TLM... LPcM RFIL RPCM
M Select Board... - IMDCT36 DCT32 IMDCT36
Name n Proces.. Memor..Chann Proces.. Memor..Chann Proces.. Memor..Chann
Synthesize to Board... Ipem_i il_dct. rpem_i
Pri
GBI detsz @ Stop

L [@tfizm CH CPU_LF
Source Files

I Process Ports Channel Assi

L@fil_dcta2.c
Memories Size
Channels B':lB
OoPB

OPB

Unmapped | DH | OPB | Tx1 |

Channel | Source = "’- i =]
&-Process Channels argROBLAZE EXS1ETX |E>|z:|l_.r32
©CH_CPU_LFIL_B ffil_det3: Proges.. Memeor...Chann... Chann... Proces.. Memor...Chann...
OCH_CPU_LFILF mp3_mi mpd_m &ngE Ifl_getd
OCH_CPU_RFIL_B rfil_dot3; CrzeR
©CH_CPU_RFIL F mp3_m:
O CH_CPU_RPCM_B rpcm_im,
©CH_CPU_RPCM_F mp3_m:
©CH_CPU_LPCM B Ipcm_im
©CH_CPU_LPCM_F mp3_mif}
x
Processing ICummumsatmn |Mer<‘ |
m-Hardware IPs
t\MDCTBE B o 7|
DCT32 = i = :) —
B Custom Hardware Compile IS\muIﬂte |Venfy |Anﬂ\yza | Refine | Synthesize | Shell |
NISC
Forte
= SW Processor
’—ARMQ :
seoica o lf| 4

Generate Functional TLM

After the platform and application input is complete, the functional TLM can be gen-
erated automatically by selecting Synthesis— Generate Functional TLM from the
menu bar. This will generate the SystemC code needed for platform modeling, includ-
ing PEs, buses and transducers. The generated code is then compiled natively along with
the C application code and linked to the SystemC libraries to produce a single binary.
This process can be viewed in the log window.

75

Chapter 3. Heterogeneous System Design with ESE

3.4.2. Simulate Functional TLM

mp3_platiorm.eds - ESE Environment

Eile Edit View Synthesis Validation | Windows

hEEIR Simulate Functional TLM
S Simlate Timed TLM
|LPeM |RPOM |RAL |~ |CM RFIL RPCM

Open Terminal -~ |DCT36 DCT32 IMDCT36

oces.. Memor..Chann. Proces.. Memor..Chann. F’Iw)l vﬁs Memor...Chann

Do : 8 8
Kill simulation -~ fem i il_dct. pe

Processes

B E_deta2 Mew oo
Process Ports Channel Assi
L [@tfizm CH CPU_LF
Source Files

Al_dct32.c
Memories
Channels

Unmapped | DH | OPB | Tx1 |

=

Channel | Source
cPU LFIL
t-Process Channels] MICROBLAZE DCT32
©CH CPU_LFIL_B Ifil_det3 Prog: =5 Memor...Chann... Proces,. Memor..Chann...
DCH_CPU_LFILF mp3_m: mpdt Hfl_dct3

OCH_CPU_RFIL_B rfil_dot3;
©CH_CPU_RFIL F mp3_m:
O CH_CPU_RPCM_B rpcm_im,
©CH_CPU_RPCM_F mp3_m:
©CH_CPU_LPCM B Ipcm_im
©CH_CPU_LPCM_F mp3_m:

Compile |S\mulate |Verify |Ana\yze |Reﬁne |Svnthesize ISheH |

Processing ICummumcatmn | Mer c/RFIL/Tfil det32/h_files -1, fupd platforn_ srcs/RPC["]/rpcm indet36/h files -I,, /mp3_platform srcs/LPCM/Ipen_imdct3
6/h_files -I,, /op3_platform srcs/CPU/mp3_main/h files
- Hardware IPs g0z - DSC B — Wall w - .. /up3_plaforn_sros/RFIL/TFil det32/c_filse/fil detdtc L. /mpd platforn sres/R
IMDCT36 FIL/rfil dctad/h files L. fupd_platforn srcs/RECHTpon indetas/h Tiles L. /b3 platforn_svcs/LECH/1pcn inditaé/h_
DCTa2 files -T., jupd platforn_sres/CPO/ipd_nain/n files
g -g DEC 03 -g Wall - —c .. /mp3_platforn. srcS/LFIL/lle dot32/c_files/1fil det32 ¢ -L. /mpS_platform_srcs/R
B Custom Hardware FIL/rfil_dct32/h_files -I.. /mp3_ platform sres/RPCM/pem_imdct36/h_files -I.. /mp3_platform_. srcs/LPCM/lpcm Amdct36/h
NISC files -I.. /mp3_platform_ srcs/GPU/mpS main/h_files
Forte gtt -g —I/Dpt/pkg/systemc %, 2 0/include —¢ sros/tlm, co -Tincs
swp g++ -L/opt/phg/systemc-2, 2. 0/11b-1inuz -0 tln tlm o timer,o synth,o stream o bit.o decoder.o fized, o frame, o huffma
- rocessor n.o layerlZ o layer3 o MP3Main o lpcn_imdct38. o rpem_imdet3s, o rfil det32, 0 1fil det320 -lsysteme —ln -lpthread
ARMQ ‘ Compilation ended,
""""" e |

Simulate Functional TLM

Once the compilation has completed, the generated TLM can be executed from the GUI
by selecting Validation— Simulate Functional TLM from the menu bar.

76

Chapter 3. Heterogeneous System Design with ESE

3.4.3. View Functional Simulation Results

v mp3_platform.eds - ESE Environment ===
Eile Edit View Synthesis Validation Windows Help
T EIN

A
|LPcm | RPCM | RFIL | LFIL ||
Name |DetaHs m‘n Memor...Chann. Memor...Chann.
M- Processes -
I:*}“- ffl_dot32 | s Gnuplot =jojx
Proce arts _Channe
'“"34""’“""" FOH values
20000
Sustal 2,20 — Jun 13 2007 10:49:55
Copyri, Sﬁt tc) 1536-2008 ED all Con 15000
ALL RIGHTS RESERVED
Started decoding
tu % range [0:0], adjusting to [-131] 10000
5000
uuuuu L
il TLiVolassicl.out and ./np3_platforn_functional T ®
al
-5000,
-10000
©CH CPU RFILF _ mp3_m{ -15000
O CH_CPU_RPCM_B rpcm_im,
.0CH_CPU_RPCM_F mp3_m; =2TD + + + * * * * *
©CH_CPU_LPCM B Ipcm_im 0 50000 100000 150000 20000 250000 300000 350000 400000 450000
©@CH_CPU_LPCM_F mp3_m: enplls wrep r|
- Il (= | =
| = —
£|— Compile ‘S\mulate IVenfy |Ana\yze |Reﬁne |Syntheswze |SheH |
Processing |(;m.mlmmam,n | Mer < [| |% ztera -title opd_platform -e /bin/sh - =im func LM /data/users/yJahn/work/esedemo/esedeno/mp3_) platform eds; diff
-s . /up3_platforn functignal TLM/classicl. out /mp3 platform finctional TLH/classicl pon old; echo "Simulation exite
m-Hardware IPs d with status $7” ;echo "Press return to contimue . ;read confirm
t\MDCTBG
DCT32
B Custom Hardware
NISC
Forte
= SW Processor
’—ARMQ
[T rl
|
[Ready

The simulation pops up a terminal that logs the number of MP3 frames that have been
decoded. An additional window shows the simulation progress frame by frame. Each
decoded MP3 frame produces PCM output that can be fed to the audio output. The y-
axis values in the PCM output view shows the decoded values. The logging of PCM
output stops once all the frames have been decoded. The pop up windows can now be
killed simply by pressing "Enter" in the simulation logging terminal.

77

Chapter 3. Heterogeneous System Design with ESE

3.4.4. Generate Timed TLM

mp3_platiorm.eds - ESE Environment

Eile Edit View Synthesis | Validation Windows Help
m Generate Functional TLM...
m Generate Timed TLM... LPcM RFIL RPCM

—— 1 SelectBoard... - IMDCT36 DCT32 IMDCT36

Name ; Proces.. Memor..Chann Procss.. Memor..Chann Proces.. Memor..Chann
Synthesize to Board... Ipem_i. il et

e

Pri
GBI detsz @ Stop
I Process Ports Channel Assi|

L [@tfizm CH CPU_LF
Source Files
L@fil_dcta2.c
Memories
Channels

]]]
= = =

Size

DH
DHe [CH_CPU_LFIL_B. CH_CPU_LFIL_F, CH_CPU_LPCM_B, CH_CPU_LPCIM_F, CH_CPU_RFIL .|

SEE [cH_CPU_LFIL B, CH_CPU_LFIL_F, CH_CPU_LPC}1_B. CH_CPU_LPCM_F, CH_|cPU_RFIL .|

Unmapped | DH | OPB | Tx1 |

Channel | Source = < < =]
o+Process Channels - ™ U " LFIL -
y | MICROBLAZE ESETX DCT32
™CH_CPU LFIL B ffil_det3: Proces.. Memor..Chann... Chann... Proces,. Memor..Chann...
TCH_CPU_LFIL F mp3_my mps_m et i
OCH_CPU_RFIL_B rfi_dot3] e

©CH_CPU_RFIL F mp3_m:
O CH_CPU_RPCM_B rpcm_im,
©CH_CPU_RPCM_F mp3_m:
©CH_CPU_LPCM B Ipcm_im
©CH_CPU_LPCM_F mp3_m:

Compile ‘S\mulate IVenfy |Ana\yze |Reﬁne |Syntheswze |SheH |

% xterm -title mp3_platform —e /bin/sh —c sin_func LN /data/users/yiahn/wock/esedeno/esedeno/up8 platforn eds; diff
-s . /up3_platforn functignal TLM/classicl. out /mp3 platform finctional TLH/classicl pon old; echo "Simulation exite
d with status $7” ;echo "Press return to contimue . ;read confirm

Simulation exited, exit status: 0

v
Processing ICummumcatmn |Mer<

m-Hardware IPs
t\MDCTBG

DCT32

B Custom Hardware

NISC

Forte

= SW Processor

’—ARMQ
P TI— rl

Generate Timed TLM

Similar to the functional TLM generation, the Timed TLM can be generated automat-
ically by selecting Synthesis— Generate Timed TLM from the menu bar. The bus
channels generated for timed TLM will include timing for synchronization, arbitration
and data transfer. The timing parameters are imported into the TLM from the bus data
model. For the computation part, we use a retargetable source level timing estimation
technique that utilizes the PE data models. Naturally, the timed TLM generation and

compilation is significantly slower than functional TLM generation, but still in the order
of seconds.

78

Chapter 3. Heterogeneous System Design with ESE

3.4.5. Simulate Timed TLM

Eile Edit View Synthesis Validation | Windows
L EIR] Simulate Functional TLM
Simulate Timed TLM oM RFIL RPCM
|LFCM | RRCH | AL ‘ Open Terminal ~ |DCT36 DCT32 IMDCT36
D) [. oces.. Memor..Chann Proces.. Memor..Chann Proces.. Memor..Chann
Kill simulation -~ fem i il_dct. rpem_i

Processes

B E_deta2 Mew oo

Process Ports Channel Assi
L [@tfizm CH CPU_LF
Source Files

Unmapped | DH | OPB | Tx1 |

Channel | Source

m-Process Channels

©CH_CPU_LFIL B Ifil_dct3:
O CH_CPU_LFIL_F mp3_mi
OCH_CPU_RFIL_B rfil_dot3;
©CH_CPU_RFIL F mp3_m:
O CH_CPU_RPCM_B rpcm_im,

©CH_CPU_RPCM_F mp3_mi
©CH_CPU_LPCM_B Ipcm_im|
©CH_CPU_LPCM_F mp3_mi

x

mp3_platiorm.eds - ESE Environment

=

cpU ™1 O LFIL
MICROBLAZE ESETX DCT32
Proges.. Memeor...Chann... Chann... Proces.. Memor...Chann...
mp3_m GH CF Ifil_dlotd

CHZCP.

CH-CP:

7]
= I ri

< Compile | Simulate |Verify |Analyze |Reﬁne |5Ynl‘hasiza ISheII |

v
Processing ICummuni::stiun |Mer<

m-Hardware IPs

trnotating Processes 1z 111 dot32
. "1£11 det32” is being estimated
Phase 2 is complete

IMDCT36
DCT32
- Custom Hardware Phase 3: Generating SystenC code to Estimate Commurdcation Time
NISC Phase 3 is complete
Forte
- SW Processor 811 Tasks are successful
ARMS ‘ Compliation ended
Simulate Timed TLM

To simulate the generated timed TLM, simply select Validation— Simulate Timed
TLM from the menu bar, after the TLM compilation has ended.

79

Chapter 3. Heterogeneous System Design with ESE

3.4.6. View Timed Simulation

mp3_hsd_platform.eds - ESE Environment

Eile Edit View Synthesis Validation Windows Help
T EIN
X! A
LFIL LPCM RFIL RPCM
|LFCM | RAel | BRI ‘] IMDCT36 DCT32 IMDCT36
v mp3_hsd_platform G i Proces Memor. Chann Proces Memor. Chann
'] [comunication tines2a580326 Gnuplot
Idle tine:1730583031
s Bus Charnels D e values
F :0
Dat o tine:BIIETTE 20000
ime:1264041248
[*“*Universal Bus Channels OPE** 15000
Frogran/Data;
ta transfer tine:64395636
264041358 | | 10000
Transducer: TxL™* L
I tine;2471759
o urite tiner80285 & 5000
“END TINE;1323037024 ns
ped by user. 0
d test/classicl_pem,gold dentical =
ion tatus -Bo0)
=5 return to continue ...
MICROBLAZE =R
‘©CH_CPU_LFIL B Ifil_dct3% Proces.. Memor...Chann...
©CH_CPU_LFIL_F mp3_m; mps_m ~15000
OCH_CPU_RFIL_B rfi_dot3]
©CH CPU_RFIL F mp3_my ~20000
©CH_CPU_RPCM B rpem_in| 0 26408 dev0B Be+08 8e+08 16408 1,%+03 1,40+03
‘0CH_CPU_RPCM_F mp3_m; time [ns]
©CH_CPU_LPCM B Ipcm_im|
©CH_CPU_LPCM_F - mp3_mif'] i
- S— = (KT T
lﬂll- Compile ‘Simulate |Verify |Ana\yzs |Rsﬁna |Synthssize |SheH |
Processing ICD’“”‘“”‘CE’“"” | Mer [# xterm -title gp3_hsd_platform -e /bin/sh - sim_perf TLM /data/users/yjahn/work/esedeno/esedenc/up3_hsd_platform, ed
S Hardware IPs s, /test/classicl.mpd .. /test; diff -5 test/classicl,out test/classicl_pcm gold; echo "Simulation ewited with status
$2" ;echy “Press return to contimve ,,,” ;jread confirm
IMDCT36
B Custom Hardware
NISC
Forte
= SW Processor
’—ARMQ
P TI— rl
|
[Ready

The timed TLM simulation looks very similar to the functional TLM simulation ex-
cept for some marked differences. Firstly, notice that timed simulation is significantly
slower than functional TLM simulation. This is natural since we are simulation a lot
more "wait" statements that are annotated to the application codes. However, our results
show that this is still several orders of magnitude faster than RTL simulation for the
same design. Secondly, note that the X-axis on the PCM viewing window now shows
estimated cycles instead of frame numbers. This is because the estimated cycles for each
frame are available at runtime as a result of our source level "wait" annotations.

When the timed simulation ends, several statistical data are dumped in the simulation
logging terminal. These are the estimated cycles for CPU computation and communi-
cation, bus congestion estimates and so on. However, all these estimated performance
statistics can be viewed graphically as shown in next section.

80

Chapter 3. Heterogeneous System Design with ESE

3.5. TLM Performance Estimation

The timed TLM produces several statistical data that is gathered during simulation. Since
the source annotation is fine grained, the TLM produces results for cycles used for invo-
cation of each function in the application code. Computation and communication cycles
for each PE can be viewed using pie charts. The distribution of cycles for each func-
tion amongst its sub-functions can be browsed recursively. Similarly, the distribution of
inter-PE bus traffic over inter-process channels can also be viewed graphically.

The performance estimates are useful for early platform and mapping evaluation. Since
the timed TLMs are generated automatically, and TLM simulation is very fast, early
design space exploration becomes feasible. Users may explore platforms manually or
plug in their exploration algorithms for system level design optimization.

81

Chapter 3. Heterogeneous System Design with ESE

3.5.1. View Performance Estimates

mp3_platiorm.eds - ESE Environment

Eile Edit View Synthesis Validation Windows Help
T EIN

A
| cPu |Pem | RPem | RFLL | -
36
Memor...Chann Memor..Chann
m m m
= = =
B m2iil
T m2riil
uy Bi Source Files B':lB [CH_CPU_LFIL_B. CH_CPU_LFIL_F, CH_CPU_LPCM_B. CH_CPU_LPCM_F, CH_CPU_RFIL_...|
imer.c i OPB
OPB [CH_CPU_LFIL_B, CH_CPU_LFIL_F, CH_CPU_LPCI_B, CH_CPU_LPCM_F, CH_|cPU_RFIL_..|
]
unmapped | DH | oPB | Tx1 |
Channel | Source mu mu Eu
- Process Channels Ex%ETX IEE\"' -
CH_CPU_LFIL B PrC . o Precgs;. Memor.Chan..
RFIL| Add Port
| Remove Port
— Remove PE
- S Connect To .~
i —— 1 A
— - 1 S — Graph... I =
11 compile ‘Simul; Properties lyze |Reﬁne |Syntheswze |SheH |
Processing |cummmmmn | Mer 4 I[¥ rterm -title np3_platform —& /bin/eh -c zim_perf TLM /data/users/yiahn/work/esedeno/esedeno/up3_platform eds; diff
-5 . fup3_platforn_timed TLM/classicl. out . /mp8_platform_timed TLM/classicl_pom gold; echo "Simulation exited with sta
&+Hardware IPs tus §7" ;echo "Press return to conmtinue ...” jread confirm
IMDCT36 Simplation exited, exit status: 0
DCT32
B Custom Hardware
NISC
Forte
= SW Processor
’—ARMQ
P TI— rl
|
[Ready

To view the PE performance statistics, right-click on the PE in the platform canvas and
select View Graph. In this case, we will select the CPU Microblaze processor.

82

Chapter 3. Heterogeneous System Design with ESE

3.5.2. PE, Process and Function Level Estimates

mp3_hsd_platform.eds - ESE Environment

CPU Chart b computation Chart mp3_main Chart LA e i (et ﬂ
Window Customize |7 Window Customize | | Window Customize Window Customize |,
cPU I i H i A
computation mp3 main mad decoder run
Legends Le i
S qgends t Legends Legends
E I:oI;m [mp3 main I__H_l mad decoder run I__q_| run sync
O comp 1 local code [_1 1ocal code
mad decoder init
100.0% H f00.0%-0:0 a6
run_sync ¢ d_d i h, Id
) mad_decode _syni mad_synth_frame Chart W
Window Customize Wind G
Window Lustomize | wyindow Customize synth_full Chart
Bl run i i
E _ mad_decode | mad synth frame Window Customize |
synth full B
Legel Legends
Lege ﬁ L] synth full Legends
[local code cale sample
det32
B cac_samplechant

Window Customize

calc sample

Legends
local code | k4
- [scale =
= - J | Refine |Synthes
platforn -e /bin/sh —c sim_perf TLM /data/users/v3e] In. ed
. ftest; diff -s test/classicl.out test/classicl_pe latus
to continue ..." ;read confirm

7 [PImOIATION exited, exlt status:]

o+ Custom Hardware
tmsc
Forte

SW Processor
’»ARMS

|Ready

The first pie-chart window divides the total execution time into computation, communi-
cation and idle cycles. Double-clicking on the computation part of the pie chart pops up
the distribution of computation across different processes in the design. In this case, we
have only 1 process "mp3_main" mapped to CPU, hence it is 100%. Double-clicking on
the process in the pie chart produces the distribution of computation across the top level
functions in the process. These function(s) call lower level functions and so on. Double-
clicking on a function produces the pie chart for the distribution of cycles amongst the
sub-function invocations. Using this viewing feature, the user may go down to any level
in the function call hierarchy. If the pie chart appears too small, please increase the
window size to enlarge the chart.

83

Chapter 3. Heterogeneous System Design with ESE

3.5.3. View Communication Estimates

mp3_platiorm.eds - ESE Environment

Eile Edit View Synthesis Validation Windows

T EIN
X! A
| cPu [pom | Recm | REIL |+ LrCM RPCM
36 T36
Name |Detai|s Memor...Chann Memor..Chann Memor..Chann
B-Processes
p3_main
#-[2) Process Ports ~ Channel A
[m2lpecm CH_CPU_ N N N
[m2rpem CH_CPU_ = = =
[T ma2il CH_CPU_
[\ ma2riil CH_CPU_
Souice Files B':lB [CH_CPU_LFIL_B. CH_CPU_LFIL_F, CH_CPU_LPCM_B. CH_CPU_LPCM_F, CH_CPU_RFIL_...|
|»timer.c il ops
= I = OPB |CH_CPU_LFIL B, CH_CPU_LFIL_F, CH_CPU_LPCI1_B, CH_CPU_LPCM_F, CH_|cPU_RFIL_ '
Remove Bus
View Graph... -
ol ol = Plot...
]] LFIL " Properties
DCT32
Pro Memor...Chann...
il
A
| E
Compile ‘Simulate IVerify |Ana\yze |Reﬁne |Syntheswze |SheH |
Processing |(;m.mlmmam,n | Mer 4 I[¥ zterm -title op3_platform —& /bin/eh -c zim_perf TLM /data/users/yiahn/work/esedeno/esedeno/up3_platform eds; diff
-5 . fup3_platforn_timed TLM/classicl. out . /mp8_platform_timed TLM/classicl_pom gold; echo "Simulation exited with sta
Hardware IPs tus §7" ;echo "Press return to conmtinue ...” jread confirm
IMDCT36 Similation exited, exit status: 0
DCT32
Custom Hardware
NISC
Forte
SW Processor
’—ARMQ
P TI— rl
|
[Ready

To view the bus communication statistics, right-click on the bus in the platform canvas
and select View Graph. In this case, we will select the OPB bus.

84

Chapter 3. Heterogeneous System Design with ESE

3.5.4. Bus and Channel Level Estimates

2 mp3_hsd_platform.eds - ESE Environment ==
Eile Edit View Synthesis Validation Windows Help
T EIN

; A
U d LPCM RFIL RPCM
A ICPU |LPCM | RhS IMDCT36 DCT32 IMDCT36
Name |Deta\\s | Proces.. Memor...Chann, Proces.. Memor...Chann. Proces.. Memor...Chann,
ipem_i ril_det rpem_|
Processes
Memories Size
Channels
Tg Tg
OPRB Chart nA data_transfer Chart =100
Window Customize cH_cpy| Window Customize
OPB T data_transfer ||
Legends o Legends
] e kU [] cH.cpuLrcm B
SETX
l:| data_transfer | l:l CH_CPU_LFIL_B
mCE [] cHcpuLmLF
H-CP.
- B cH.cPurcm F
A
—
| synt
/bdn/s |.hsd_platform, ed
it -3 g fited with status
N
Processing ICD
Hardware IPs
t\MDCTBG
DCT32
Custom Hardware
NISC
Forte
SW Processor
’—ARMQ
amoia_ . rl
=
[Ready

The top level pie-chart for the bus shows the distribution of bus cycles in idle,
program/data access and inter-PE data transfer phases. Double-clicking on the
"data-transfer” part of the pie-chart produces the distribution of communication traffic
amongst the various application channels in the design.

85

Chapter 3. Heterogeneous System Design with ESE

86

Chapter 4. Multi-threaded System Design with
ESE

This section deals with design of JPEG encoder on a platform consisting of two multi-
threaded MicroBlaze processors and one OPB. The JPEG application code is available
as a C model. The JPEG encoder has five processes. Three processes are mapped into
one processor and two processes are mapped into the other processor. Since they are
multi-threaed in a processor, we need a RTOS model to control and schedule the execu-
tion of the processes. ESE provides two kinds of scheduling policies, Round-Robin and
Priority-based scheduling. Users can select one out of the two policies.The communi-
cation between the processes can take place through pairs of various channels such as
process-to-process (or point-to-point) massege passing channel, shared memory chan-
nel and FIFO channel. In this section, all the channels in the JPEG encoder are via FIFO
channels. ESE provides well defined communication APIs for this purpose. The encoded
output is shown graphically during the TLM simulation of the JPEG encoder.

The chapter starts by explaining the set up for ESE. It then shows, using screenshots, how
the platform is created. To speed up the demostration, and to emphasize on the features,
we start with an existing partial platform that is upgraded with additional processors
and a bus. Then we show the application mapping on the platform, followed by TLM
generation, simulation and performance estimation. Thus, we present the core capabil-
ities of the ESE Front-End tools in easy platform design & upgrade, model generation,
validation and estimation.

87

Chapter 4. Multi-threaded System Design with ESE

4.1. ESE Startup and Settings

Before starting the demonstration, please ensure that you have the ESE software in-
stalled in the right location at "/home/ese/local.” Also make sure that you have an
"/home/ese/local” directory containing the SystemC 2.2.0 libraries and SDL libraries
that are needed for simulation of generated TLMs. Also make sure that you have GCC
version 3.4 or higher because it is needed to correctly compile the generated TLMs. The
demonstration shown here assumes the user to have a bourne shell. For C shell, the user
may call the ".csh” version of the setup scripts. Alternately, just use "sh" to create a new
bourne shell and follow the tutorial directions.

88

Chapter 4. Multi-threaded System Design with ESE

4.1.1. Environment Setup

yjahn@ dent:~work/esedemo/esedemo

Eile Edit Wiew Terminal Tabs Help
[vjahn@dent esedemo]$ source /home/ese/local/bin/setup.sh

l

We start by setting up the environment variables to access ESE binaries. This is
provided by the "setup.sh™ script in your installation. Typically, the installation path
would be "/home/ese/local.” The script is in the "bin" directory in the installation. The
script modifies your PATH environmental variable to include path to ESE as well as the
LD _LIBRARY_PATH variable to access the shared libraries that ESE depends on. Run
the command "source /home/ese/local/bin/setup.sh™ and create a new local directory for
the demo.

89

Chapter 4. Multi-threaded System Design with ESE

4.1.2. ESE Demonstration Setup

yjahn@ dent:~work/esedemo/esedemo

Eile Edit Wiew Terminal Tabs Help

[vjahn@dent esedemo]$ source /home/ese/local/bin/setup.sh
Setting up environment variables for ESE

[vjahn@dent esedemo]$ esedemo_rtos.sh

l

Once the environmental variables have been set, the user is ready to launch ESE and
create his or her design. For the purposes of this tutorial, we will start with a partial
design to quickly demonstrate the key capabilities of the toolset. We have created a shell
script called "esedemo_mtd.sh" that prepares a partial design to start the demo for the
JPEG encoder. At this point, run the "esedemo_mtd.sh" script after changing into the
local directory created for the demo.

90

Chapter 4. Multi-threaded System Design with ESE

4.1.3. Launching ESE

yjahn@ dent:~work/esedemo/esedemo

Eile Edit Wiew Terminal Tabs Help

[vjahn@dent esedemo]$ source /home/ese/local/bin/setup.sh x|
Setting up environment variables for ESE

[vjahn@dent esedemo]$ esedemo_rtos.sh

ESE demonstration setup for System Design with RT0S is ready
[vjahn@dent esedemo]$ 1s

jpeg_platform_timed_TLM/ mp3_platform_partial srcs@
A jpeg_rtos_platform_partial.eds mp3_platform_srcs/
jpeg_platform.eds jpeg_rtos_platform_partial_srcs@ mp3_platform_timed_TLM/
jpeg_platform_functional TLM/ jpeg_srcs@ mp3_srcs@
jpeg_platform_partial.eds mp3_platform.eds test@
jpeg_platform_partial_srcs@ mp3_platform_functional TLM/
jpeg_platform_srcs/ mp3_platform_partial.eds

[vjahn@dent esedemo]$ ese&

] ==]

After running the "esedemo_mtd.sh™ script, you will notice several files in the working
directory. Some of these files will have a ".eds" extension. They are the ESE design
files for the JPEG encoder design that we will be using for this demo. You may also
see links to source directories. These point to the C code for the processes of the JPEG
application. To launch the ESE GUI, simply run "ese" from your shell.

91

Chapter 4. Multi-threaded System Design with ESE

4.1.4. ESE GUI

(untitled).eds - ESE Environment

Eile Edit View Synthesis Validation Windows

EICEN-

Unmapped I

!

Name |Dela\\s |
Processes
Memories Size

Channels

x

Unmapped I

Channel | Source | Destina
Eprocess Channels

Memory Channels
FIFO Channels

x
|

v
Processing ICummumcatmn |Mer<

Hardware IPs
A
IMDCT36
i K

DCT32 = 5
Custom Hardware Gompile ISimuIate | verity | Analyze | Refine | Synthesize | Shell |

tmsc
Forte
SW Processor
’—ARMQ

[Ready

The ESE GUI should now appear as shown in the screenshot. The GUI has several menu
items that we shall explore over this tutorial. It is divided into five windows. The top left
window is the "PE" window. It organizes the various application processes mapped to
PEs in the design. The mid-left window is the "Channel” window that organizes the
various channels used for communication between the application processes. The tabs
represent the physical communication links in the platform. The bottom left window
is the "Database"” window that organizes the PE, CE, memory and RTOS model. The
top right window is the "Platform Canvas" on which the platform architecture is edited
graphically. The bottom right window is the "Logging" window that logs the messages
from various ESE tools.

92

Chapter 4. Multi-threaded System Design with ESE

4.1.5. Editing Database Preferences

(untitled).eds - ESE Environment

File Edit | View Synthesis Validation Windows Help
|0 & & Find... Ctri+F

S Find Next F3 —

Unm:

Find Previous Shift+F3

| Import design... :,

Nami
Pr———————————————

—@ Preferences...
Channels

X

Unmapped I

Channel | Source | Destina
EProcess Channels

Memory Channels
FIFQ Channels

x
'
Processing |Cnmmuni::atinn |Mer< |

Hardware IPs

t\MDCTﬂE S —
DCT32 -

Custom Hardware | complle | Simulate | Verity | Analyze | Refine | Synthesize | Shell |

tmsc |
Forte

SW Processor

’»ARMS

i

|Ready

Before creating a new design, we must ensure that the components needed for our JPEG
platform are accessible by the GUI. To do so, we edit the database preferences by se-
lecting Edit— Preferences from the menu bar.

93

Chapter 4. Multi-threaded System Design with ESE

4.1.6. Select Database File

- (untitled).eds - ESE Environment NEIR

Eile Edit View Synthesis Validation Windows Help
T EIN

Unmapped I

!

Name |Dela\\s |

Processes
Memories Size SSSSSES———————
Channels Preferences (x]

Compiler | I

D

’VIfdataﬂusersﬂese/lcca\fdbfese.sdb Select...

x

Unmapped I

Channel | Source | Destina
Eprocess Channels

Memory Channels
FIFO Channels

x
Processing |Cummumcatmn |Mer1‘ | M ﬁ ﬂl

Hardware IPs
|
tmocme =]
DCT32 =
Custom Hardware Gompile ISimuIats | verity | Analyze | Refine | Synthesize | Shell |
NISC

4

Forte
SW Processor
’—ARMQ

[Ready

In the Preferences dialog, select the tab for Database. This will allow the user to
browse for the database file that has a ".edb" extension. The database file needed for the
JPEG demonstration already comes with the ESE installation. Typically, this file will be
called "ese.edb™ and will be located at "'/data/users/ese/local/db/ese.edb."” If the selection
is not already there, please browse for the file and press OK. All the elelements should
now be visible in the database window, if they weren’t already.

94

Chapter 4. Multi-threaded System Design with ESE

4.2. Platform Creation

We will start by loading the design of the JPEG encoder into ESE. As mentioned earlier,
we will start with a partial platform consisting of one multi-threaded Microblaze proces-
sor and one OPB. The processor carries the application code for three processes in the
JPEG encoder. One Microblaze processor for "'zigzag™ and "huffencode™ processes will
be added to the platform and then the two processes will be multi-threaded by adding a
RTOS model. In this section, we will show how to use the database and platform editor
canvas and how to upgrade a platform in ESE.

95

Chapter 4. Multi-threaded System Design with ESE

4.2.1. Open Partial Design

v

(untitled).eds - ESE Environment

File Edit View Synthesis Validation Windows Help
BEEEI
!
Unmapped I
Name |Data\\5 |
Processes
Memories Size
Channels
Look in: [y molorigin/examplesfipeg_rtos_platiorm/ /| 4= | &1| e
@.
] (jpeg_rtos_platform_functional_TLM
X ’ R
(Jjpeg_rtos_platform_partial_srcs
Unmapped I (ljpeg_rtos_platform_srcs
Channel [source [Destina Cljpeg_rtos_platform_timed_TLM
Process Channels jpeg_sres
Memory Channels [1jpeg_rtos_platorm.eds
FIFO Channels W jpeg_rtos_platform_partial.eds
File name: IJpegiﬂosip\aﬁnrmipar‘tia\.eds Open
File type: ESE Design Files (*.eds) jl Cancel |
4
=
x
'
Processing |Cnmmuninaﬂun |Mer< |
Hardware IPs
A
t\MDCTﬂE S —
DCT32 Eai
Custom Hardware X compile ISimuIate | Verity | Analyze | Refine | Synthesize | Shell |
tmsc]
Forte
SW Processor
’»ARMS
Y, rl
|Ready

We begin by adding the already created partial design. The ESE designs are stored in
XML based files with the extension ".eds."” Select File—Open from the menu bar.
Browse into the demo working directory and select "jpeg_mtd_platform_partial.eds."”
This is the design with the partial design example including RTOS. Press Open to open

the design.

96

Chapter 4. Multi-threaded System Design with ESE

4.2.2. View Partial Design

7 Jpeg_rtos_platfiorm_partial.eds - ESE Environment i
File Edit View Synthesis Validation Windows Help

BEEEI
] |

Unmapped ICPUD |

Name |Dela\\5 |
Epracesses

TX0

ead ESETX
Memories Size Chann
Channels

e
E]

Bus0
oPB |

Unmapped IBusU |TXD |

Channel |Suurce |Deslina
Process Channels

EMemory Channels
FIFQ Channels

) 1

b7k

Processing |Cummunicaﬂun Mer

Hardware IPs

t\MDCTaE 5 : o 7|
DCT32 = : : . ‘ N

Custom Hardware % Compile |Simulate | Verity | Analyze | Refine | Synthesize | Shel |

tmsc |
Forte

SW Processor

’»ARMS

|Ready

The partial platform will appear in the canvas as shown in the above screenshot. We can
see one multi-threaded Microblaze processors CPUO in the platform. The processor is
connected via the Open Peripheral Bus (OPB). There are two local FIFO channels in this
partial design. Each process has its own process port and the process port is connected
through the FIFO channel. For example, as shown in PE window, CPUO has three pro-
cesses, "readbmp”, "chendct" and "huffencode”. Among them, the "readbmp™ process
has a process port which is for sending data from “readbmp” to "chendct". And the pro-
cess port is connected to a local FIFO channel named "r2c" as shown at the bottom in
PE window. Since this channel is for the intra-process communication in a processor, the
channel is located to a local memory and is shown in the PE window not the Channel
window which only shows the channels for the inter-process communication. Note that
the processor is both connected as "Master" as indicated by an "M" at the connecting
port. Since bus master cannot communicate directly over the bus, we provide a trans-
ducer (Tx0) which consists of a FIFO controller and FIFO memories. It acts as a shared
memory for data transfer between CPUO and CPUL.

97

Chapter 4. Multi-threaded System Design with ESE

4.2.3. Add Processing Element

Jpeg_rtos_platform_partial.eds - ESE Environment

File Edit View Synthesis Validation Windows Help
BEEEI

e cPUD
Unmapped | CPUO | | MICROBLAZE

Memor...Chann

Name Details

TX0
ESETX
Chann.

iF‘rocesses
IMemories Size
Channels

e
E]

Bus0
oPB |

Unmapped IBus[} |TXO | PEO
Microblaze
Proces.. Memor..Chann...

Channel | Source | Destina
EFrocess Channels

Memory Channels
FIFQ Channels

P
x
'

Processing |Cummuni::atiun |Mer< |

t\MDCTaG

DCT32 R _»}
Custom Hardware
NISC
Forte
SW Processor

f‘ Compile ISimuIate | Verity | Analyze | Refine | Synthesize | Shell |

Adding a new PE to the platform is very easy. Browse the database under the Process-
ing tab and select Microblaze. Now drag and drop the selection into the platform canvas.
The new PE of type "Microblaze™ will be added to the platform!.

98

Chapter 4. Multi-threaded System Design with ESE

4.2.4. View PE Properties

Jpeg_rtos_platform_partial.eds - ESE Environment

File Edit View Synthesis Validation Windows Help
BEEEI
X!
Unmapped | CPUO | PEO | P Lare
Name Details Memor...Chann.
iF‘rocesses E‘(w‘OETK
IMemories Size Chann
Channels
Il Il
= oo
Bus0
ore |
x
Unmapped IBus[} |TXO | PEO
= Microblaze
Ehsnnel |SUUTCE |Des‘ma Proces.. Memor...Chann...
Process Channels
Memory Channels Jro—
FIFO Channels Adcro
Remove Port
+——— Remove PE
Connect To »
View Graph...
Properties
=
x
'
Processing |Cummuni::atiun |Mer< |
t\MDCTaG |
DCT32 = I
cuNslt;fg Hardware X compile ISimuIate | Verity | Analyze | Refine | Synthesize | Shell |
Forte ;
SW Processor
tARMQ
alll

|Ready

After the drag-drop, the user will find the new PE called PEO in the platform. This is
the PE that will host the “zigzag" and "huffencode" processes in the design. We start by
providing an appropriate name to the new PE to be consisten with the rest of the design.
To do so, right click on the PEO box and select Properties.

99

Chapter 4. Multi-threaded System Design with ESE

4.2.5. Assign New Name to PE

v Jpeg_rtos_platform_partial.eds - ESE Environment * =5 %
File Edit View Synthesis Validation Windows Help
BEEEI

CPUO

Unmapped | CPUO | PEO | AL

Name Details Memor...Chann.

I X0

IF‘roces.ses) ESETX

IMemorles Size Chann
Channels

PE Paramelers

PE0 |RTOS |

g‘;,saa [~PE Options 0

PE Name: [CPU1

- PE Type: [MICROBLAZE

Enable Board Debu
Unmapped IBus[} |TXO | PEO g d
Micro M Cache
Procg

Channel | Source | Destina
EFrocess Channels

| Cache Size:
D Cache Size:

Memory Channels
FIFQ Channels

= Help Ok Cancel

X 4

'
Processing |Cnmmuni::atiun |Mer< |

IMDCT36 7|
DCT32 = I
CuNslt;rg Hardware X compile ISimuIate | Verity | Analyze | Refine | Synthesize | Shell |
Forte |

SW Processor

ARM9 ;
tm‘;

|Ready

In the properties dialog, change the PE name of the PEOQ to "CPU1" to be consistent with
the other PE names.

100

Chapter 4. Multi-threaded System Design with ESE

4.2.6. Add Port to PE

Jpeg_rtos_platform_partial.eds - ESE Environment

File Edit View Synthesis Validation Windows Help
BEEEI
Unmapped | CPUD | CPU1 | R Lare
Name Details emor...Chann
e 0
i rocesses ESETX
IMemories Size Chann
Channels
Il Il
= oo
Bus0
ore |
Unmapped IBus[} |TXO | CPU1
= Microblaze
Ehsnnel |SUUTCE |Des‘ma Proces.. Memor..Chann...
Process Channels
Memory Channels
FIFQ Channels Add Port
Remove Port
Remove PE
Connect To »
View Graph...
Properties
=
x
'
Processing |Cummuni::atiun |Mer< |
t\MDCTaG |
DCT32 = I
c“:r;fg Hardware X compile ISimuIats | Verity | Analyze | Refine | Synthesize | Shell |
Forte |
SW Processor
-ARMS

|Ready

The new PEs, CPUL is not yet connected to the rest of the design. Since the application
processes meant to execute on the PE will need communication with processes on other
processor, we must physically connect CPU1 to the shared OPB bus in the platform. For
this physical connection, a port is required for CPUL. To add the port, simply right-click
on the CPU1 box and select Add Port.

101

Chapter 4. Multi-threaded System Design with ESE

4.2.7. Connect PE to Bus

Jpeg_rtos_platform_partial.eds - ESE Environment

Eile Edit View Synthesis Validation Windows Help
T EIN

Unmapped | GPUD | CPU1 |

CPUO
MICROBLAZE
Memor...Chann

Name Details

TXO0
I ESETX
Memories Size chann...

I Channels

e

W
S

o d Teen ¥ ...
nmappe IBus[) |TXE) | ﬁf:?;bmze Add Port

Channel |Soume |Deshna‘ Proces. e Remove Port
Process Channels R PE
Memory Channels Emoe

FIFO Channels _ Connect Tol” Busor s
View Graph... (none)
" Properties s

IMDCT36 7]
DCT32 [i i
C":f;;’ Hardware X Compile ISimuIate | verity | Analyze | Refine | Synthesize | Shell |
thrte :

SW Processor

tARMS

[Ready

The created port must be connected to the OPB bus to be able to communicate with
the rest of the system. Note that CPU1 is Microblaze core. This means that it can only
connect to the OPB bus as a Master. To connect CPU1, right-click on the port and select
Connect To—OPB0——M from the menu choice. This will create the bus connection
and complete the platform design step. Next, we will look at application input and its
mapping to the created platform.

102

Chapter 4. Multi-threaded System Design with ESE

4.3. Mapping Application to Platform

The application input model for ESE is C/C++ processes communicating through FIFO
channels. Since most legacy application is written in C, this is an advantage over other
forms of input styles or languages. For communication, the user does not need to write
any SystemC channel code. ESE provides very simple APIs for inter-process communi-
cation as we will see in this section.

103

Chapter 4. Multi-threaded System Design with ESE

4.3.1. Add Application Process

Jpeg_rtos_platform.eds - ESE Environment

File Edit View Synthesis Validation Windows
BEEEI

CPU1 cpPuo
Unmapped | CPUO | I MICROBLAZE

Name Details Proces.. Memor...Chann
chendc

quantiz...

ﬂ»?adb

!

. TX0
ESETX
Memo Add Process Chann

Chann Remove All Processes

Unmapped |Bu5l] ‘TXO I CPU1
Microblaze
Proces.. Memor..Chann...

Channel | Source | Destina
EProcess Channels

Memory Channels
FIFQ Channels

'
Processing |Cnmmuni::atinn |Mer< |

twmcrae |
DCT32 = -
Cuslt;rg Hardware X compile ISimuIate | Verity | Analyze | Refine | Synthesize | Shell |
Forte |
SW Processor

ARM9 ;
tm‘;

|Ready

The PE window on the top left corner organizes the processes mapped to the various
PEs in the design. To add a new process executing on CPU1, change to the CPUL1 tab.
Then right-click and select Add Process. This will create a new process with a default

name.

104

Chapter 4. Multi-threaded System Design with ESE

4.3.2. Assign Name to New Process

Jjpeg_rtos_platform.eds - ESE Environment *

File Edit View Synthesis Validation Windows Help
BEEEI
!

CPU1 cpPuo
Unmapped | CPUO | I MICROBLAZE

Memor...Chann

Name Details

TX0
ESETX

Chann.

Unmapped |Bu5[} ‘TXO I CPU1 =

Channel |Suurce |Deslina Microblaze
Proces.. Memor...Chann...

EF‘rocess Channels zigzag

Memory Channels
FIFQ Channels

P
x
'

Processing |Cummuni::atiun |Mer< |

t\MDCTaG |
DCT32 = I
CuNslt;rg Hardware X compile ISimuIate | Verity | Analyze | Refine | Synthesize | Shell |
Forte |
SW Processor

ARM9 ;
tm‘;

|Ready

Change the name of the new process to “zigzag". This is the process for the zigzag scan
in the JPEG encoder application. Please ensure that the process is named correctly since
there exist references to it in the existing partial design. If the process is not named as
suggested, the generated models will not compile. Create one more process for its name
to be "huffencoder"” in the same way.

105

Chapter 4. Multi-threaded System Design with ESE

4.3.3. Add C Source File

Jpeg_rtos_platform.eds - ESE Environment *

Eile Edit View Synthesis Validation Windows

EICEN-

Unmapped | CPUD | CPUT | e

Name ; Memor..Chann

n‘F‘;on?e.sses EéoETx

zigzag Chann...
Rename Process
Size Add Process o =
Channels Remove Process(es) = ”

Add .C File(s)
Add .H File(s)

Remove All Source Files

Add Process Port

E———— Remove All Process Port(s) =
Unmapped |Bus[) ‘TXO I cPUT Tr
Channel |Soume |Destina‘ Microblaze

Proces.. Memor...Chann.
zigzag

Process Channels
Memory Channels
FIFO Channels

IMDCT36
DCT32 [i i
C":r;z Hardware X Compile ISimuIats | verity | Analyze | Refine | Synthesize | Shell |
tFurte :

SW Processor

tARMS

[Ready

The process added in the last step is only symbolic. The user must associate the actual
C/C++ code with it for the models to be functionally correct. In this case, we add C code
by right-clicking on the process name in the PE window and selecting Add .C File for
adding ".c" files. And we can also add ".h" files by selecting Add .H File. This will open

the file browser.

106

4.3.4. Select C

v

Chapter 4. Multi-threaded System Design with ESE

Source File

jpeg_rtos_platform.eds - ESE Environment *

Eile Edit View Synthesis Validation Windows Help
T EIN
x!
Unmapped | cPUD | CPU1 | AT
Name Memor..Chann
T 0
ux Processes ESETX
B 5 igzag Cchann...
Size o o
Channels 0
Bus0
OoPB Look in: ‘zxamp\esﬂpegimosip\aﬁurmﬂpegisms/_’l C:'ll EF”_
Q.
5 [chendet.c
1 HuffEncode_aux.c
Unmapped | Bus0 ‘ TX0 | [1 huffencode.c
Channel |Soume |Destina‘ [1 Quantize_aux.c
Process Channels O quantize.c
Memory Channels [ReadBmp_aux.c
FIFO Channels [readbmp.c
File name: I'Z\gzag_aux.c' "zZigzag.c” Open
File type: C Source File (*.c) 4| cancel |
4
IMDCT36 vl
DCT32 L __ 1
c”:r;g‘ Hardware | compile | Simulate | Verity | Analyze | Refine | Synthesize | Shel |
thrte i

SW Processor

tARMS

Select .c file to add...

Go to the demo directory and follow the symbolic link to "jpeg_srcs". For the “zigzag"
proecss, select two ".c" files, “zigzag.c" and "Zigzag aux.c" ,and one ".h" file,
"Zigzag_aux.h", and then click Open. In the same way, for the "huffencode” process,
select three files, "HuffEncode_aux.c", "huffencode.c”, and "HuffEncode_aux.h". The
files will be added under the new process in the PE window.

107

Chapter 4. Multi-threaded System Design with ESE

4.3.5. Add Process Ports

jpeg_rtos_platform.eds - ESE Environment

File Edit View Synthesis Validation Windows Help
BEEEI

Unmapped | CPUD | CPU1 |

TX0
ESETX
Chann.

OPB G Add ProcessPort

7 Name: IQZZJY

Type: blocking_read

o1

Unmapped | Buso | TX0 | cPUT T api:

Microblaze

Channel |Suurce |Deslina
EF‘rocess Channels

Memory Channels
FIFQ Channels

Help | Add | Qance\l

) [=

.
Processing |Cummumcatmn Mer

t\MDCTSG |
DCT32 ET L = —
Custom Hardware X compile ISimuIate | Verity | Analyze | Refine | Synthesize | Shell |

NISC
Forte

SW Processor
ARMQ

|Ready

After, the C code for the process is added, we need to add the application level com-
munication to the design. First of all, we need to add the process port for each process,
which will be connected to a channel for data transfer to another process. To add the
process port for the new process, click on the new process and select the Add Process
Port. This will open the window to add the process port. We can create any name for
the process port and select the type of it. There are ten possible types. We can categorize
them into three kinds. The "Send", "Receive"”, and "Send/Receive" are used for double
handshake channels. The "Read", "Write", and "Read/Write" are used for shared mem-
ory. And the others are for the FIFO channels. Finally, we need to assign its function
name to be what is actually used in C code. Please ensure that the function name is the
same as that used in C code. If the name is not correct, the generated models will not
compile.

The "zigzag" process has two process ports. One is for receiving data from "quantize"
process and the other is for sending data to "huffencode” process. Assign the process
port name to be "g2z_if" for the former and "z2h_if" for the latter. Since we are us-

108

Chapter 4. Multi-threaded System Design with ESE

ing FIFO channels, select the type to be "blocking_read" for the former and "block-
ing_write" for the latter, respectively. Also, assign the function name to be "recv_g2z"
and "send_z2h", respectively. The "huffencode™ process has only one process port which
is for receiveing data from "“zigzag". Its process port name is "z2h_if" and its function
name is "recv_z2h". Please add all the process ports for all the new processes using the
given names.

109

Chapter 4. Multi-threaded System Design with ESE

4.3.6. View Application Channels

7 Jjpeg_rtos_platform.eds - ESE Environment * IR,
File Edit View Synthesis Validation Windows Help

BEEEI

!

CPUO
Unmapped ‘CF’UU ICPM | MICROBLAZE
P Memor..Chann
23 ™0
ESETX
Chann.

N

Name | Detai
[e2q_if c2q
lL [a2z_if
Source Files
E Quantize_aux.c

[0 quantize.c
[Quantize_aux.h

iy Channels
iy

Channels

L)

CPU1
Microblaze
Pi Viemor...Chann...

Unmapped |Bus[} ‘TXO |

Channel |Source |Dastina‘
EProcess Channels

Memory Channels
FIFO Channels

) [| »
X
Processing |Ccmmunicaticn |Mer i |
Y| BT) =
t\MDCTSG X comn i - i T
DCTa2 pile IS\muIate | Verity | Analyze | Refine | Synthesize | Shell |
Custom Hardware _:
tmsc
Forte _:
SW Processor ‘l |
| amaam
=

|Ready

After, the process port for the process is added, we need to create the channels for the
communication between processes. To view the existing channels, click on the CPUO
tab in PE window. This will display the existing FIFO channels between processes in
CPUO, including the source and destination names as well as the route used to implement
the channel in the communication platform. In the partial platform, there exist only local
FIFO channels for intra-process communication. All the channels in ESE can be uni-
directional or bi-directional channels. If the user clicks on a PE in the platform canvas,
all the channels originating or terminating at the PE will be selected. All other PEs
that the clicked PE communicates with will be highlighted in light yellow. All physical
connections, including buses and transducers used by the PE for communication will be
highlighted in green.

110

Chapter 4. Multi-threaded System Design with ESE

4.3.7. Add New Application Channel

jpeg_rtos_platform.eds - ESE Environment *

File Edit View Synthesis Validation Windows Help
BEEEI
X!
u d | cPuo |cpur CPUo
nmapped | I | MICROBLAZE
Name [Detai Proces... Memor...Chann
:fhr_é\\'nlzf TX0
m-Processes i ESETX
%-Freadbmp Chann,
Process Ports Chan
L [Brze_if r2c =
[Source Files = <
ReadBmp_aux.c
[dreadbmp.c
[i] ReadBmp_aux.h (E)';,SBO
%[chendct
Process Ports Chan
|- [rze_if r2c ki
T =
cPU1
Microblaze
Unmapped |Busl] ‘TXO | Proces.. Memor..Cnann...
Channel |Snurce |Desﬂna‘ 2gzag
—Process Channels
—Memory Channels
FIFO Channels
Add Channel
X
(
Processing |Cnmmunicatinn |Mer4 | A
I
IMDCT36 = 7
DCTa2 | Complle ISimuIate | Verity | Analyze | Refine | Synthesize | Shell |
Custom Hardware]
tmsc
Forte :
SW Processor] B
| amaam

|Ready

Please click on CPU1 and see the Channel window. We can know that they are currently
not connected at the application level to any other PE. Since we need communication be-
tween the "quantize™ process in CPUO and the "'zigzag" process in CPU1, we will add the
application level channels, by right-clicking in the channel window and selecting Add
Channel. This will pop up the channel wizard for adding application level channels.

111

Chapter 4. Multi-threaded System Design with ESE

4.3.8. Channel Wizard for Inter-Process Communication

jpeg_rtos_platform.eds - ESE Environment *

Eile Edit View Synthesis Validation Windows Help
T EIN
! A
Unmapped | CPUD ICPU1 |
Name | Detai
B-Processes
% Ejreadbmp Chann...
Process Ports Chan W Add Channel
L .
. [Mr2e_if r2c Ll ~Channel Options
Source Files =
ReadBmp_aux.c Channel Type: FIFO Channel jl
[dreadbmp.c
[ReadBmp_aux.h (E)';SBO [
7 chendct Name: |q2z
Process Ports Chan .
Size: b
|_m 26 if e , ize: |256 ytes
1 > = Writer: quantize _"l
= cPut - -
Microblaze Port: g2z if il
Unmapped | Bus0 ‘ X0 | - -
Reader: zigzag _fl
Channel |Suurce |Deshma . =
-Process Channels ienyloz=Ai *l
~Memory Channels Mapping: TRANSDUCER jl
—FIFO Channels L
Mapping Options
Route: CPUO->Bus0->TX0->Bus0->CPU1 |
Help Add Cancel
4
=) >
= sl
Processing |Cummumcat\un |Mer A
IMDCT36

< —
]

DCT32 Compile ISimuIate |Verify |Ana\yzs |Rsﬁna |Synthesize |SheH |

Custom Hardware
NISC
Forte

SW Processor

|

i —

[Ready

In the channel wizard dialog, we first need to select the channel type. Choose "FIFO
Channel" since we are using FIFOs. Then, assign the channel name to be "g2z" for con-
sistency with existing channels and also assign the FIFO size to be "256" bytes since the
processes send/receive an 64-array integer data each other. Next, since the process will
send data in one way from "quantize" to "zigzag", select "Unidirectional™ using the pull
down menu. Then, use the pull down menu to select the first communicating process as
"guantize™ and also use the next pull down menu to select the process port as "q2z_if". In
the same way, select the other communicating process as "'zigzag" and select the process
porst as "g2z_if". Next, select the mapping to be "TRANSDUCER" since we are using
a transducer for the inter-process communication. Once the communicating processes
and process ports are decided, ESE automatically filters all the possible physical routes
on the platform that can implement the channels. For this example, it shows that there is
only one route for each direction that goes over the OPB bus from the sender PE to the
transducer Tx0 and back to the receiver PE on the OPB bus. The route goes through the
transducer because all PEs in the platform are connected as masters, which does not al-
low direct communication. The slave interface of Tx0, thus makes the routing possible.

112

Chapter 4. Multi-threaded System Design with ESE

Click Add to add the channel.

113

Chapter 4. Multi-threaded System Design with ESE

4.3.9. Channel Wizard for Intra-Process Communication

2 jpeg_rtos_platform.eds - ESE Environment * ==
Eile Edit View Synthesis Validation Windows

EICEN-

Unmapped | CPUO ICFU1 |

Help

CPUO
MICROBLAZE

Name | Detai Memor..Chann o
TXO0
[}F‘rosses ESETX
%[readbmp chann...
Process Ports Chan a2
L Mr2c_if 2c Add Channel
Source Files ~Channel Options
ReadBmp_aux.c
[dreadbmp.c Channel Type: FIFO Channel _’l
Bus0
‘ [l ReadBmp_aux.h ors
7 chendct
T» Process Ports Chan Name: IZ2h
|—m r2c_if ¢ i Size: |256 bytes
I =

cPU1 Writer: zigzag

q
Microl

Lo q2z

quantize zigzag

Unmapped | Bus0 ‘ TX0 | Procel Port: z2h_if _’l
huffen
Channel |Suurce |Deshna zlgzay Reader: huffencode jl
Process Channels Port 72h if ll
Memory Channels
FIFO Channels Mapping: LOCAL ACCESS !l

Mapping Options

Route: LOCAL ACCESS H

Help Add Cancel
4

Ia‘[!

'
Processing |Cummumcat\un |Mer<

IMDCT36 s i) - 7
DCTA2 ompile IS\muIate |Venfy |Ana\yza |Raﬁna |Syntheswze |SheH |

Custom Hardware
NISC
Forte

SW Processor rlllE
[H

[Ready

In order to add the channel for the communication between "zigzag" and "huffencode”,
right-click in the Channel window and select Add Channel. In the channel wizard di-
alog, assign the channel name to be “z2h". From the next step, everything is the same
as the previous section except the channel mapping and route. Since it is for the intra-
communcation, the mapping and route will be automatically set to "LOCAL ACCESS"
as shown in the above screenshot. Select the default mapping and route. Finally, click
Add to add the channel.

114

Chapter 4. Multi-threaded System Design with ESE

4.3.10. View New Channel Communication

Jpeg_rtos_platform.eds - ESE Environment *

Eile Edit View Synthesis Validation Windows Help
T EIN

Unmapped | cPUD | CPU1 |
Name |Detai
@ huffencode
I Process Ports Chan

CPUD
MICROBLAZE

Proces.. Memor...Chann.

quant >0
ESETX
Chann...
g2z

L Mzzn_if 22h
Source Files
E HuffEncode_aux.c

W
S

huffencode.c

[H HuffEncode_aux.h
Memories Size
Channels
®-E FIFO Channels
LBz2h

a2z 1

)

CPU1

Microblaze
Proces.. Memor...Chann.
zigzag

e
Memory Channels
FIFO Channels

U

™ g2z quantize

x
'
Processing |Cummumcat\un |Mer< | A

IMDCT36
DCT32

Custom Hardware
NISC
Forte

SW Processor

| compile | Simulate | Verity | Analyze | Refine | Synthesize | Shel |

[Ready

The newly created channels will now be visible in the channel window under the Tx0
tab. Once the channels are selected, the communicating PEs will be highlighted. This
shows that the new PE, CPU1 is now "“connected” with the rest of the system on an
application level.

115

Chapter 4. Multi-threaded System Design with ESE

4.3.11. Add RTOS

jpeg_rtos_platform.eds - ESE Environment *

Eile Edit View Synthesis Validation Windows Help
T EIN
! &
CPUT CPUD
Unmapped | CPUD | I MICROBLAZE
Proces.. Memor..Chann
quantz
m CPU1 ‘RTOS Ihuﬂencude |zigzag |
=
~RTOS Options
a I RTOS Type: xilkernel ¥
i i Bus0
Memories OPB | Scheduling Policy: Round robin i
Channels —
88 FIFO Channels Time Slice: Round robin
L]
Priorities:
=
CPU1 T Process Name |
Microblaze huffencode
Unmapped ‘B“SU ITXO | P Memor.. Chann zigzag
Channel |Suurce |Deshma
Process Channels LI
Memory Channels
FIFO Channels R4 n
T 1 = Help Ok Cancel
= 4
x
'
Processing |Cummumcat\un |Mer | A
| I =
IMDCT36]
DCTA2 Compile ISimuIate |Verify |Ana\yzs |Rsﬁna |Synthesize |SheH |
Custom Hardware
NISC :
Forte 4
SW Processor rlllE
|oome o i
—l|

[Ready

As mentioned before, since CPU1 has more than one process and the proecesses should
be multi-threaded, we need a RTOS model to control the execution of the processes.
To add the RTOS model, right-click on the PE box and select Properties. Then, en-
able RTOS by clicking the small sqare box. There are two scheduling policies, "Round-
Robin™ and "Priority". Select one from the two scheduling policies. If you select "Prior-
ity" scheduling, then the priority of the processes in the PE will be shown in order. Users
can change the priority by using the arrow buttons located at the right side.

116

Chapter 4. Multi-threaded System Design with ESE

4.4. Generating Functional and Timed TLMs

The previous steps complete the platform and application input that is necessary for gen-
eration of TLMs. We will show generation of two types of SystemC TLMs. The first one
is called the "Functional TLM™" because it is used for the validation of design functional-
ity only. It is completely un-timed and simulates the design based on causal dependency
only. A universal bus channel is used to model the system bus and the mapping of chan-
nels on the bus.

The second TLM is called the "Timed TLM" and is used for performance estimation of
the design. It relies on timing data models of PEs and Buses that are available in the ESE
database. The data models are used by our estimation and annotation technique to apply
"wait" statements in the application C code. The technique is retargetable and applicable
to processors as well as HW IPs. A retargetable bus timing annotation modifies the bus
channel to apply "wait" statements for inter-PE communication.

117

Chapter 4. Multi-threaded System Design with ESE

4.4.1. Generate Functional TLM

jpeg_rtos_platform.eds - ESE Environment *]
Eile Edit View Synthesis | Validation Windows Help
NEEE [€ Generate Functional TLM...
Generate Timed TLM... CPUD
|
Unmapped | CP' Select Board. . ~| |microeLazE
RETD Synthesize to Board... Engteg: Memor..Chann X0
& Pr quaniz ¢
o @ stop readb! ESETX
Eizigzag = cpant..
Process Ports a2
[Mqg2z_if q2z o
Mz2h if z2h = [0
Source Files
[d1Zigzag_aux.c
[Bzigzag.c (E)"‘)Eo
[Hl Zigzag_aux.h
Eihuffencode
) Process Ports Chan |
=
cPU1
Microblaze
Unmapped ‘ Bus0 ITXO | ﬁ!ﬁ?fiﬁf- Memor...Chann.
Channel |Source |Deshna‘ agzag
Process Channels
Memory Channels
FIFO Channels
Lquz quantize zigzag
=
x
I
Processing |Cammumcatmn | Mer A
L 1l
IMDCT36]
DCT32 Gompile ISimuIﬂte | verity | Analyze | Refine | Synthesize | Shell |
Custom Hardware
NISC
Forte
SW Processor rlllE
|oome o i

Generate Functional TLM

After the platform and application input is complete, the functional TLM can be gen-
erated automatically by selecting Synthesis— Generate Functional TLM from the
menu bar. This will generate the SystemC code needed for platform modeling, includ-
ing PEs, buses and transducers. The generated code is then compiled natively along with
the C application code and linked to the SystemC libraries to produce a single binary.
This process can be viewed in the log window.

118

Chapter 4. Multi-threaded System Design with ESE

4.4.2. Simulate Functional TLM

Eile Edit View Synthesis

hEEIR Simulate Functional TLM

Jpeg_rios_platform.eds - ESE Environment

Validation | Windows

Simulate Timed TLM buo
w Open Terminal -~ [croBLAZE
Name Kill si . s.. Memor..Chann
Kill simulation - c X0
- Processes 'ay‘(‘z ESETX
- View Log...
Zlgzag CJ‘TQHH .-
Process Ports a2
[Mqg2z_if q2z o
Mz2h if z2h = [0
ource Files
[d1Zigzag_aux.c
[Bzigzag.c OPB
[Hl Zigzag_aux.h
Eihuffencode
é}— Process Ports Chan |
=
CPU1
Microblaze
Unmapped ‘ Bus0 ITXU | Praces.. Memor. Chann
Channel |Source |Deshna‘ zigzag
Process Channels
Memory Channels
FIFO Channels
Lquz quantize zigzag
A
L i+
< Compile |S\mulate |Verify |Ana\yze |Reﬁne |Svnthesize ISheH |
= gee —g -DSC —a ., /dpeg_rtos_platform srcs/CPUL/zigzag/c files/Iigzag_aux, ¢ ,, /Jpeg_rtos_platform sras/CPUl/zizzag/
‘ﬂl e fﬂes/z;gzag. -1, /Jpeg rtos ﬁlatf?rm srcs/?PUl/huf‘fenco?e/h files -1,. /Jpeg rtoi pla;form sr?s/CPUlszzaﬁjh b
P - < iles -1, /Jpeg_rtos_platform_srcs/CPU0/quantize/h files -L. /Jpeg_rtos platform_sres/CPUD/chendet/h_files L. /ipeg
e |C'ummw‘:ﬂmm | Mer _rtos_platform_srcs/CPU0/readbap/h files
IMDCT26 goe & -DEC -¢ .. /Jpeg_rtog platform srce/CPUL/huffencode/c files/HuffEncode aux. ¢ .. /ipez_rtos_platform srcs/CPUL
Jhuffencode/c files/huffencods.c -L./Joeg rtos platform srce/GPUL/muiffencods/h Files ~L../ipeg Ttos platforn sros
DCT32 JCPULfzigzag/h files -L,. [jpes. rtos_platforn_sros/CPUD/quantize/h_files -1.. /ipes. rtos platfors, sves/CoU0/chendot/h
Custom Hardware _files -L../Jpeg_rtos platform srcs/GPUO/readbmp/h files
NISC gtt -g —I/Dpt/pkg/systemc %, & 0/include —¢ sros/tlm, co ~Tincs
g+t -L/opt/pke/systenc-2, 2, 0/13b-1inux —o tln tlm o ReadBup_aux. o readbmp, o chendct. o Quantize_aux, o quantize.o Zig
Forte Zag_aux, o zigzag, o HuffEncode_auz, o huffencode.o -lsystemc -1m -lpthread
SW Processor . Compilation ended,
=== e |

Simulate Functional TLM

Once the compilation has completed, the generated TLM can be executed from the GUI
by selecting Validation— Simulate Functional TLM from the menu bar.

119

Chapter 4. Multi-threaded System Design with ESE

4.4.3. View Functional Simulation Results

v

Eile Edit View Synthesis Validation Windows

Jpeg_rtos_platform.eds - ESE Environment

EICEN-

x!
CPU1 CPUO
Sueed |CPU0 | I MICROBLAZE
Name |Detsi Proces.. Memor..Chann.
chendc
Processes ;qﬁt[ﬂw‘nz

Copyr gm. (

jpeg_rtos_platform

--= Jun 13 2007 10 49 55
) 1BEE 2006 by all Contrdbut
ALL RIGHTS RESERVED

to continue ...
£40x480 JPEG image, color

space Grayscale, 1 conp, Huffman cod

U
che
EMemory Channels

FIFO Channels
Lo q2z

quantize zigzag

-[output.jpg

]

I
Processing |Cummuni::atiur| |Mer<

IMDCT36
DCT32

Custom Hardware
NISC
Forte

SW Processor]
[

Compile ‘Slmulate IVenfy |Analyze |Reﬁne |Synlhes|ze |Shel| |

confirm

¥ xtern -title Jpez rtos platform —e /bin/sh -c sim func TLY /data/users/yaalm/work/esedemo/orlgm/examplesmpeg rtog
_platforn/Jpeg_rtos_platform eds; echo

"Smulation exited with status $7” ;echo ”

"Press return to continue . sread

[Ready

The simulation pops up a terminal that shows the picture size of BMP input that have
been encoded. The JPEG encoder we are using deals with BMP inputs of 640x480 size.
An additional window shows the picture of the encoded JPEG which is the output of the
simulation. The pop up windows can now be killed simply by pressing "Enter" in the
simulation logging terminal.

120

Chapter 4. Multi-threaded System Design with ESE

4.4.4. Generate Timed TLM

Jpeg_rios_platform.eds - ESE Environment

Eile Edit View Synthesis | Validation Windows Help

Dz @ # | & Generate Functional TLM...

Generate Timed TLM...
CPUO

Select Board... - MICROBLAZE
Memor...Chann

Unmapped | CP'
Name
B Pr

Synthesize to Board...

zigzag @ stop

Process Ports
[Mqg2z_if q2z

TX0

ESETX
Chann...
q2z

W
S

Mz2h if z2h
Source Files
[d1Zigzag_aux.c
[dzigzag.c
[Hl Zigzag_aux.h
huffencode
é}— Process Ports

Bus0 I

OPB 22

Chan | 4

=
)

CPU1
Microblaze
Pre Memor...Chann.
L

Unmapped ‘Busﬂ ITXO |

Channel | Source | Destina
IEF’rot:ess Channels

Memory Channels
FIFO Channels
L@qu quantize zigzag

FT T
< Compile ‘Simulate IVen‘fy |Ana\yze |Reﬁne |Syntheswze |SheH |

% xterm -title Jpeg_rtos_platform —e /bin/sh -c sim fune TLM Jdata‘vsers/yiahn/work/esedeno/origin/eranples/ jpes_rtog
,Pl?;form/a?eg,rtos,platform. eds; echo "Simulation exited with status $7” ;echo "Press return to contime ..." ;read
confirm

Simuilation exited, exit status: 0

'
Processing |Cummumcat\un |Mer<

IMDCT36
DCT32

Custom Hardware
NISC
Forte

SW Processor

7=

Generate Timed TLM

Similar to the functional TLM generation, the Timed TLM can be generated automat-
ically by selecting Synthesis— Generate Timed TLM from the menu bar. The bus
channels generated for timed TLM will include timing for synchronization, arbitration
and data transfer. The timing parameters are imported into the TLM from the bus data
model. For the computation part, we use a retargetable source level timing estimation
technique that utilizes the PE data models. Naturally, the timed TLM generation and
compilation is significantly slower than functional TLM generation, but still in the order
of seconds.

121

Chapter 4. Multi-threaded System Design with ESE

4.45. Simulate Timed TLM

Jpeg_rios_platform.eds - ESE Environment

Eile Edit View Synthesis Validation | Windows Help
L EIR] Simulate Functional TLM
- Simulate Timed TLM buo
cPUT—— — |
w Open Terminal -~ [croBLAZE
Name e c oces.. Memor..Chann
Kill simulation -~ Jendc TX0
- Processes jantiz
N View Log... A ESETX
Blzigzag chann..
Process Ports a2
[Mqg2z_if q2z o
Mz2h if 22h = 2
Source Files
[d1Zigzag_aux.c
[dzigzag.c ors
[Hl Zigzag_aux.h
Eihuffencode
) Process Ports Chan |
=
CPU1
Microblaze
Unmapped ‘ Bus0 ITXCI | Proces.. Memor..Chann.
huffenc.
Channel |Source |Destinsl #gzag
Process Channels
Memory Channels
FIFO Channels
Lquz quantize zigzag
A
L i~
< Compile ‘Simulate IVerify |Analyze |Reﬁne |Synthesize |Shel| |
=\ | |% zterm -title Jpez_rtos_platform —e /bin/sh -c ain fime TLN /data/users/viatn/work/esedeno/orizin/eranples/ peg rtos
!4 | _platforn/Jpeg_rtos_platform eds; echo "Simulation exited with status $7” ;echo "Press return to continue ...” ;read
. - i |confirm
Processing |Cummumcatmn |Mer< Simulation exited, exit status: 0
IMDCT36
DCT32
Custom Hardware
NISC
Forte
SW Processor]
AN

Simulate Timed TLM

To simulate the generated timed TLM, simply select Validation— Simulate Timed
TLM from the menu bar, after the TLM compilation has ended.

122

Chapter 4. Multi-threaded System Design with ESE

4.4.6.View Timed Simulation

~ jpeg_mtd_platform.eds - ESE Environment ==
Eile Edit View Synthesis Validation Windows Help
T EIN

x
Unmapped |CPUO | CPU1 |

Nar™ jpeg_mtd_platform
Hunber of IPC Receive
Nurber of Context Swi

joutput.ipg
Progran/Tata:0

liata transfer tine;20025635
Tdle tinerl258822434

FHEND TIME$1278848129 cycles
JAoutput.jpg is & 640480 JPEG image, color space Grayscale, 1
ing,

Process Channels \Z'VIL‘\g:gl
Memory Channels

FIFO Channels

Y|
[E—
= Compile ‘Sim
xterm -title
eds; echo "5y

—

eno/ peg_ntd_platform

x

v
Processing ICummunicstiun |Mer<

Hardware IPs
t\MDCTBE
DCT32
Custom Hardware
NISC
Forte
SW Processor
’—ARMQ

[Ready

The timed TLM simulation looks very similar to the functional TLM simulation ex-
cept for one marked difference. Notice that timed simulation is significantly slower than
functional TLM simulation. This is natural since we are simulation a lot more "wait"
statements that are annotated to the application codes. However, our results show that
this is still several orders of magnitude faster than RTL simulation for the same design.

When the timed simulation ends, several statistical data are dumped in the simulation
logging terminal. These are the estimated cycles for CPU computation and communi-
cation, bus congestion estimates and so on. However, all these estimated performance
statistics can be viewed graphically as shown in next section.

123

Chapter 4. Multi-threaded System Design with ESE

4.5. TLM Performance Estimation

The timed TLM produces several statistical data that is gathered during simulation. Since
the source annotation is fine grained, the TLM produces results for cycles used for invo-
cation of each function in the application code. Computation and communication cycles
for each PE can be viewed using pie charts. The distribution of cycles for each func-
tion amongst its sub-functions can be browsed recursively. Similarly, the distribution of
inter-PE bus traffic over inter-process channels can also be viewed graphically.

The performance estimates are useful for early platform and mapping evaluation. Since
the timed TLMs are generated automatically, and TLM simulation is very fast, early
design space exploration becomes feasible. Users may explore platforms manually or
plug in their exploration algorithms for system level design optimization.

124

Chapter 4. Multi-threaded System Design with ESE

45.1. View Performance Estimates

Eile Edit View Synthesis Validation Windows Help

EICEN-

x!
Unmapped | cPUD | CPU1 |
Name
g >0
ESETX
Chann...
q2z
Il Il
=4]
Bus0
ope | o2z
=
Unmapped ‘ Bus0 ITXO |]
Channel |Soume |Destina‘ MICROBLAZE o
or...Chann.
Process Channels z2h
Memory Channels
FIFO Channels Add Port
mg2z quantize zigzag Remove Port
~__________ Remove PE A
| —

Connect To ~ i
< Compile ‘Simulate B |Synthesize |SheH |

& /bin/sh -¢ sin_perf TN /data/users/yJahn/work/essdenc/sgadenc/peg_mtd_platform
eds; echo “"Simulat: Properfies |status $77 secho “Press return to continue ...” sread confirm

Simnlation exited, BEIT STATOST T

View Graph...

xtern -title Jpe

x
|

v
Processing ICummumcatmn |Mer<

Hardware IPs
IMDCT36
DCT32

Custom Hardware
NISC
Forte

SW Processor

To view the PE performance statistics, right-click on the PE in the platform canvas and
select View Graph. In this case, we will select the CPU1 Microblaze processor.

125

Chapter 4. Multi-threaded System Design with ESE

45.2. PE, Process and Function Level Estimates

jpeg_mtd_platform.eds - ESE Environment

CPU1 Chant i computation Chart huffencode Chart Help
|1 Window Customize |_ Window Customize | Window Customize |
CPU1 1 computation huffencode M
Legends Legends]
E idle hutfencode Legends
comm i
O comp L zigzan lil EncodeAC
[l RTOs [1 writeBits
N — [1 tocal_code
Y - EncodeDC
l:l JpegDefaultHuffman
B [oE Bl writeaPPO L
B writeDHT
Bl witeDaT
sl 1 I:l others
EncodeAC Chart
Unmapg
Window Customize
Channel -
...Chann...
Procd EncodeAC zh
Mem: EncodeHuffman_AC Chart
FIFO Window Customize L
Ln Legends WiriteBits Chart
l:l local_code EncodeHuffman AC Window Customize |
=
l:| EncodeHuffma Wri [=
riteBits
R P Legends
3 L1 wriesies WriteBits e et o
o/esedenc/ Jpag_m 0T,
] 1ocal cod | agends et Jpeg_mtd_p.
v 1 tocal code
Procesg
Hard
tWI
D
Cust:
tm
Forte
SW Processor
’»ARMS
awa_ o rl
—I|
|Ready

The first pie-chart window divides the total execution time into computation, communi-
cation and idle cycles. Double-clicking on the computation part of the pie chart pops up
the distribution of computation across different processes in the design. In this case,
we have only two processes, “zigzag" and "huffencode™ mapped to CPUL. Double-
clicking on the process in the pie chart produces the distribution of computation across
the top level functions in the process. These function(s) call lower level functions and
so on. Double-clicking on a function produces the pie chart for the distribution of cy-
cles amongst the sub-function invocations. Using this viewing feature, the user may go
down to any level in the function call hierarchy. If the pie chart appears too small, please
increase the window size to enlarge the chart.

126

Chapter 4. Multi-threaded System Design with ESE

45.3. View Communication Estimates

jpeg_mid_platiorm.eds ESE Environment

Eile Edit View Synthesis Validation Windows

Help
T EIN
I
CPUT CPUD
Unmapped | CPUD | I MICROBLAZE
Name |Dah Proces.. Memor...Chann.
quantiz 0
B-Processes ESETX
C;\aﬂﬂ -
a5 Process Ports o
[Mqg2z_if q2z N A
Mz2h if z2h = o
o[Source Files
[d1Zigzag_aux.c
[Hzigzag.c (E)"‘)Eu i ez I
[dl Zigzag_auxh Remove Bus
S = View Graph...
= Plot...
=) Properties
MICROBLAZE
s.. Memor...Chann
A
L =

< Compile ‘Simulate IVenfy |Ana\yze |Synthesize |SheH |

zterm -titls jpez_mtd_platform —e /bin/sh -c sim_perf TLM /data/users/yiahn/work/essdenc/ssedenc/jpeg_mtd_platform.
eds; echo "Simulation exited with status $77 secho “Press return to continue ...” sread confirm
Simdation exited, exit status: 0

x
v
Processing ICummumsatmn |Mer< |

Hardware IPs
IMDCT36
DCT32

Custom Hardware
NISC
Forte

SW Processor

To view the bus communication statistics, right-click on the bus in the platform canvas
and select View Graph. In this case, we will select the only OPB bus.

127

Chapter 4. Multi-threaded System Design with ESE

45.4. Bus and Channel Level Estimates

v jpeg_mtd_platform.eds - ESE Environment = |[(=7)[*

Eile Edit View Synthesis Validation Windows Help
T EIN

Unmapped | GPUD | CPU1

Name Bus0 Chart or...Chann. v data_transfer Chart =l8i*

TXO0
ESET{ Window Customize
l}:,h’:ﬂ'm

B-Processes

g
Process P
[Ma2z_if

B L dl

- 2 it B e i
& [2] Source File) [] data transfer ez

[@Zigzag_|

[dzigzag.d|

[A Zigzag_|

Window Customize

Bus0

data transfer

E

or...Chann.

Channel

Mprocess Channels]

Memory Channels

FIFO Channels
B . g2z

L

quantize zigzag

= | =
< Compile ‘Simulate IVenTy |Ana\yze |Synthesize |ShaH |

zterm -titls jpez_mtd_platform —e /bin/sh -c sim_perf TLM /data/users/yiahn/work/essdenc/ssedenc/jpeg_mtd_platform.
eds; echo "Simulation exited with status $77 secho “Press return to continue ...” sread confirm
Simdation exited, exit status: 0

) |

Processing ICummunmamn |Mer

Hardware IPs
t\MDCTBG
DCT32
Custom Hardware
NISC
Forte
SW Processor
’—ARMQ

[Ready

The top level pie-chart for the bus shows the distribution of bus cycles in idle,
program/data access and inter-PE data transfer phases. Double-clicking on the
"data-transfer” part of the pie-chart produces the distribution of communication traffic
amongst the various application channels in the design.

128

Chapter 5. Conclusion

In this tutorial we presented the ESE Front-End design methodology and tool set. ESE
produces two types of TLMs; one for untimed functional verification and a timed TLM
for performance estimation. The C/C++ and graphical input not only allows non-experts
to create system models, but it also supports reuse of legacy code for product upgrades.
The TLMs generated by ESE Front-End can be synthesized into board prototype models
by ESE Back-End. This feature is not available in any commercial or academic offering.

To draw the conclusion, ESE enables embedded system developers to use the following
powerful advantages that have never been available before.

1. Automatic TLM generation.

New TLMs are generated automatically from a mapping of C/C++ application to an
abstract graphical platform. This means that the designer may use existing applica-
tion code and map it to different platforms without having to manually modify any
SystemC code.

2. Eliminates SLDL learning.

ESE eliminates the need for system-level design languages to be learnt by the de-
signer. Only the knowledge of C for creating application specification is required.

3. Enables non-expertsto design.

This also enables non-experts to design systems. There is no need for the designer
to worry about design details like protocol timing diagrams, low level interfaces etc.
Consequently, software developers can design systems.

4. Supports platforms.

ESE is great for platform based design . System platforms can be graphically cre-
ated and modified. Pre-existing platforms can be reused and upgraded. All of these
tasks are orthogonal to the application development itself.

5. Customized methodology.

129

Chapter 5. Conclusion

130

ESE can also be customized to any methodology as per the designer’s choice of
components, system architecture, models and levels of abstraction.

. Enables | P reuse.

ESE simplifies IP reuse to a great extent by allowing import of RTL components at
system level. With C models of the IP, the designer can generate high speed TLMs
for verification and performance estimation.

. Supports interoperability.

ESE supports interoperability with industry standard languages and tools . The
input is C/C++ which is the language of choice for embedded applications. The
output is SystemC which is the de-facto system level design language. The Back-
End in ESE allows generation RTL blocks from C code using third party high level
synthesis tools, such as Forte. The final output of ESE Back-End is a Xilinx project
that can be input to the Xilinx Embedded Development Kit (EDK) for push button
FPGA prototyping.

References

S. Abdi, J. Peng, R. Doemer, D. Shin, A. Gerstlauer, A. Gluhak, L. Cai, Q. Xie, H. Yu,
P. Zhang, and D. Gajski, System-on-Chip Environment - Tutorial, CECS Technical
Report 02-28, September 24, 2002.

A. Gerstlauer, R. Doemer, J. Peng, and D. Gajski, System Design: A Practical Guide
with SpecC, Kluwer Academic Publishers Inc., June, 2001.

D. Gajski, J. Zhu, R. Doemer, A. Gerstlauer, and S. Zhao, SpecC: Specification Lan-
guage and Methodology, Kluwer Academic Publishers Inc., March, 2000.

D. Gajski, F. Vahid, S. Narayan, and J. Gong, Specification and Design of Embedded
Systems, Prentice Hall, June, 1994,

D. Gajski, F. Vahid, S. Narayan, and J. Gong, “SpecSyn: An Environment Supporting the
Specify-Explore-Refine Paradigm for Hardware/Software System Design”, IEEE
Transactions on VVLSI Systems, Vol. 6, No. 1, pp. 84-100, 1998, Awarded the IEEE
VLSI Transactions Best Paper Award, June 2000.

D. Gajski, L. Ramachandran, F. Vahid, S. Narayan, and P. Fung, “100 hour design cycle
: A test case”, Proc. Europ. Design Automation Conf. EURO-DAC, 1994.

131

References

132

	Table of Contents
	Chapter 1. Introduction
	1.1. Motivation
	1.2. Embedded System Environment
	1.3. ESE Front End Design Flow
	1.4. Design Example
	1.4.1. JPEG Encoder
	1.4.2. MP3 Audio Decoder

	Chapter 2. MultiProcessor System Design with ESE
	2.1. ESE Startup and Settings
	2.1.1. Environment Setup
	2.1.2. ESE Demonstration Setup
	2.1.3. Launching ESE
	2.1.4. ESE GUI
	2.1.5. Editing Database Preferences
	2.1.6. Select Database File

	2.2. Platform Creation
	2.2.1. Open Partial Design
	2.2.2. View Partial Design
	2.2.3. Add Processing Element
	2.2.4. View PE Properties
	2.2.5. Assign New Name to PE
	2.2.6. Add Port to PE
	2.2.7. Connect PE to Bus

	2.3. Mapping Application to Platform
	2.3.1. Add Application Process
	2.3.2. Assign Name to New Process
	2.3.3. Add C Source File
	2.3.4. Select C Source File
	2.3.5. Add Process Ports
	2.3.6. View Application Channels
	2.3.7. Add New Application Channel
	2.3.8. Channel Wizard
	2.3.9. View New Channel Communication

	2.4. Generating Functional and Timed TLMs
	2.4.1. Generate Functional TLM
	2.4.2. Simulate Functional TLM
	2.4.3. View Functional Simulation Results
	2.4.4. Generate Timed TLM
	2.4.5. Simulate Timed TLM
	2.4.6. View Timed Simulation

	2.5. TLM Performance Estimation
	2.5.1. View Performance Estimates
	2.5.2. PE, Process and Function Level Estimates
	2.5.3. View Communication Estimates
	2.5.4. Bus and Channel Level Estimates

	Chapter 3. Heterogeneous System Design with ESE
	3.1. ESE Startup and Settings
	3.1.1. Environment Setup
	3.1.2. ESE Demonstration Setup
	3.1.3. Launching ESE
	3.1.4. ESE GUI
	3.1.5. Editing Database Preferences
	3.1.6. Select Database File

	3.2. Platform Creation
	3.2.1. Open Partial Design
	3.2.2. View Partial Design
	3.2.3. Add Processing Element
	3.2.4. View PE Properties
	3.2.5. Assign New Name to PE
	3.2.6. Add Port to PE
	3.2.7. Connect PE to Bus

	3.3. Mapping Application to Platform
	3.3.1. Add Application Process
	3.3.2. Assign Name to New Process
	3.3.3. Add C Source File
	3.3.4. Select C Source File
	3.3.5. Add Process Ports
	3.3.6. View Application Channels
	3.3.7. Add New Application Channel
	3.3.8. Channel Wizard
	3.3.9. View New Channel Communication

	3.4. Generating Functional and Timed TLMs
	3.4.1. Generate Functional TLM
	3.4.2. Simulate Functional TLM
	3.4.3. View Functional Simulation Results
	3.4.4. Generate Timed TLM
	3.4.5. Simulate Timed TLM
	3.4.6. View Timed Simulation

	3.5. TLM Performance Estimation
	3.5.1. View Performance Estimates
	3.5.2. PE, Process and Function Level Estimates
	3.5.3. View Communication Estimates
	3.5.4. Bus and Channel Level Estimates

	Chapter 4. Multithreaded System Design with ESE
	4.1. ESE Startup and Settings
	4.1.1. Environment Setup
	4.1.2. ESE Demonstration Setup
	4.1.3. Launching ESE
	4.1.4. ESE GUI
	4.1.5. Editing Database Preferences
	4.1.6. Select Database File

	4.2. Platform Creation
	4.2.1. Open Partial Design
	4.2.2. View Partial Design
	4.2.3. Add Processing Element
	4.2.4. View PE Properties
	4.2.5. Assign New Name to PE
	4.2.6. Add Port to PE
	4.2.7. Connect PE to Bus

	4.3. Mapping Application to Platform
	4.3.1. Add Application Process
	4.3.2. Assign Name to New Process
	4.3.3. Add C Source File
	4.3.4. Select C Source File
	4.3.5. Add Process Ports
	4.3.6. View Application Channels
	4.3.7. Add New Application Channel
	4.3.8. Channel Wizard for InterProcess Communication
	4.3.9. Channel Wizard for IntraProcess Communication
	4.3.10. View New Channel Communication
	4.3.11. Add RTOS

	4.4. Generating Functional and Timed TLMs
	4.4.1. Generate Functional TLM
	4.4.2. Simulate Functional TLM
	4.4.3. View Functional Simulation Results
	4.4.4. Generate Timed TLM
	4.4.5. Simulate Timed TLM
	4.4.6. View Timed Simulation

	4.5. TLM Performance Estimation
	4.5.1. View Performance Estimates
	4.5.2. PE, Process and Function Level Estimates
	4.5.3. View Communication Estimates
	4.5.4. Bus and Channel Level Estimates

	Chapter 5. Conclusion
	References

