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Abstract

IEEE SystemC is widely used in industry and academia to specify and simulate Electronic System Level (ESL)
models. Despite the wide availability of multi-core processor hosts, however, the reference SystemC simulator is
still based on sequential Discrete Event Simulation (DES) and executes only a single thread at any time.

In recent years parallel SystemC simulators were proposed which run multiple threads in parallel based on
synchronous Parallel Discrete Event Simulation (PDES) semantics. Synchronous PDES, however, limits parallel
execution to threads that run at the same time and delta cycle. Also, most approaches require manual preparation
of the SystemC model and rely on the designer to perform difficult conflict analysis.

In this report, we describe the advanced Recoding Infrastructure for SystemC (RISC) approach where a
dedicated SystemC compiler and advanced parallel simulator implement Out-of-Order Parallel Discrete Event
Simulation (OoO PDES) for SystemC. Using automatic conflictanalysis based on Segment Graph (SG) abstrac-
tion, OoO PDES can execute threads safely in parallel and out-of-order (ahead of time) and thus achieves fastest
simulation speed, but nevertheless maintains the classic SystemC modeling semantics.

This report describes the RISC Compiler and Simulator and details the SystemC subset supported by the
RISC Release V0.5.0, as of September 30, 2018. In comparisonto the previous V0.4.0 release in 2017, RISC is
more efficient and robust, and supports Partial Segment Graphs and new SystemC model visualization.
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Abstract

IEEE SystemC is widely used in industry and academia to specify and simulate Electronic System Level (ESL)
models. Despite the wide availability of multi-core processor hosts, however, the reference SystemC simulator is
still based on sequential Discrete Event Simulation (DES) and executes only a single thread at any time.

In recent years parallel SystemC simulators were proposed which runmultiple threads in parallel based on
synchronous Parallel Discrete Event Simulation (PDES) semantics. Synchronous PDES, however, limits parallel
execution to threads that run at the same time and delta cycle. Also, most approaches require manual preparation
of the SystemC model and rely on the designer to perform difficult conflictanalysis.

In this report, we describe the advanced Recoding Infrastructure for SystemC (RISC) approach where a dedi-
cated SystemC compiler and advanced parallel simulator implement Out-of-Order Parallel Discrete Event Sim-
ulation (OoO PDES) for SystemC. Using automatic conflict analysis based onSegment Graph (SG) abstraction,
OoO PDES can execute threads safely in parallel and out-of-order (ahead of time) and thus achieves fastest
simulation speed, but nevertheless maintains the classic SystemC modeling semantics.

This report describes the RISC Compiler and Simulator and details the SystemC subset supported by the RISC
Release V0.5.0, as of September 30, 2018. In comparison to the previous V0.4.0 release in 2017, RISC is more
efficient and robust, and supports Partial Segment Graphs and new SystemC model visualization.

1 Introduction

As an IEEE standard [1], the SystemC System Level Description Language (SLDL) is widely used for the spec-
ification, modeling, validation and evaluation of Electronic System Level (ESL) models. Under the Accellera
Systems Initiative [2], the SystemC Language Working Group [3] maintains not only the official SystemC lan-
guage definition, but also provides an open source proof-of-concept library [4] that can be used to simulate
SystemC design models. However, implementing the classic scheme of Discrete Event Simulation (DES), this
reference simulator runs sequentially and cannot utilize the parallel computing resources available on multi-core
(or many-core) processor hosts. This severely limits the execution speedof SystemC simulation.

In order to provide faster simulation, Parallel Discrete Event Simulation (PDES) [5] has recently gained again
significant attraction (examples include [6], [7], [8], [9], [10], and [11]). The PDES approach issues multiple
threads (i.e.SC METHOD, SC THREAD andSC CTHREAD) concurrently and runs them on the available proces-
sor cores in parallel. In turn, the simulation speed increases significantly.
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Regular PDES is synchronous, however. That is, time advances globallyand all threads execute in lock-step
fashion. Here, the total order of time imposed by synchronous PDES still limits the opportunities for parallel ex-
ecution. When a thread completes its evaluation phase, it has to wait until all other threads finish their evaluation
phases as well. Earlier completed threads must stop at the simulation cycle barrier and available processor cores
are left idle until all runable threads reach the cycle barrier.

In order to overcome this problem, we have developed a novel technique called Out-of-Order Parallel Discrete
Event Simulation (OoO PDES) [12, 13, 14, 15]. By localizing the simulation time to individual threads and
carefully handling events at different times, the simulation kernel can issuethreads in parallel and ahead of time,
following a partial order of time without loss of accuracy. Thus, Ooo PDESsignificantly reduces the idle time
of available parallel processor cores and results in maximum simulation speed, while maintaining the traditional
language and modeling semantics.

The OoO PDES technique was originally implemented based on the SpecC language [16, 17, 18, 19]. In this
report, we document our efforts to apply OoO PDES to the IEEE SystemC SLDL [20, 21, 1] which is both the
de-facto and official standard for ESL design today. In particular, wedescribe our Recoding Infrastructure for
SystemC (RISC) [22] which consists of a dedicated SystemC compiler and corresponding out-of-order parallel
simulator and implements OoO PDES with prediction for SystemC [23].

The remainder of this report is organized as follows: After a brief description of the simulator scheduling
algorithms used for DES, PDES and OoO PDES in Section 2, we describe the RISC Compiler and Simulator
proof-of-concept prototype in Section 3. In Section 4, we then list in detail the SystemC subset that is supported
by the current RISC Release V0.5.0 (2018-09-30)1 and finally conclude this report in Section 6.

2 Out-of-Order Parallel Simulation

In this section, we briefly outline the scheduling algorithm used in out-of-order parallel simulation. We do
this incrementally, starting from the traditional Discrete Event Simulation (DES) scheduler, then describe the
synchronous Parallel DES (PDES) extension, and finally define the Out-of-Order PDES (OoO PDES) scheduling
algorithm.

2.1 Notations

To formally describe the discrete event scheduling algorithms, the following notations are introduced.

1. Each SystemC thread (SC METHOD, SC THREAD andSC CTHREAD) is assigned a localized time stamp
(tth, δth).

2. Each event (sc event) is assigned a notification time stamp (te, δe), whereEVENTS= ∪EVENTSt,δ.

3. Threads are grouped into different queues. Specifically,

(a) QUEUES= {READY, RUN, WAIT, WAITTIME}.

(b) READY= ∪tht,δ where Threadth is ready to run at time (t,δ).

(c) RUN = ∪tht,δ where Threadth is running at time (t,δ).

(d) WAIT = ∪tht,δ where Threadth is waiting since time (t,δ).

(e) WAITTIME= ∪tht,0 where Threadth is waiting for simulation time advance to (t,0).

1 Earlier versions of this technical report document the prior alpha release in 2015 [24], the beta release in 2016 [25], and release
v0.4.0 in 2017 [26].
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Figure 1: Traditional Discrete Event Simulation (DES) scheduler for SystemC.

2.2 Discrete Event Scheduler

The Accellera reference simulation library of SystemC [4] is based on DES.Figure 1 depicts such a traditional
DES scheduling algorithm. In DES, a single thread is running at all times. Whenall threads in theREADYand
RUNqueues complete their current delta cycle, the root thread resumes and performs the update and notification
phase. Then threads are woken up and moved from theWAIT queue back into theREADYqueue. A new delta
cycle begins.

If no threads are ready after the update and notification phase, the current time cycle finishes. The simulation
kernel advances the simulation time and processes the earliest timed event from theWAITTIMEqueue. A new
cycle begins for the updated simulated time.

Finally, when both theWAITTIMEandREADYqueues are empty, the simulation terminates.

2.3 Parallel Discrete Event Scheduler

In comparison to DES, regular synchronous PDES issues multiple threads (SC METHOD, SC THREAD and
SC CTHREAD) concurrently in a delta cycle. These threads can then execute truly in parallel on the multiple
available processor cores of the host.

Figure 2 shows the regular synchronous PDES scheduling algorithm. In the evaluation phase, as long as the
READYqueue is not empty and an idle core is available, the PDES scheduler will issuea new thread from the
READYqueue. If a thread finishes earlier than other threads in the same cycle, a new ready thread is assigned to
the idle processor core, unless there is no thread available in theREADYqueue, in which case the core is kept
idle until the next delta cycle.

It should be emphasized that synchronous PDES implies an absolute barrier at the end of each delta and time
cycle. All threads need to wait at the barrier until all other runable threads finish their current evaluation phase.
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Figure 2: Synchronous Parallel Discrete Event Simulation (PDES) scheduler for SystemC.

Only then the synchronous PDES scheduler resumes and performs the update and notification phases, and finally
advances to the next delta or time cycle.

For the SystemC language in particular, there is yet another very important aspect to consider when applying
PDES. For semantics-compliant SystemC simulation, complex inter-dependencyanalysis over all variables in
the system model is a prerequisite to parallel simulation [27].

The Standard SystemC Language Reference Manual (LRM) [1] clearlystates that“process instances execute
without interruption”. This requirement is also known as cooperative (or co-routine) multitasking which is
assumed by the SystemC execution semantics. As detailed in [27], the particularproblem of parallel simulation
is specifically addressed in the SystemC LRM [1]:

“An implementation running on a machine that provides hardware support for concurrent processes
may permit two or more processes to run concurrently, provided that the behavior appears identical to
the co-routine semantics defined [...]. In other words, the implementation would be obliged to analyze
any dependencies between processes and constrain their execution to match the co-routine semantics.”

We will describe the required dependency analysis in more detail below (in Section 3.3), as it is also needed
for out-of-order PDES.

2.4 Out-of-Order Parallel Discrete Event Scheduler

In OoO PDES, we break the strict order of time (the synchronous barrier) by localizing time stamps to each
thread. Figure 3 shows the out-of-order parallel DES scheduling algorithm. Since each thread has its own
time stamp, the OoO PDES scheduler relaxes the event and simulation time updates,allowing more threads (at
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different simulation cycles!) to run in parallel and ahead of time. This resultsin a higher degree of parallelism
and thus higher simulation speed.
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Figure 3: Out-of-Order Parallel Discrete Event Simulation (OoO PDES) scheduler for SystemC.

In comparison to the synchronous PDES in Figure 2, Figure 3 moves threads from theWAIT andWAITTIME
queues into theREADYqueueas soon as possible. Also, there is no specific point in the scheduling flow any
more for the classic delta and time cycles. Both delta and time updates are performed locally for each thread,
provided that there are no possible conflicts in the way (theNoCon f licts(th) condition is explained below).

In contrast to Figure 2 which performs requested update methods in primitivechannels in each delta cycle,
Figure 3 does not contain this step any more. Due to the out-of-order scheduling and the eliminated central
scheduling point for delta cycles, it is difficult to determine an efficient andsafe point in the OoO PDES scheduler
when primitive channel update requests can be served. However, it is always possible to safely fall back to
synchronous PDES when primitive channel updates are requested.

Note theNoCon f licts(th) condition shown in Figure 3. As already mentioned above for the synchronous
PDES, detailed dependency analysis is needed to avoid data or event conflicts for any shared variables among the
parallel threads. Only ifNoCon f licts(th) is true, a new thread is issued for parallel execution (moved from the
READYto theRUN queue).

We will be using advanced static compile-time analysis (and optionally dynamic run-time analysis, see Sec-
tion 3.3.2) to identify all such potential conflicts. Based on this information (a simple table look-up is sufficient),
the OoO PDES scheduler can then at run-time quickly decide whether or nota set of threads has any conflicts
with each other.
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3 RISC Compiler and Simulator

To realize the OoO PDES approach for the IEEE SystemC language, we present now our Recoding Infrastructure
for SystemC (RISC) and describe the overall RISC Compiler and Simulator proof-of-concept prototype (Release
V0.5.0 as of 2018-09-30). The RISC software is available as open source and can be downloaded freely from the
following web site [22]:http://www.cecs.uci.edu/∼doemer/risc.html

RISC Compiler Target Compiler

RISC
SystemC
Library

systemc.h

Model.cpp

Segment Graph
Conflict Analysis

Source Code
Instrumentation

Input Model

Out-of-Order
Parallel

Simulation

systemc
_par.h

Model
_par.cpp

C++
Compiler

Instrumented Model Executable
Model

Figure 4: RISC Compiler and Simulator for Out-of-Order PDES of SystemC.

To perform parallel SystemC simulation in maximum compliance with the IEEE standard semantics, we in-
troduce adedicated SystemC compiler. This is in contrast to the traditional SystemC simulation where a regular
SystemC-agnostic C++ compiler includes the SystemC headers and links the input model directly against the
SystemC library.

As shown in Figure 4, our RISC compiler acts as a frontend that processes the input SystemC model and
generates an intermediate model with special instrumentation for OoO PDES. The instrumented parallel model
is then linked against the extended RISC SystemC library by the target compiler(a regular C++ compiler) to
produce the final executable output model. OoO PDES is then performed simply by running the generated
executable model.

From the user perspective, we essentially replace the regular SystemC-agnostic C++ compiler with the
SystemC-aware RISC compiler (which in turn calls the underlying C++ compiler). Otherwise, the overall Sys-
temC validation flow remains the same as before. It is just faster due to the parallel simulation.

For reference, the detailed Linux manual page of the RISC compilerrisc and simulator is included in Ap-
pendix A.1 of this report.

Internally, the RISC compiler performs three major tasks, namely Segment Graph (SG) construction, conflict
analysis, and source code instrumentation.

3.1 Segment Graph

The first task of the RISC compiler is to parse the SystemC input model into an abstract syntax tree (AST) and
then create a SystemC structural representation from the AST which reflects the SystemC module and channel
hierarchy, connectivity, and other SystemC-specific relations, similar to theSystemC-clang representation [28,
29]. For details on this part of the RISC application programming interface (API), please refer to the Doxygen-
generated documentation [30].

On top of this, the RISC compiler then builds aSegment Graph (SG)data structure for the model. A Segment
Graph (SG) [12, 15] is a directed graph that represents the code segments executed during the simulation between
scheduling steps. That is, every segment is associated with a scheduler entry point, i.e. await statement in
SystemC.

At run time, threads switch back and forth between the states ofrunning(threads inREADYandRUNqueues)
andwaiting (threads inWAIT andWAITTIMEqueues). Whenrunning, they execute specific segments of their
code. These code segments make up the nodes in the Segment Graph, whereas edges in the graph indicate the

6
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possible transitions from one segment to another. In other words, the edges in the Segment Graph reflect an
abstraction of the model’s control flow.

For a formal description of the Segment Graph and its construction algorithm,the interested reader may refer
to [15]. For details on the RISC compiler API, please refer to the Doxygen-generated documentation [30].

3.2 Partial Segment Graph

The segment graph is the foundation data structure for the static analysis. However, there are restrictions: the
entire source code for the input design must be available in one file, which does not scale. This disables the use
of Intellectual Property (IP) and hierarchical file structures.

To solve this problem, we have proposed and implemented a Partial Segment Graph (PSG) as the representation
of the behavior model for each separate translation unit or IP. By combining PSGs, our tool is able to reconstruct
the complete SG for the input model.

The extended tool flow is shown in Figure 5.

Figure 5: Scaled RISC tool flow with Partial Segment Graph technology.

A PSG is recursively built by traversing the AST of the current translationunit. The main difference between
PSG and SG is that PSG is built based on an incomplete AST, where definitions of function calls may be unknown.

To deal with this uncertainty incurred by the non-defining function calls, weintroduce three types of PSG
nodes, which facilitate the integration of PSGs. They areSegment Node, Partial Segment Nodeand Partial
Function Call Node.

The PSG is constructed by the IP provider. It is stored as a PSG file and is compatible with the Dot format
so that the PSG can easily be visualized. The PSG file is shipped together with the IP files to the user. On the
user’s side, the RISC compiler is able to load and parse the PSG files. Then,the loaded PSGs are integrated to
form a complete SG. During integration,Partial Function Call Nodes are replaced by the corresponding PSGs of
the functions.Partial Segment Nodes are merged intoSegment Nodes. After the integration, the graph becomes
a valid and complete SG.

7



An IP provider can also inspect and redact the automatically generated PSG files so that the implementation
details remain hidden. This way the IP users will not be able to obtain the inner implementation and the IP
remains protected, while the correctness of behavior model of the design isstill maintained.

3.3 Conflict Analysis

The Segment Graph data structure serves as the foundation for segmentconflict analysis. As outlined earlier, the
OoO PDES scheduler must ensure that every parallel thread to be issuedhas no conflicts with any other threads
currently in theREADYandRUN queues. Here, we utilize the RISC compiler to detect any possible conflicts
between these threads already at compile time.

Potential conflicts in SystemC include data hazards, event hazards, and timing hazards, all of which may exist
among the segments executed by the threads considered for parallel execution. Please refer to [15] for a detailed
discussion of these hazards which, if ignored, would become dangerous race conditions at run time.

Both possible hazard detection approaches, namelystatic analysis at compile time anddynamicanalysis at
run time, are supported by the RISC Compiler and Simulator. It should be emphasized that the accuracy of this
analysis has significantly improved with the Release V0.5.0. As outlined in detail in[31], the RISC compiler
now supports Port Call Path (PCP) sensitive conflict analysis which makes it aware of the actual channel instances
used by threads from different modules. This much more precise analysiscan avoid false positive conflicts in
many cases and thus increases the efficiency of the simulation which, in turn,runs faster.

3.3.1 Static Analysis

Static analysis relies purely on the available information in the SystemC source code of the design model at
hand. In this case, the RISC compiler carefully performs conservative identification of the potential hazards in
the model.

Identifying all possible hazards is a complex analysis task that requires thefull ”understanding” of the module
hierarchy. One option is to statically extract the module hierarchy and analyze the individual threads. Here, the
RISC compiler follows the approach outlined in [15].

In many cases, however, not all of the needed information can be gathered statically. For instance, design
parameters may be passed via the command line, for example, to define the number of modules, certain channel
characteristics, or other configuration information. In such SystemC modelswith a dynamic elaboration phase,
the instantiated modules, channels, and ports are typically created by use ofloops andnew operators in a dynamic
fashion. Thus, the structural parameters of the model are only available at run time, so they cannot be statically
analyzed. In these cases, dynamic analysis is needed.

3.3.2 Dynamic Analysis

Dynamic analysis takes run-time information into account and then augments the classic static analysis. The
combination of static and dynamic analysis is here calledhybrid analysis[32].

Figure 6 shows the extended RISC design flow with support of dynamic analysis. As in the regular compilation
flow discussed above in Figure 4, the input SystemC model is processed bythe RISC Compiler to generate an
executable model for out-of-order parallel simulation, as shown on the tophalf of Figure 6 from left to right.

The dynamic analysis step, shown on the bottom half of Figure 6, extends thecompilation flow by a prepro-
cessing step. The input SystemC model is fed into the RISC Elaboratorelab which produces an executable
model that only performs the SystemC elaboration phase when run. At the end of the elaboration, the ex-
ecutable model automatically traverses the created module hierarchy via the SystemC introspection API and
dumps this detailed structural design information, shown as Instance Connectivity Data in Figure 6, into a file
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Figure 6: RISC Elaborator feeds dynamic elaboration information to RISC Compiler for precise conflict analysis.

(model name.elab). This file is in turn provided as an input to the RISC compiler, so that the dynamically
created design hierarchy and specific instance connectivity can be used for precise conflict analysis. The in-
stance connectivity data file includes the actual module hierarchy, the specific port mapping, and the actual target
variable mapping of references.

Note that the use of the RISC Elaborator is optional. Design models, that can be fully analyzed in static
fashion, can be fed directly into the RISC Compiler without any pre-processing by the RISC Elaborator.

For reference, the detailed Linux manual pages of the RISC Compilerrisc and RISC Elaboratorelab are
included in Appendix A.1 and Appendix A.2, respectively.

3.4 Source Code Instrumentation

As a result of the conflict analysis (static, dynamic, or hybrid [32]), the RISC compiler generates several conflict
tables that describe all possible conflicts between threads in any two segments. Using this conservative conflict
information, the simulator can then at run-time quickly determine by a simple table look-up whether or not it is
safe to issue any given thread in parallel or ahead of time.

As shown above in Figure 4, the RISC compiler and simulator work closely together. The compiler performs
conservative conflict analysis and passes the analysis results to the simulator which then can make safe scheduling
decisions quickly.

To pass information from the compiler to the simulator, we use automatic model instrumentation. That is,
the intermediate model generated by the compiler contains instrumented (automatically generated) source code
which the simulator can then rely on. At the same time, the RISC compiler also instruments user-defined SystemC
channels with automatic protection against race conditions among communicating threads.

In total, the RISC source code instrumentation includes four major components:

1. Segment and instance IDs: Individual threads are uniquely identifiedby a creator instance ID and their
current code location (segment ID). Both IDs are passed into the simulatorkernel as additional arguments
to scheduler entry functions, includingwait and thread creation.

2. Data and event conflict tables: Segment concurrency hazards dueto potential data conflicts, event conflicts,
or timing conflicts are provided to the simulator as two-dimensional tables indexedby a segment ID and
instance ID pair. For efficiency, these table entries are filtered for scope, instance path, and reference and
port mappings.

3. Current and next time advance tables, and thread state prediction tables: The simulator can make bet-
ter scheduling decisions by looking ahead in time if it can predict the possible future thread states. This
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optimization is discussed in detail in [14] and is available in the RISC Compiler and Simulator in ver-
sions 0.4.0 and later. Since thread state prediction for most models requires only little additional compile
time but results often in higher simulation speed, it is enabled by default (it canbe turned off with the
SYSC DISABLE PREDICTION environment variable, see below).

4. User-defined channel protection: SystemC allows the user to design channels for custom inter-thread com-
munication. To ensure such communication is safe also in the OoO PDES situation where threads execute
truly in parallel, the RISC compiler automatically inserts locks (binary semaphores) into these channels so
that mutually-exclusive execution of the channel methods is guaranteed. Otherwise, race conditions could
exist when communicating threads exchange data.

Note that the source code instrumentation is performed automatically by the RISCCompiler and no user-
interaction is necessary. However, the interested user may inspect the instrumented source code. It is stored in a
file namedrisc model name.cpp which serves as the input file to the compiler backend which in turn then
generates the final executable.

3.5 Library Support

In absense of PSG support (Section 3.2), there exists a significant limitationfor the described conflict analysis
and source code instrumentation. It only works if the compiler has access tothe entire source code of the design
model. This is typically fine for smaller SystemC benchmark examples, but does not hold true for more complex
SystemC models where multiple translation units and/or library files are used. In these cases, the compiler has
access only to the function signatures (function declarations in header files), but not to their implementation
(function bodies which are pre-compiled in the library or object files). Thus, the compiler cannot analyze the
function bodies for potential conflicts, neither can it instrument any segment boundaries (i.e.wait calls) in the
library code with segment and instance IDs.

In its initial alpha version [24], the RISC Compiler and Simulator operated under the assumption that all library
code is thread-safe without any conflicts and does not contain any segment boundaries (nowait statements).
This is reasonable for the standard C/C++ libraries used in a modern Linux environment, as well as for the
specially prepared RISC SystemC simulator library. However, this assumptionposes a significant limitation for
more complex SystemC models built around custom application libraries.

In order to mitigate this limitation, the beta version [25] and the RISC Compiler and Simulator version 0.4.0
offered basic support for library code by use offunction annotations. This annotation scheme for library functions
provides abstract information for both conflict analysis and segment boundaries [32].

Specifically, the user can annotate function declarations withpragma statements which specify whether or
not the function poses any potential conflicts. Thepragma statements can also describe basic situations ofwait
calls that the control flow in the function body contains. For example, the standard math functionsqrt and the
blockingread function of the SystemCsc fifo channel can be annotated as follows:

// standard math square-root function
#pragma RISC sqrt conflict-free no-wait
double sqrt(double x);

// sc_fifo blocking read function
#pragma RISC read conflict-free looped-wait event
virtual T read();
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Here, thesqrt function is declaredconflict-free because it is thread-safe and has no dangerous side
effects. Since this is true for many functions (e.g. most functions in the C standard library), the RISC Compiler
assumes this by default. Thus, thispragma statement is not explicitly needed.

Thesc fifo::read function is also declaredconflict-free because it operates in a standard SystemC
channel that is safely protected by a lock in the RISC simulator library. However, this blockingsc fifo::read
function is annotated aslooped-wait because it does contain await statement in the body of a loop that is
waiting for available data, which is indicated by someevent. Thus, the RISC Compiler can take this segment
boundary into account when building the Segment Graph for a thread thatcalls this function.

In general, a function is consideredconflict-free if the corresponding function body contains no poten-
tial read/write access conflicts to any shared state with the other threads in thesimulation model. Otherwise, it
must be annotated asnot-conflict-free.
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Figure 7: Control-flow abstractions forwait in library functions.

For the annotation of segment boundaries contained in library functions, Figure 7 shows the different control-
flow abstractions with regards towait function calls in the corresponding function body. In the first case,
no wait, the function contains nowait statement and thus is a non-blocking function during the SystemC
simulation. The next two cases,conditional wait andunconditional wait, apply to functions with
a conditional or non-conditionalwait statement, respectively. The last case covers the possible encounter ofa
wait statement in a loop, such as the blockingread call to asc fifo channel discussed above.

The last parameter in the RISCpragma annotation specifies the type of thewait statement in the function
body, eitherevent for waiting for any notified event, or the minimum time increment that the simulator will
incur when executing the corresponding function, such assc-zero-time or (42,SC MS).
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Figure 8: Different source code domains of a design model.

Figure 8 [32] illustrates the different domains of source code in a SystemC model where only the code in the
user domain is available for the instrumentation described above in Section 3.4.For library code, any contained
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wait() calls cannot be instrumented. Here, the RISC Compiler and Simulator (version0.4.0 and above) in-
struments the code before such library function calls withsetID(SegID) functions that store the upcoming
segment IDs for thewait statements in the library in thread-local data. Then, whenwait statements without
explicit segment ID arguments are executed in the library, the segment IDs are obtained from the thread-local
data by use of agetID() function in the RISC simulation library.

Note that with the latest RISC Compiler and Simulator Release V0.5.0 the library support described in this
section is still available (for backward compatibility reasons). However, thePartial Segment Graph (PSG) tech-
nology described in Section 3.2 offers an alternative solution that is much more general. In particular, the PSG
technology resolves two prior limitations. First, the annotations shown in Figure7 only cover the cases of zero or
onewait statement in a library function. Multiplewait statements were not covered. Thus, PSG technology
was designed in order to cover general control-flow inside of library functions which are now represented by their
own partial segment graphs. Second, PSG technology supports multiple separate translation units by building
and storing PSG files together with generated object files that then can be integrated again into a complete SG
when the final simulation executable is being built.

3.6 Support for Data-Level Parallelism

As of version 0.4.0, the RISC Compiler and Simulator comes with support for exploiting data-level parallelism,
also known as Single-Instruction-Multiple-Data (SIMD) vectorization [33]. Here, an advanced analysis tool,
namely the SIMD Advisorsimd (see Appendix A.3), can identify possible locations in the SystemC model’s
source code where data-level parallelism may be exploited for faster simulation (on top of the thread-level paral-
lelism already exploited due to OoO PDES).

The SIMD Advisor adds a pre-analysis step to the RISC Compiler and Simulatortool flow wheresimd pro-
vides the designer with candidates for loop vectorization. Specifically,simd performs advanced thread control-
flow and variable access analysis and then reports to the user the sourcecode line numbers where loops qualified
for SIMD vectorization are found. The user confirms suitable locations byinserting#pragma simd statements
in front of the chosen loops. Finally, the design model is then compiled with the Intel compilericpc which per-
forms the vectorization and builds the executable for simulation with both thread-and data-level parallelism.

Note that the manual confirmation by the designer is necessary. An example isthe following C function:

void add(float *a, float *b, float *c, int n)
{

for(int i=0; i<n; i++)
{ a[i] = a[i] + b[i] + c[i];}

}

Here, arrays passed as pointers can only be vectorized if the user asserts that there is no vector dependence in the
way. This confirmation step is only possible with application knowledge, not just by static compiler analysis. The
RISC SIMD Advisor is aware of SystemC and its concurrent multi-threading semantics, and thus can identify
certain loops as potential candidates, but the final data independence assertion must come from the user who
knows the application specifics (i.e. that the pointers point to non-overlapping arrays).

Exploiting both thread- and data-level parallelism can be very effective for many design models. Experimental
results in [33] show a nearly linear speedup ofN×M, whereN andM denote the thread and data-level factors,
respectively.

The SIMD Advisor is documented in detail in the manual page forsimd listed in Appendix A.3.
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3.7 Compiler Backend

After the automatic source code instrumentation, the RISC compiler passes the generated intermediate model in
file risc model name.cpp to the underlying regular C++ compiler. That target compiler then producesthe
final simulation executable by linking the instrumented code against the RISC extended SystemC library.

By default, the RISC Compiler and Simulator rely on the GNU C++ compilerg++ for the backend code
generation. Alternatively, the Intel C++ compilericpc may be used to generate a simulation executable that
is optimized for Intel processors with Single-Instruction-Multiple-Data (SIMD) capabilities or the Intel Many-
Integrated-Core (MIC) architecture. Please refer to the command-line options-risc:icpc and-risc:mic,
respectively, which are documented in the manual pages forrisc (see Appendix A.1) andelab (see Ap-
pendix A.2).

3.8 Simulator

Same as the classic Accellera proof-of-concept implementation [4], the RISC simulator is not an explicit tool,
but a run-time library [34] that the generated executable SystemC model is linked against. Thus, simulation is
performed by execution of the compiled model, the same way as in the classic toolflow (just faster).

The RISC simulator identifies itself by its log message at the beginning of the simulation run, announcing
RISC 0.5.0 execution after the SystemC language version number (SystemC 2.3.1). It also adds the
Center for Embedded and Cyber-physical Systems (CECS) as a contributor to the RISC-extended SystemC li-
brary.

A simpleHelloWorldmodel is shown running in the following example:

sh % ./HelloWorld

SystemC 2.3.1-RISC 0.5.0 --- Sep 30 2018 09:04:24
Copyright (c) 1996-2018 by CECS and all Contributors,
ALL RIGHTS RESERVED

Hello World!

There are several environment variables which the RISC out-of-order parallel SystemC library recognizes.
These are logged at the beginning of the simulation ifSYSC PRINT MODE MESSAGE is defined.

*** RISC simulator mode: out-of-order parallel with prediction ***
*** SYSC_PRINT_MODE_MESSAGE is defined ***
*** SYSC_SYNC_PAR_SIM is not defined ***
*** SYSC_PRINT_VERBOSE_MESSAGE is not defined ***
*** SYSC_DISABLE_PREDICTION is not defined ***
*** SYSC_PAR_SIM_CPUS is 64 ***

The environment variableSYSC SYNC PAR SIM can be used to force the default out-of-order parallel sched-
uler to fall-back to synchronous parallel execution. By default (when undefined),SYSC SYNC PAR SIM is
assumed to befalse, so out-of-order parallel simulation (OoO PDES) with prediction is performed. On the
other hand, ifSYSC SYNC PAR SIM is defined, the simulator will execute in synchronous PDES fashion.

Also, as indicated above in Section 2.4, the RISC simulator automatically falls backto synchronous execution
as soon as primitive SystemC channels are used with requests to update functions. Thus, such models will execute
in safe synchronous manner.
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The variableSYSC PRINT VERBOSE MESSAGE is used by the RISC simulator at run-time to print debugging
information about the simulator queues, event processing, and time advances. Such debugging lines are only
printed whenSYSC PRINT VERBOSE MESSAGE is defined.

The variableSYSC DISABLE PREDICTION is used by the RISC simulator to switch back to non-predictive
conflict detection. This avoids scheduling overhead at run time, but usually results in slower simulation due to
more false conflicts. IfSYSC DISABLE PREDICTION is defined, thread state prediction is not used during
out-of-order scheduling.

The environment variableSYSC PAR SIM CPUS specifies the maximum number of parallel threads al-
lowed in out-of-order parallel simulation (namely#CPUs in Figure 3). For efficient simulation, this variable
should be set to a value suitable for the simulation host, e.g. the number of available CPU cores. If unset,
SYSC PAR SIM CPUS defaults to 64.

4 Out-of-Order Parallel Simulatable SystemC Subset

Over more than a decade, the SystemC language [21], which technically is a C++ application programming
interface (API) with a corresponding simulation library, has evolved frombasic constructs for modeling parallel
modules connected by signals and channels to a highly complex set of macros, types, classes, templates, and
functions for very advanced modeling (i.e. Transaction Level Modeling (TLM) [35, 36]) and highly optimized
simulation of SystemC models. Usually these optimization steps have aimed at higher simulation speed, i.e. by
minimizing context switches in the simulator, or at higher levels of abstraction dueto purposely relaxed timing.
Often, the uninterrupted (sequential) execution semantics on a single processor host have been presumed or are
explicitly required.

Along these lines, it has been recognized that there is considerable needto study and adjust orevolvethe Sys-
temC language towards better support of parallel execution (following someform of suitable PDES semantics).
One example of the ongoing discussion within the SystemC community is a presentation at the SystemC Evo-
lution Day 2016 where significant obstacles in the current language standard have been identified [37]. These
seven obstacleshave then been documented also in a letter to the editor of IEEE Embedded System Letters [38].

The RISC Compiler and Simulator aims for advanced parallel execution on multi- and many-core hosts, max-
imizing the compliance with the current SystemC standard [1]. Changing some assumptions about SystemC
simulator execution consequently affects a number of SystemC constructs and APIs which need to be revisited
and evaluated anew. The goal of this section is to document this process and status, and enable fruitful discus-
sions.

Below, we describe and list the out-of-order parallel simulatable SystemC subset supported by the current
RISC Compiler and Simulator, Release V0.5.0. In particular, Table 1 through Table 8 list for each SystemC
construct whether or not it is supported at this time. If applicable, an explanation note is provided that briefly
outlines the status and/or the plans for the given feature.

Overall, the current RISC proof-of-concept prototype supports theclassic SystemC constructs for hierarchical
modeling with modules and interconnected channels by featuring fast multi-threaded execution. However, sev-
eral specific SystemC features are not supported yet or left undecided at this stage. The status “undecided” in
particular indicates that further study is needed to decide whether or not the given construct can be supported in
efficient and reasonable manner by RISC and its OoO PDES approach.

4.1 SystemC Hierarchical Structure of Modules and Channels

RISC supports the regular hierarchical and structural composition of theSystemC design model. This includes
the SystemC program start (sc main, sc start) and the general static or dynamic composition (SC CTOR)
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Table 1: RISC V0.5.0 Out-of-Order Parallel Simulatable SystemC Subset

Name Type Supported or not Notes

sc abs function Undecided
This function may not work with

some arithmetic SystemC datatypes.
sc actions typedef Supported typedef unsigned scactions

sc argc function Supported
sc argv function Supported

sc assemblevector function Undecided Work on this function in the future
sc assert macro Undecided Work on this macro in the future

sc attr base class Undecided Work on this class in the future
sc attr cltn class Undecided Work on this class in the future
sc attribute class Undecided Work on this class in the future
sc behavior typedef Supported typedef scmodule scbehavior

sc bigint class template Supported
sc biguint class template Supported

sc bind proxy class Undecided
sc bind macro Undecided Work on this macro in the future
sc bit type (deprecated) Undecided Work on this type in the future

sc bitref r class template Undecided Work on this class template in the future
sc bitref class template Undecided Work on this class template in the future
sc buffer class Undecided

sc bv base class Undecided Work on this class in the future
sc bv class template Undecided Work on this class template in the future

sc channel class Supported

sc clock class Not Supported Yet
sc clock::beforeendof elaboration()

calls scspawn().
sc closevcd tracefile function Initial support as of v0.5.0

sc concatref class Undecided Work on this class in the future
sc concrefr class template Undecided Work on this class template in the future

sc contextbegin enumeration Undecided
sc copyright function Supported

sc cor class Supported
sc cor pkg class Supported

sc cor pthread class Supported
sc cor pkg pthread class Supported

sc createvcd tracefile function Initial support as of v0.5.0
sc cref macro Undecided Work on this macro in the future

sc cthreadprocess class Limited Support Supported up to Internal Representation
SC CTHREAD macro Limited Support Supported up to Internal Representation

SC CTOR macro Supported
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Table 2: RISC V0.5.0 Out-of-Order Parallel Simulatable SystemC Subset (continued)

Name Type Supported or not Notes

sc cycle Not Supported Yet

sc cycle() calls scsimcontext::cycle(),
function which is not supported in

(deprecated) the out-of-order simulation
in the current release.

sc deltacount function Modified semantics
This function returns the local

delta count of the running process.
sc elabandsim function Supported

sc endof simulationinvoked function Undecided Work on this function in the future
sc eventandexpr class Supported Initial support as of v0.5.0
sc eventand list class Supported Initial support as of v0.5.0

sc eventfinder t class template Undecided
Work on this class template

in the future
sc eventfinder class Undecided Work on this class in the future

sc eventor expr class Supported Initial support as of v0.5.0
sc eventor list class Supported Initial support as of v0.5.0

sc eventqueueif class Not Supported Yet

sc eventqueue class Not Supported Yet
The constructor function is not
supported by the out-of-order

simulation in the current release.

sc event class Limited Support
The immediate notification is not

supported by the out-of-order
simulation in the current release.

sc exception typedef Undecided Work on this typedef in the future
sc exportbase class Not Supported Yet No port following in compiler analysis

sc export class Not Supported Yet No port following in compiler analysis
sc fifo blocking in if class Supported

sc fifo in if class Supported
sc fifo in class Supported

sc fifo nonblockingin if class Supported
sc fifo out if class Supported
sc fifo out class Supported

sc fifo class Limited Support
sc fifo::operator= is not supported;

execution falls back to synchronous PDES
sc find event function Undecided Work on this function in the future
sc find object function Undecided Work on this function in the future

sc fix fast class Undecided Work on this class in the future
sc fix class Undecided

sc fixed fast class template Undecided
Work on this class template

in the future
sc fixed class template Undecided
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Table 3: RISC V0.5.0 Out-of-Order Parallel Simulatable SystemC Subset (continued)

Name Type Supported or not Notes
SC FORK macro Undecided Work on this macro in the future

sc fxcast context class Undecided Work on this class in the future
sc fxcast switch class Undecided Work on this class in the future
sc fxnum bitref class Undecided Work on this class in the future

sc fxnum fast bitref class Undecided Work on this class in the future
sc fxnum fast subref class Undecided Work on this class in the future

sc fxnum fast class Undecided Work on this class in the future
sc fxnum subref class Undecided Work on this class in the future

sc fxnum class Undecided
sc fxtype context class Undecided Work on this class in the future
sc fxtype params class Undecided Work on this class in the future

sc fxval fast class Undecided Work on this class in the future
sc fxval class Undecided Work on this class in the future

sc genuniquename function Undecided Work on this function in the future
sc genericbase class Undecided Work on this class in the future

sc get curr processhandle
function

Supported
(deprecated)

sc get currentprocesshandle function Supported

sc get default time unit
function

Supported
(deprecated)

sc get status function Supported
sc get stopmode function Supported

sc get time resolution function Supported
sc get top level events function Undecided Work on this function in the future
sc get top level objects function Undecided Work on this function in the future

SC HAS PROCESS macro Supported
sc hierarchicalnameexists function Undecided Work on this function in the future

sc in clk typedef Undecided
sc in resolved class Undecided

sc in rv class Undecided
sc in class Supported

sc in<bool> class Supported
sc in<sc dt::sc logic> class Supported
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Table 4: RISC V0.5.0 Out-of-Order Parallel Simulatable SystemC Subset (continued)

Name Type Supported or not Notes

sc initialize
function

Supported
(deprecated)

sc inout clk type (deprecated) Undecided
sc inout resolved class Undecided

sc inout rv class Undecided
sc inout class Supported

sc int base class Supported
sc int bitref r class Undecided Work on this class in the future
sc int bitref class Undecided Work on this class in the future

sc int class template Supported
sc interface class Supported

sc interrupthere function Undecided Work on this function in the future
sc is prerelease function Undecided Work on this function in the future

SC IS PRERELEASE macro Supported
sc is running function Supported

sc is unwinding function Supported
SC JOIN macro Undecided Work on this macro in the future

sc lengthcontext class Undecided Work on this class in the future
sc lengthparam class Undecided Work on this class in the future

sc logic class Undecided Work on this class in the future
sc lv base class Undecided Work on this class in the future

sc lv class template Undecided Work on this class template in the future
sc main function Supported

sc max time function Not Supported Now
This function is not supported by

the out-of-order simulation
in the current release.

sc max function Supported
sc methodprocess class Limited Support Supported up to Internal Representation

SC METHOD macro Limited Support Supported up to Internal Representation
sc min function Supported

sc modulename class Supported
sc module class Supported

SC MODULE macro Supported

sc mutex if class Not Supported Now
This class is not supported

by the risc compiler
in the current release.

sc mutex class Not Supported Now
This class is not supported

by the risc compiler
in the current release.

sc object class Supported
sc out clk type (deprecated) Undecided
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Table 5: RISC V0.5.0 Out-of-Order Parallel Simulatable SystemC Subset (continued)

Name Type Supported or not Notes
sc out resolved class Undecided

sc out rv class Undecided
sc out class Supported

sc pause function Undecided Work on this function in the future
sc pendingactivity at currenttime function Limited Support Supported when called inside scmain()
sc pendingactivity at future time function Limited Support Supported when called inside scmain()

sc pendingactivity function Limited Support Supported when called inside scmain()
sc phash class (deprecated) Undecided Work on this class in the future
sc plist class (deprecated) Undecided Work on this class in the future
sc port class Supported

sc port base class Supported
sc ppq class (deprecated) Undecided Work on this class in the future

sc prim channel class Supported
sc prim channel::update()

is performed in synchronous manner;
execution falls back to synchronous PDES

sc processb type (deprecated) Supported
sc processhandle class Supported

sc pvector class (deprecated) Undecided Work on this class in the future
sc ref macro Undecided Work on this macro in the future

sc release function Supported
sc reporthandlerproc typedef Undecided Work on this typedef in the future

sc reporthandler class Undecided Work on this class in the future
sc report class Undecided Work on this class in the future

sc semaphoreif class Not Supported Yet
This class is not supported

by the risc compiler
in the current release.

sc semaphore class Not Supported Yet
This class is not supported

by the risc compiler
in the current release.

sc sensitiveneg class (deprecated)Not Supported Yet
This class is not supported

by the risc compiler
in the current release.

sc sensitivepos class (deprecated)Not Supported Yet
This class is not supported

by the risc compiler
in the current release.

sc sensitive class Supported Initial support as of v0.5.0

sc setdefault time unit
function

Supported
(deprecated)

sc set stopmode function Undecided Work on this function in the future
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Table 6: RISC V0.5.0 Out-of-Order Parallel Simulatable SystemC Subset (continued)

Name Type Supported or not Notes
sc set time resolution function Supported

sc set vcd time unit
member function

Supported Initial support as of v0.5.0
(deprecated)

sc signal in if class Limited Support Supported up to Internal Representation
sc signal in if<bool> class Limited Support Supported up to Internal Representation

sc signal in if<sc logic> class Limited Support Supported up to Internal Representation
sc signal inout if class Limited Support Supported up to Internal Representation
sc signalout if type (deprecated) Limited Support Supported up to Internal Representation

sc signal resolved class Limited Support Supported up to Internal Representation
sc signal rv class Limited Support Supported up to Internal Representation

sc signalwrite if class Limited Support Supported up to Internal Representation
sc signal class Limited Support Supported up to Internal Representation

sc signal<bool> class Limited Support Supported up to Internal Representation
sc signal<sc logic> class Limited Support Supported up to Internal Representation

sc signedbitref r class Undecided Work on this class in the future
sc signedbitref class Undecided Work on this class in the future

sc signedsubrefr class Undecided Work on this class in the future
sc signedsubref class Undecided Work on this class in the future

sc signed class Supported

sc simcontext Limited Support

sc simcontext::initialcrunch(), cycle()
class and other functions are partially

(deprecated) supported by the out-of-order
simulation in the current release.

sc simulationtime
function

Supported
(deprecated)

sc spawnoptions class Undecided

sc spawn function Not Supported Now
sc spawn() is not supported

by the out-of-order simulation
in the current release.

sc start of simulationinvoked function Undecided Work on this function in the future
sc start function Supported

sc start(double) function Supported Initial support as of v0.5.0
sc status enumeration Supported
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Table 7: RISC V0.5.0 Out-of-Order Parallel Simulatable SystemC Subset (continued)

Name Type Supported or not Notes
sc stophere function Undecided Work on this function in the future

sc stop function Supported supported as of v0.3.0

sc string
class

Undecided Work on this class in the future
(deprecated)

sc subrefr class template Undecided
Work on this class template

in the future
sc subref class Undecided Work on this class in the future
sc switch enumeration Supported

sc threadprocess class Supported
SC THREAD macro Supported

sc time class Supported
sc time stamp function Supported

sc time to pendingactivity function Limited Support Supported when called inside scmain()

sc tracedeltacycles
function

Undecided Work on this function in the future
(deprecated)

sc tracefile class Supported
Initial support as of v0.5.0;

execution falls back to synchronous PDES

sc trace function Supported
Initial support as of v0.5.0;

execution falls back to synchronous PDES
sc ufix fast class Undecided Work on this class in the future

sc ufix class Supported
sc ufixed fast class template Undecided Work on this class template in the future

sc ufixed class template Supported
sc uint base class Supported

sc uint bitref r class Undecided Work on this class in the future
sc uint bitref class Undecided Work on this class in the future

sc uint subrefr class Undecided Work on this class in the future
sc uint subref class Undecided Work on this class in the future

sc uint class template Supported
sc unsignedbitref r class Undecided Work on this class in the future
sc unsignedbitref class Undecided Work on this class in the future

sc unsignedsubrefr class Undecided Work on this class in the future
sc unsignedsubref class Undecided Work on this class in the future

sc unsigned class Supported
sc unwind exception class Undecided Work on this class in the future

sc valuebase class Undecided Work on this class in the future
sc vectorassembly class Undecided Work on this class in the future

sc vectorbase class Undecided Work on this class in the future
sc vector class Undecided Work on this class in the future
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Table 8: RISC V0.5.0 Out-of-Order Parallel Simulatable SystemC Subset (continued)

Name Type Supported or not Notes
sc versionmajor function Supported
sc versionminor function Supported

sc versionoriginator function Supported
sc versionpatch function Supported

sc versionprerelease function Supported
sc versionreleasedate function Supported

sc versionstring function Supported
sc version function Supported

wait function Supported Full support as of v0.5.0

next trigger function Not Supported Now
This function is not supported

by the risc compiler
in the current release.

halt function Not Supported Now
This function is not supported

by the risc compiler
in the current release.

of modules (sc module, SC MODULE, sc behavior) and channels (sc channel, sc prim channel).
Connectivity and communication of the instantiated components is supported through ports (sc port,sc in,

sc inout, sc out) and interfaces (sc interface).
In contrast to the traditional Accellera library, which only provides a type alias (typedef) sc channel

for sc module, the RISC header files explicitly distinguish channel and module classes. Here, a separate
sc channel class is inherited fromsc module, providing the same functionality, but making the two class
types explicit.

Most of the SystemC predefined primitive channels2 (such assc fifo) are supported for OoO PDES, except
sc fifo::operator= which is not supported yet. For more details, please refer to Tables 1 through 8 and
the Doxygen-generated documentation of the RISC simulation library [34].

4.2 SystemC Threads

The explicit and statically or dynamically [32] analyzable multi-threading of a SystemC design model is naturally
supported in RISC OoO PDES. This includes SystemC processes (SC HAS PROCESS, sc process handle,
sc thread process) and the corresponding threads (SC THREAD). For basic inter-thread synchronization,
SystemC event notifications (sc event.notify) and waiting for events or simulation time advance (wait)
are supported.

However, dynamic SystemC thread creation and deletion (sc spawn, SC FORK, SC JOIN) are not supported
at this time.

While the application programming interface (API) for these constructs remains unmodified from the SystemC
user perspective, the RISC SystemC kernel internally supports extra parameters or arguments for several of
these constructs which are utilized after the automatic source code instrumentation by the RISC compiler (see
Section 3.4 above). In particular, segment and instance identifiers are supplied with each of these function calls so

2 As described in Section 2.4 and Section 3.8, the RISC Compiler and Simulator Release V0.5.0 falls back to synchronous PDES
execution when primitive channels with update requests are used in the design model.
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that the simulator kernel is aware of the exact thread state upon every scheduler entry. This includes in particular
the thread creation constructs (SC THREAD) and wait statements (wait), as well as standard communication
interface methods (e.g.sc fifo in if::read).

4.3 SystemC Transaction Level Modeling (TLM)

While transaction level modeling in general is a natural feature supported by OoO PDES [15], the modeling and
implementation choices made by SystemC TLM 2.0 [36] create significant problemsfor supporting it efficiently
in RISC. The root problem here lies in the elimination of explicit channels, which were a key contribution in the
early days of research on system-level design [16, 17, 18]. As most researchers agreed, the concept of separation
of concerns was of highest importance, and for system-level design in particular, this meant the clear separation
of computation (in behaviors or modules) and communication (in channels).

Regrettably, SystemC TLM 2.0 chose to implement communication interfaces directlyas sockets in modules
[39] and this indifference between channels and modules thus breaks theassumption of communication being
safely encapsulated in channels. Without such encapsulating channels,there is little opportunity for safe parallel
execution.

With TLM-2.0 modeling guidelines, threads intentionally execute code directly in other modules’ boundaries
(i.e. in “foreign territory”) without any protection. Channel boundariesare omitted and trespassing across module
boundaries (via sockets) is encouraged (for the sake of saving context switches in sequential simulation). Such
violation of a thread’s “home territory” cannot be analyzed by the RISC Compiler and Simulator this time.

A possible solution to this problem is the introduction and analysis of so-calledSocket-Call-Pathsin the RISC
thread control-flow analysis which, however, is only at an idea stage at this time and thus requires further study
and research.

While a discussion of this obstacle has started at the SystemC Language Working Group [3, 37] and in the
overall ESL community [38], it remains unclear at this point how the agressive TLM-2.0 modeling situation
can be supported, revised, or worked around. Thus, the RISC Compiler and Simulator V0.5.0 only supports
traditional SystemC TLM, not yet SystemC TLM-2.0.

4.4 SystemC Data Types

A large part of the SystemC language covers special data types designedfor bit-accurate hardware
modeling, simulation time representation, and other ESL specifics. These SystemC data types include
sc bigint, sc biguint, sc bit, sc bv, sc fix, sc ufix, sc fixed, sc ufixed, sc int,
sc uint, sc logic, andsc lv.

While all these SystemC data types are available in RISC, only a few of them have been validated and tested
for being safe in a truly parallel multi-threading context. At this point, RISC supportssc int, sc uint,
sc fixed, andsc ufixed (which appear as MT-safe). All other data types are so far untested and may or
may not be safely used in OoO PDES.

4.5 SystemC Utilities and Other Constructs

As listed in Table 1 through Table 8, there is a plethora of other SystemC APIs available. Some of
these are easily supported in RISC (such assc copyright, sc version major, sc version minor,
sc version patch, sc version), others are not supported yet at this time.

At this point, there is also a large number of special SystemC constructs for which it is unclear whether
or not these can be supported in an OoO PDES context with reasonable effort and efficiency. An example
of such constructs are those functions which involve or allow to inspect thesimulator state at run-time, such
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as sc find event, sc find object, sc get current process handle, sc get status,
sc get time resolution, sc get top level events, sc get top level objects,
sc hierarchical name exists, sc is running, sc is unwinding, sc simcontext, and
sc status.

On the other hand, access to the current simulated time (sc time, sc simulation time, an essential part
of every SystemC model evaluation, is fully supported by RISC OoO PDES.

5 RISC Analysis and Transformation Tools

Utilizing the RISC Internal Representation, the RISC framework also includes tools for the analysis and trans-
formation of SystemC models. As of Release V0.5.0, the RISCvisual tool [40] is available which enables the
user to visualize the SystemC module hierarchy. As an example, Figure 9 shows the module visualization of a
Canny edge detector application.

Figure 9: Module hierarchy visualization of a SystemC model of a Canny edge detector.

Thevisual tool supports a graphical user interface implemented with the Gtk API and renders a specified
SystemC source file’s module hierarchy, which is drawn using the Cairo API. The tool obtains module data
from the SystemC IR in the RISC software stack which contains information about nested modules and thus can
recursively iterate through nested lists of child modules in order to obtain enough information to visualize the
hierarchy of the entire SystemC source file. The input SystemC source file may contain thousands of lines of code
which can make manually drawing a representation of the modules, ports, andchannels described by the code a
difficult and time-consuming task. Thus thevisual tool was created to address this issue. It can automatically
generate a visual representation of a SystemC model in a very short period of time.

The RISCvisual tool is documented in detail in its manual page which is provided in the Appendix A.4.
For a pure textual representation, a similar command-line tooltree is available as well, which is documented
in Appendix A.5).

6 Conclusion

While SystemC is the de-facto and official standard language for ESL design, SystemC simulation largely is still
performed sequentially following classic DES semantics. Thus, SystemC simulation cannot utilize the parallel
processing capabilities available on today’s multi- and many-core host computers.

In this report, we have described the Recoding Infrastructure for SystemC (RISC), an aggressive simulation
approach beyond traditional parallel DES, where a dedicated SystemC compiler and advanced parallel simulator
implement Out-of-Order Parallel Discrete Event Simulation (OoO PDES) with prediction for SystemC. This
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approach can exploit parallel computing resources at the thread- and data-level to the maximum extend and thus
reaches fastest simulation speed. At the same time, RISC OoO PDES largely maintains the traditional SystemC
modeling semantics.

This technical report documents the RISC Compiler and Simulator and supporting tools, and details the Sys-
temC subset supported by the RISC Release V0.5.0. In contrast to the previous alpha [24], beta [25], and version
0.4.0 [26] releases, the RISC Compiler and Simulator Release V0.5.0 is more robust and easier to install, and
features Partial Segment Graph (PSG) technology (see Section 3.2) formultiple translation units and 3rd-party
IP libraries without source code, more precise conflict analysis based on port-call-path (PCP) analysis [31], and
provides new tools for graphical SystemC model visualization (see Section 5).

Future work includes several areas of technical extensions and further research. Technical improvements in-
clude addressing the limitations in the currently supported SystemC subset andother maintenance tasks including
improved documentation and, of course, bug fixes.

In terms of future research, two main limitations need to be addressed. First, TLM-2.0 modeling should be
supported. Here, communication is not properly encapsulated in channelsas it is in traditional TLM and classic
SystemC modeling. Instead, TLM-2.0 modeling lets threads execute directly in “foreign context” without any
protection and thus trespasses channel boundaries which cannot be analyzed by RISC at this time. A possible
solution to this problem is the introduction of so-calledSocket-Call-Pathsinto the RISC analysis which, however,
remains at an early idea stage at this point and thus requires further study.

Second, the SystemC constructs for modeling at the Register Transfer Level (RTL) of abstraction are largely
not supported yet. Prior focus was on abstract modeling at the EmbeddedSystem Level (ESL), but the large
amount of legacy RTL models demands support for efficient parallel simulation as well.

As we move on in these future endeavors, we will update and extend the Recoding Infrastructure for SystemC
(RISC) and this corresponding technical report accordingly.
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A Appendix

A.1 Manual Page of the RISC Compiler and Simulator

NAME

risc – Recoding Infrastructure for SystemC (RISC) Compiler and Simulator

SYNOPSIS

risc [ options] design[ options]

DESCRIPTION

risc is a dedicated compiler for the SystemC language. The purpose ofrisc is to parse, analyze, in-
strument, and compile a SystemC source program into an executable programfor out-of-order parallel
simulation.risc is a frontend source-to-source compiler for SystemC built on top of the ROSE compiler
infrastructure with GNU or Intel C++ as backend target compiler. As such, risc relies on and supports
also most of the ROSE and GNU compiler options.

Using the command syntax shown in the synopsis above, the specifieddesignis compiled. By de-
fault, risc reads the SystemC source file, performs preprocessing and builds an internal representation
(abstract syntax tree) and a Segment Graph (SG) of the model. Next, segment conflict analysis is per-
formed and the design model is instrumented for Out-of-Order Parallel Discrete Event Simulation (OoO
PDES). Finally, instrumented C++ code is generated, compiled, and linked into an executable file that
can be run for fast parallel simulation.

On successful completion, the exit value 0 is returned. In case of errors during processing, an error
code with a brief diagnostic message is written to the standard error stream and the compilation is
aborted with an exit value greater than zero.

For preprocessing and C++ compilation into an executable file,risc relies on the availability of an
external C++ compiler which is used automatically in the background. By default, the GNU C++
compilerg++ is used. Alternatively (see options–risc:icpcand–risc:micbelow), the Intel C++ compiler
icpc may be used to generate an executable optimized for Intel processors with SIMD capabilities or
the Intel Many-Integrated-Core (MIC) architecture.

ARGUMENTS

design specifies the file name of the input SystemC design model; by default, the base name of
designis used as base name for the intermediate and output files;

OPTIONS

–h | —-help print therisc compiler version and a brief usage information message to standard output
and quit;

–v | —-verbose increment the verbosity level so that all tasks performed are logged to standard error
(default: be silent); at level 1, high-level messages about the tasks performed are dis-
played; at level 2, additional details such as input and output file names are listed; at
level 3, very detailed information about each executed task is printed;
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–vv increment the verbosity level by two counts (same as–v –v);

–vvv increment the verbosity level by three counts (same as–v –v –v);

–w | —-warnings increment the warning level so that compiler warning messages are enabled(default:
warnings are disabled); four levels are supported ranging from only important warnings
(level 1) to pedantic warnings (level 4); for most cases, warning level2 is recommended
( –w –w);

–ww increment the warning level by two counts (same as–w –w);

–www increment the warning level by three counts (same as–w –w –w);

–g add a symbol table suitable for debugging (e.g. usinggdb ) to the generated object files
and simulation executable (default: no debugging symbols);

–O | –O level optimize the generated simulation executable for higher execution speed and/orless
memory usage (default: no optimization);

–Idir add the specifieddir to the include path (extend the list of directories to be searched
for including source files); include directories are searched in the order of their
specification; the standard include path ($SYSTEMCLW HOME/include or $SYS-
TEMC OOPHOME/include) is automatically appended to this list; by default, only
the standard include directories are searched;

–Ldir add the specifieddir to the library path (extend the list of directories to be searched for
linker libraries); the library path is searched in the specified order; the standard library
path ($SYSTEMCOOPHOME/lib) is automatically appended to this list; by default,
only the standard library path is searched;

–llib add the specifiedlib to the list of libraries for the linker so that the executable is linked
againstlib; libraries are linked in the specified order; the standard libraries (i.e. -
lsystemc) are automatically appended to this list; by default, only standard libraries
are used;

–c perform only the preprocessing, analysis, instrumentation, and compilationtasks; skip
the final linking stage so that only an object file is created (default: perform all tasks
including linking);

–o output file specify the name of the final output file explicitly (default: a.out);

–psg switch to partial segment graph (PSG) generation mode (and do not link); this generates
a file with suffix .psg for the current translation unit; PSG files follow the DOT graph
description language and can be processed with DOT file tools (e.g. displayed with the
xdot.py tool); for 3rd-party IP components, PSG files may be edited with a texteditor
for further fine-tuning and IP protection;

–psginput PSG filespecifies the name of a PSG input file; the specified file will be loaded and its PSG
will be integrated with the current translation unit to form a complete segment graph;
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–psgoutput output filein PSG generation mode (see above), this specifies the name of the PSG out-
put file explicitly; by default, the output PSG file has the same basename as the input
SystemC file;

–risc:dump output the computed segment graph (SG) and conflict tables as HTML files (default: no
HTML files are generated); these files may be viewed by a user in a browser in order to
inspect the out-of-order execution conditions of the model and improve it accordingly;

–risc:icpc use the Intel C++ compilericpc in the backend for generating the executable (default:
GNU C++ compilerg++ );

–risc:mic use the Intel C++ compilericpc with option–micin the backend for cross-compiling an
executable for the Intel Many Integrated Core (MIC) architecture (default: generate an
executable for the same processor the compiler is running on);

–risc:elab filenameimport the elaboration result produced by the RISC elaboratorelab from file file-
nameand use it for segment conflict analysis based on a dynamic elaboration phase
(default: pure static analysis);

–<rose:option> pass this option through to the underlying ROSE compiler (default: none);

–<GNU option> pass this option through to the underlying GNU compiler (default: none);

ENVIRONMENT

SYSTEMCLW HOME is used at compile-time to find the RISC light-weight SystemC header files
which are expected in directory $SYSTEMCLW HOME/include (default:
none);

SYSTEMCOOP HOME is used at compile-time to find the RISC out-of-order SystemC header files
which are expected in directory $SYSTEMCOOPHOME/include, and the
RISC out-of-order SystemC library which is expected in directory $SYS-
TEMC OOPHOME/lib (default: none);

SYSTEMCMIC HOME is used at compile-time to find the RISC SystemC header files and li-
brary files for the Intel many-integrated-core (MIC) architecture whichare
expected in directory $SYSTEMCMIC HOME/include and and $SYS-
TEMC MIC HOME/lib, respectively (default: none); this is used only when
the option–mic is used (see above);

SYSCPRINTMODE MESSAGEis used by the RISC simulator at run-time to print the mode
of simulation and also the actual values of the environment variables
listed below; these log lines start with ”***” and are only printed when
$SYSCPRINT MODE MESSAGE is defined (default: no messages are
printed);

SYSCSYNCPARSIM is used by the RISC simulator at run-time to force the RISC out-of-order
SystemC simulation to fall back to synchronous (in-order) PDES execution;
note that this mode is also automatically selected when SystemC primitive
channels with update requests are used (default: out-of-order execution);
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SYSCPRINTVERBOSEMESSAGEis used by the RISC simulator at run-time to print de-
bugging information about the simulator queues, event processing,
and time advances; such debugging lines are only printed when
$SYSCPRINT VERBOSEMESSAGE is defined (default: no debugging
infos are printed);

SYSCDISABLEPREDICTION is used by the RISC simulator at run-time to switch back to non-
predictive conflict detection; this avoids scheduling overhead at run
time, but usually results in slower simulation due to more conflicts; if
$SYSCDISABLE PREDICTION is defined, thread state prediction is not
used during out-of-order scheduling (default: out-of-order execution with
prediction);

SYSCPARSIM CPUS is used by the RISC simulator at run-time to set the maximum number of
concurrent threads allowed in the RISC out-of-order SystemC simulation
(default: 64);

VERSION

The RISC compiler and simulator are release version 0.5.0.

AUTHORS

Zhongqi Cheng <zhongqc@uci.edu>, Rainer Doemer <doemer@uci.edu>, Guantao Liu
<guantaol@uci.edu>, and Tim Schmidt<schmidtt@uci.edu>.

COPYRIGHT

(c) 2018 CECS, University of California, Irvine

LICENSE

Open source BSD license terms apply.

BUGS, LIMITATIONS

This is an academic proof-of-concept prototype implementation, not commercial-quality software. See
the file BUGS in the software packages for known limitations.
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A.2 Manual Page of the RISC Elaborator

NAME

elab– Recoding Infrastructure for SystemC (RISC) Dynamic Elaborator

SYNOPSIS

elabdesign[ options]

DESCRIPTION

elab is a special compiler for the SystemC language. The purpose ofelab is to parse, analyze, instru-
ment, and compile a SystemC source program into an executable program fordynamic elaboration.elab
is a frontend source-to-source compiler for SystemC built on top of the ROSE compiler infrastructure
with GNU or Intel C++ as backend target compiler. As such,elab relies on and supports also most of
the ROSE and GNU compiler options.

Using the command syntax shown in the synopsis above, the specifieddesignis compiled. By de-
fault, elab reads the SystemC source file, performs preprocessing and builds an internal representation
(abstract syntax tree) of the SystemC structural hierarchy.elab then instruments the design model so
that its execution stops after the end of the elaboration phase (no actual simulation will take place); the
dynamically built hierarchy and instance connectivity data is then dumped into afile design.elabwhich
can be passed to the RISC compilerrisc for more precise conflict analysis.

On successful completion, the exit value 0 is returned. In case of errors during processing, an error
code with a brief diagnostic message is written to the standard error stream and the compilation is
aborted with an exit value greater than zero.

For preprocessing and C++ compilation into an executable file,elab relies on the availability of
an external C++ compiler which is used automatically in the background. By default, the GNU C++
compilerg++ is used.

ARGUMENTS

design specifies the file name of the input SystemC design model; by default, the base name of
designis used as base name for the intermediate and output files;

OPTIONS

–h | —-help print the elab elaborator version and a brief usage information message to standard
output and quit;

–v | —-verbose increment the verbosity level so that all tasks performed are logged to standard error
(default: be silent); at level 1, high-level messages about the tasks performed are dis-
played; at level 2, additional details such as input and output file names are listed; at
level 3, very detailed information about each executed task is printed;

–vv increment the verbosity level by two counts (same as–v –v);

–vvv increment the verbosity level by three counts (same as–v –v –v);
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–w | —-warnings increment the warning level so that compiler warning messages are enabled(default:
warnings are disabled); four levels are supported ranging from only important warnings
(level 1) to pedantic warnings (level 4); for most cases, warning level2 is recommended
( –w –w);

–ww increment the warning level by two counts (same as–w –w);

–www increment the warning level by three counts (same as–w –w –w);

–g add a symbol table suitable for debugging (e.g. usinggdb ) to the generated object files
and simulation executable (default: no debugging symbols);

–O | –O level optimize the generated simulation executable for higher execution speed and/orless
memory usage (default: no optimization);

–Idir add the specifieddir to the include path (extend the list of directories to be searched
for including source files); include directories are searched in the order of their
specification; the standard include path ($SYSTEMCLW HOME/include or $SYS-
TEMC OOPHOME/include) is automatically appended to this list; by default, only
the standard include directories are searched;

–Ldir add the specifieddir to the library path (extend the list of directories to be searched for
linker libraries); the library path is searched in the specified order; the standard library
path ($SYSTEMCOOPHOME/lib) is automatically appended to this list; by default,
only the standard library path is searched;

–llib add the specifiedlib to the list of libraries for the linker so that the executable is linked
againstlib; libraries are linked in the specified order; the standard libraries (i.e. -
lsystemc) are automatically appended to this list; by default, only standard libraries
are used;

–c perform only the preprocessing, analysis, instrumentation, and compilationtasks; skip
the final linking stage so that only an object file is created (default: perform all tasks
including linking);

–o output file specify the name of the final output file explicitly (default: a.out);

–elab:o specify the name of the elaboration result file with instance connectivity data explicitly
(default:design.elab); this file will be produced when the executable generated byelab
is run (after its elaboration phase);

–<rose:option> pass this option through to the underlying ROSE compiler (default: none);

–<GNU option> pass this option through to the underlying GNU compiler (default: none);

ENVIRONMENT

SYSTEMCLW HOME is used at compile-time to find the RISC light-weight SystemC header files
which are expected in directory $SYSTEMCLW HOME/include (default:
none);
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SYSTEMCOOP HOME is used at compile-time to find the RISC out-of-order SystemC header files
which are expected in directory $SYSTEMCOOPHOME/include, and the
RISC out-of-order SystemC library which is expected in directory $SYS-
TEMC OOPHOME/lib (default: none);

VERSION

The RISC Dynamic Elaborator is release version 0.5.0.

AUTHORS

Zhongqi Cheng <zhongqc@uci.edu>, Rainer Doemer <doemer@uci.edu>, Guantao Liu
<guantaol@uci.edu>, and Tim Schmidt<schmidtt@uci.edu>.

COPYRIGHT

(c) 2018 CECS, University of California, Irvine

LICENSE

Open source BSD license terms apply.

BUGS, LIMITATIONS

This is an academic proof-of-concept prototype implementation, not commercial-quality software. See
the file BUGS in the software packages for known limitations.
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A.3 Manual Page of the RISC SIMD Advisor

NAME

simd – Recoding Infrastructure for SystemC (RISC) SIMD Advisor

SYNOPSIS

simd [ options] design[ options]

DESCRIPTION

simd is an analysis tool for exploiting data-level parallelism based on the RISC compiler for the Sys-
temC language. The purpose ofsimd is to parse and analyze a SystemC source program, and then
provide advise to the user regarding possible optimizations of the model to exploit SIMD parallelism
for faster out-of-order parallel simulation.

Using the command syntax shown in the synopsis above, the specifieddesignis compiled and stat-
ically analyzed. By default,simd reads the SystemC source file, performs preprocessing and builds
an internal representation (abstract syntax tree) of the SystemC constructs in the model. Next, thread
control flow analysis is performed and encountered loops are analyzedfor potential single-instruction-
multiple-data (SIMD) execution which exploits data-level parallelism and can lead to significantly im-
proved simulation performance in Out-of-Order Parallel Discrete Event Simulation (OoO PDES).

Specifically,simd presents to the user a list of loops that might be suitable for SIMD vectorization.
The user is expected to review the options and, based on his application knowledge, select those loops
that do not contain SIMD conflicts, such as parallel accesses to overlapping memory locations. For
confirmed loops, the user then inserts into the source code#pragma omp simdannotations immediately
before the selected loops. The annotated model can then be compiled withrisc and option–risc:icpc
using the Intel C++ compilericpc to generate an executable for execution on a SIMD-capable target
architecture with improved performance.

The output ofsimd lists the loops found in the control flow of the SystemC threads of the model. For
each loop, its line number in the source code is listed together with its analyzed SIMD qualification. If
the loop is not qualified, a reason for its disqualification may or may not be shown in form of an error
code.

A qualification error code of 1 indicates the use of an invalid array index in the loop. The code
2 indicates that a non-loop local variable is written. Finally, code 3 indicates that an unsupported
construct (e.g. goto statement) is found in the loop.

On successful completion, thesimd advisor returns the value 0. In case of errors during processing,
an error code with a brief diagnostic message is written to the standard errorstream and the compilation
is aborted with an exit value greater than zero.

ARGUMENTS

design specifies the file name of the input SystemC design model; by default, the base name of
designis used as base name for the intermediate and output files;

OPTIONS

–h | —-help print thesimd advisor version and a brief usage information message to standard output
and quit;
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–v | —-verbose increment the verbosity level so that the tasks performed are logged to standard error
(default: be silent); at level 1, high-level messages about the tasks performed are dis-
played; at level 2, additional details such as input and output file names are listed; at
level 3, very detailed information about each executed task is printed;

–vv increment the verbosity level by two counts (same as–v –v);

–vvv increment the verbosity level by three counts (same as–v –v –v);

–w | —-warnings increment the warning level so that warning messages are enabled (default: warnings
are disabled); four levels are supported ranging from only important warnings (level 1)
to pedantic warnings (level 4); for most cases, warning level 2 is recommended (–w –w
);

–ww increment the warning level by two counts (same as–w –w);

–www increment the warning level by three counts (same as–w –w –w);

–Idir add the specifieddir to the include path (extend the list of directories to be searched
for including source files); include directories are searched in the order of their speci-
fication; the standard include path ($SYSTEMCLW HOME/include) is automatically
appended to this list; by default, only the standard include directories are searched;

–o output file specify the name of the text output file explicitly (default: none);

–<rose:option> pass this option through to the underlying ROSE compiler (default: none);

–<GNU option> pass this option through to the underlying GNU compiler (default: none);

ENVIRONMENT

SYSTEMCLW HOME is used at compile-time to find the RISC light-weight SystemC header files
which are expected in directory $SYSTEMCLW HOME/include (default:
none);

VERSION

The SIMD Advisor is release version 0.5.0.

AUTHORS

Zhongqi Cheng <zhongqc@uci.edu>, Rainer Doemer <doemer@uci.edu>, Guantao Liu
<guantaol@uci.edu>, and Tim Schmidt<schmidtt@uci.edu>.

COPYRIGHT

(c) 2018 CECS, University of California, Irvine

LICENSE

Open source BSD license terms apply.
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BUGS, LIMITATIONS

This is an academic proof-of-concept prototype implementation, not commercial-quality software. See
the file BUGS in the software packages for known limitations.
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A.4 Manual Page of the RISC Visual Tool

NAME

visual – Graphical SystemC Module Visualizer using RISC

SYNOPSIS

visual [ options] design[ options]

DESCRIPTION

visual is an analysis tool for graphical visualizing of ports and modules of SystemCcode. It uses the
RISC compiler to parse and analyze the SystemC source code into a data structure. The tool iterates
through this data structure and displays a visual representation of the hierarchy of modules and ports.
visual provides a GUI to provide a graphical representation of the SystemC modelas well as provide
user modifiable options during run-time to change the graphical properties of the visualization.

ARGUMENTS

design specifies the file name of the input SystemC model.

OPTIONS

–h | —-helpprints a brief message on the usage of the tool to standard output and quits;

–bw Modules are drawing without color;

–tm moduleOnly draw ”module”;

–Il integer Draw only a certain depth in the hierarchy given by ”integer”;

–s float Scale the drawing size by ”float”. If ”float” = 0.5, then the size of the drawing is scaled by 50
percent.

–np The module hierachy will be drawn without ports or channels;

ENVIRONMENT

SYSTEMCLW HOME is used at run-time to find the RISC light-weight SystemC header files which
are expected in directory $SYSTEMCLW HOME/include

VERSION

Visual is release version 0.5.0.

AUTHORS

Daniel Mendoza<dmmendo1@uci.edu>
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COPYRIGHT

(c) 2018 CECS, University of California, Irvine

LICENSE

Open source BSD license terms apply.

BUGS, LIMITATIONS

This is an academic proof-of-concept prototype implementation, not commercial-quality software.
GTK is used at compile-time for the GUI. CAIRO is used at compile-time for drawings displayed
on the GUI.
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A.5 Manual Page of the RISC Tree Tool

NAME

tree – Textual SystemC Module Visualizer using RISC

SYNOPSIS

tree [ options] design[ options]

DESCRIPTION

tree is an analysis tool for textual visualizing of ports and modules of SystemC code. It uses the RISC
compiler to parse and analyze the SystemC source code into a data structure.The tool iterates through
this data structure and displays a visual representation of the hierarchy of modules and ports.

ARGUMENTS

design specifies the file name of the input SystemC model.

OPTIONS

–h | —-helpprints a brief message on the usage of the tool to standard output and quits;

ENVIRONMENT

SYSTEMCLW HOME is used at tun-time to find the RISC light-weight SystemC header files which
are expected in directory $SYSTEMCLW HOME/include

VERSION

Tree is release version 0.5.0.

AUTHORS

Daniel Mendoza<dmmendo1@uci.edu>

COPYRIGHT

(c) 2018 CECS, University of California, Irvine

LICENSE

Open source BSD license terms apply.

BUGS, LIMITATIONS

This is an academic proof-of-concept prototype implementation, not commercial-quality software.
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