
IP-Centric Methodology

Daniel D. Gajski, Gaurav Aggarwal, En-Shou Chang

Rainer D�omer, Tadatoshi Ishii, Jon Kleinsmith, Jianwen Zhu

Department of Information and Computer Science

University of California, Irvine

Irvine, CA 92697-3425.

Phone: (714) 824-8059

Abstract

In this report, we describe the specify-explore-re�ne (SER) co-design methodology

for design of embedded systems. We describe the necessary design steps in order to map

an abstract speci�cation of the system to the �nal implementation model. We propose

a co-design tool based on our co-design methodology. We also present a graphical user

interface for the proposed co-design tool.

1 Introduction

The co-design process for embedded systems usually starts from an executable speci�cation

as shown in Figure 1. The speci�cation speci�es the functionality as well as the performance,

power, cost and other constraints of the intended design but no implementation details. The

speci�cation can be captured directly in a formal speci�cation language such as SpecC or by

the use of interactive graphical entry tool such as SpecEdit. We describe the SpecEdit tool in

Section 2. We next give an overview of the re�nement transformations in the methodology.

1



Sequentialize
behavior on PE

Partitioning

Protocol
Select

Allocation, Arch,

Simulation
model

Simulation
model

Simulation
model

Simulation
model

Analysis and
Validation

Simulation
model

Analysis and Validation Flow

Validation of
Algorithm, functionality

funct, handshaking

Validation of
funct, synchronization

funct, performance

Validation of

Validation of

Allocation,
Partitioning

Partitioned
model

Scheduling

Scheduled
model

Communication
Refinement

Communication
model

Spec

High Level
Synthesis

Implementation
model

Manufacturing

Synthesis Flow

Compilation
Interface
Synthesis

Backend

Components

behavior
Specify

SpecEdit

Estimation

Estimation

Protocols

Figure 1: The co-design methodology in the SpecC system

2



During the co-design process, the designer will go through a series of well-de�ned design

steps which will eventually map the functionality of the speci�cation to the target archi-

tecture. These design steps include allocation, partitioning, scheduling and communication

re�nement, which form the synthesis ow of the methodology. The task of allocation de-

termines the number and types of the system components, such as processors, ASICs and

buses, used to implement the system behavior. The task of partitioning distributes the

speci�cation over the system components. The task of scheduling determines the order-

ing of execution of the sub-behaviors. The task of communication re�nement selects the

appropriate protocols and resources to implement the abstract communications between

the behaviors. The design decision in each of the design task can be made either by the

designer using the graphical user interface or by the automatic synthesis tools described in

Sections 4, 5 and 6.

The result of the synthesis ow is handed-o� to the back-end tools, shown in the lower part

of Figure 1. The software part of the hand-o� model consists of C code and the hardware

part consists of behavioral VHDL code. The back-end tools include compilers, a high level

synthesizer and an interface synthesizer. The compilers are used to compile the software C

code for the processor on which the code is mapped. The high level synthesizer is used to

synthesize the functionality mapped to custom hardware. The interface synthesizer is used

to implement the functionality of interfaces.

During each design step, the design model is statically analyzed to estimate certain quality

metrics such as performance, cost and power consumption. The same design model will

also be used in simulation to verify the correctness of the design at the corresponding step.

For example, at the speci�cation step, the simulation model is used to verify the functional

correctness of the intended design. After partitioning and scheduling, the simulation model

will verify the synchronizations between behaviors in di�erent PEs, which are artifacts

generated by these design steps. After communication re�nement, the model is used to

verify performance of the system including computation and communication. If validation

fails, a debugger can be used to locate the errors. Like all standard source level debuggers,

3



the SpecC debugger provides the capability of break points and state inspection during the

debugging sessions.

2 SpecEdit

SpecEdit is a graphical user interface (GUI) which is used for specifying the system in

the co-design process. It is also used for displaying system models at di�erent levels of

abstraction. It also provides support for the transformations that need to be performed at

each design step in the methodology. It allows the designer to execute the transformation

commands on the models in an interactive manner. These commands can either be simple

manual operations or calls to automatic tools that use algorithmic procedures to perform

the functions. The interface at a typical processing step in the methodology contains six

di�erent windows as shown in Figure 2.

The use of each window is dependent on the functions that need to be performed at any

stage. Thus, some windows may be empty or may be used for only displaying information

about the model. The functionality of each of the window is as follows.

Hierarchy Window This window is used for displaying and modifying the hierarchy in

the speci�cation. It supports creation, deletion and movement of behaviors or a tree

of behaviors. It displays the tree view of behavioral hierarchy along with the execution

types (sequential, concurrent or pipeline). The Hierarchy Window is located on top-

left corner of Figure 2. Each box in the tree represents a behavior and is identi�ed with

the name of the behavior. Each box also has an icon associated with it which gives

the execution type of the box. In addition, any part of tree can be collapsed to make

the display more readable and to �t the display in the current window size. Clicking

a behavior box brings up the other windows (described below) for this behavior.

In Figure 2, B0 is a behavior for node which has children behaviors. B1 is a leaf

behavior which contains an algorithm. B1 and B2 will have the same sequential icon

4



Destination ConditionOrigin

B2

B2

...

Type

TOC

Over=1

...

B1

B3 Cond

Behavior Description Window

Text Editor

Communication WindowScheduling Window

Matrix Editor

Connectivity Window

State Transition Table WindowHierarchy Window

B2

B0

B1

B3

Tree Editor Table Editor

beh b2

beh b3

p1 p2 p1 p2p1

beh b3
p3

beh b1

beh b2

beh b1 bus

bus

p1
p2

p1

p1
p2
p3

Global Var:
max : B0;
sync: B0;

Channels:
bus: PE0

PE0 PE1

B1

B1

L1
bus

G1
int i, local;

void main( ) {

wait(sync);
...

...

i = max - local;

...

}

}

behavior b1(int p, .. ) {

B2

B3

Figure 2: SpecEdit: authoring tool for SpecC

5



which implies that these behaviors are executed sequentially.

State Transition Table Window This window is used for specifying the transitions be-

tween sequential behaviors in a hierarchical node behavior. This window is located

top-right corner of Figure 2. The table in the window consists of four column: Origin,

Destination, Type and Condition. Each row represents a transition between behav-

iors. The system transits from a state in Origin column to the state in the Destination

column when a state transition of type \Type" occurs. Type can be either TOC (tran-

sition on completion), Condition (given in the fourth column), Trap or Interrupt. The

Condition column gives the condition on which the conditional transition occurs. This

window is empty if the currently selected behavior is a leaf behavior. The destination

�eld of the table is empty if the behaviors are concurrent.

In Figure 2, when B1 behaviorally completes (TOC) the system goes into B2. If the

system is in B2 and the condition 'Over=1' occurs, then the system goes into B3. The

box around B1 denotes that B1 is the start state. The oval around B3 denotes that B3

is the �nal state in the state transition diagram.

Behavior Description Window This window is used for programming the behavior of

leaf nodes in SpecC. It is shown in the bottom left corner of Figure 2. This window is

basically a text editor. It will be disabled for hierarchical behaviors that do not have

textual descriptions.

In Figure 2, a skeletal code is shown for the leaf behavior B1.

Connectivity Window This window is used for de�ning connections between sibling be-

haviors and between a parent and children behaviors. The connectivity window is

located in the middle-right of Figure 2. Each row and column has the name and

ports of a child behavior. Connection between ports of two behaviors is denoted by

the corresponding row and column intersection in the matrix. This connection can

either be a global variable name or a channel. The matrix diagonal does not give

the connections between the behaviors at this level. Instead, it is used to show the

6



connection between ports of child behaviors and parent behaviors. This window is

empty at higher levels of abstraction where there are only global variables.

In Figure 2, port p1 of B1 is connected to port p1 of B2 and port p1 of B3 through a

channel bus. Since the same name bus is used, it implies that the di�erent ports are

all connected together through the bus channel. Port p2 of B1 is connected to port p3

of B3 through variable L1. The diagonal entry for port p2 of behavior B3 is connected

to the parent behavior through a global variable G1.

Communication Window This window is used for reviewing the global variables, chan-

nels and interfaces available for each behavior. These are declared in this behavior

and in behaviors in upper hierarchy of this behavior. This window is shown in the

bottom right corner of Figure 2.

In Figure 2, the communication window clearly displays the global variables of behav-

ior B0.

Scheduling Window This window is used for specifying the schedule of behaviors that

execute on each processing element. Each column describes the schedule for a process-

ing element on which more than one concurrent behavior are assigned. The columns

list the serialized behaviors for that processing element. The execution duration of

the behaviors is illustrated by listing a behavior more than once if it is longer than

shortest behavior. Thus, the table uses normalized execution times to display the

schedule for each processing element.

In Figure 2, behaviors B1 and B3 are assigned to PE0 while behavior B2 is assigned to

PE1. The schedule shows that �rst B1 executes for two units of time on PE0, then B2

executes for one unit of time on PE1 and �nally B3 executes for one unit of time on

PE0.

We next describe the di�erent re�nement transformations in the co-design methodology.

These re�nement tasks are performed using the SpecEdit interface with the help of auto-

matic tools.

7



3 Speci�cation

The synthesis ow begins with a speci�cation of the system being designed. The spec-

i�cation in a formal description language describes the functionality of the system along

with performance constraints but without premature allusions to implementation details.

The speci�cation should be as close to the conceptual model of the system as possible. The

speci�cation at the behavioral level can be validated for functional correctness. The source

code can be debugged with the help of a simulator and a set of test vectors. This step

veri�es the algorithm and functionality of the speci�cation model. It is easier and more

eÆcient to verify the correctness of the algorithm at a higher level than at a lower level

which includes implementation details also.

Typically, a high-level speci�cation will be composed hierarchically. Modular decomposition

of the system simpli�es the development of a conceptual view of the system and facilitates

comprehension of the system's functionality. A hardware system will, in general, have either

data-driven or control-driven concurrency. The speci�cation will then need to describe the

concurrency in the system. The speci�cation may model FSMD or PSM. It will then

include state transitions also. In addition, the speci�cation may include timing constraints

and describe how exceptions have to be handled.

In our system, the graphical user interface, SpecEdit is used to capture the behavioral

model of the system language. SpecEdit helps in capturing and visualizing the behavioral

and structural hierarchy in the speci�cation. It also helps in specifying the state transition

table, connectivity and scope of variables and channels. The behavior of leaf nodes is

programmed in the SpecC language using a text editor.

After the system has been speci�ed, a pre-processing step encapsulates all global variables

in separate channels and adds ports to the behaviors. Thus, after the pre-processing step,

every behavior accesses the global variables through ports. This ensures that there are no

problems due to scope of variables when behaviors are moved around during the partitioning

and scheduling stages.

8



B6

B7

B5 B4

B2

B1

int  max, i;

wait(sync);

for (i=0;i<8;i++)
....
....

B3

B0

data

data sync

max = data - i;

Figure 3: Conceptual speci�cation model

We illustrate our co-design methodology with a simple example. The conceptual model is

shown in Figure 3 using the PSM notation. The top level behavior B0 consists of three se-

quential behaviors: B1, B2 and B3. The system starts execution with behaviour B1. When

B1 completes, the system transitions to B2. The system transitions to B3 on behavioral

completion of B2. Behavior B2 is composed of two concurrent behaviors: B4 and B5. Be-

havior B4 is a leaf behavior like B1 and B3. On the other hand, B5 is a hierarchical node

and consists of two sequential behaviors: B6 and B7.

Behaviors B7 and B4 communicate using a global variable: data. A global variable sync

is used to denote if the data variable is valid or not. The variable data is written into

by B7 and read by B4. Initially, the synchronization variable sync is 0. B7 writes into the

data variable and makes sync as 1. B4 waits while sync is 0 since it denotes that the data

variable has invalid value. B4 reads the data whenever sync is set to 1.

The SpecEdit view of the speci�cation model is shown in Figure 4. Each window is for

the node selected in the hieararchy window (B0 in this example). The hieararchy window

9



clearly displays the hierarchy in the system. The state transitition table displays that the

behaviors B1, B2 and B3 are sequential. B1 is the initial behavior and B3 is the �nal. State

transitions are of type TOC (transition on completion). The connectivity window is empty

because the speci�cation is at a high-level and there is no connectivity in this behavioral

model. The scope of global variables is shown in the communication window. Scheduling

window is empty since scheduling has not been performed as yet.

B1

B2

B4

B5

B6

B7

B3

B0

behavior  B0 (...) {
      B1  b1 ( ... );
      B2  b2 ( ... );
      B3  b3 ( ... );
      int  data;

void  main (void) {
      b1.main( );
      b2.main( );
      b3.main( );
};

B1 B2

B3B2

Origin ConditionType

TOC

TOC

Destination

Hierarchy Window: B0 State Transition Table Window: B0

Behavior Description Window: B0 Scheduling Window: B0 Communication Window: B0

Connectivity Window: B0

Global Var:
data
sync

Figure 4: SpecEdit view of the speci�cation

10



4 Allocation and Partitioning

The �rst re�nement step in the synthesis ow is the task of allocation and partitioning.

Allocation is usually done manually by the designer and basically means the selection of

components from a library. In general, three types of components have to be selected from

the component library: processing elements (PEs), memories and busses (where the PE

can be a standard processor or custom hardware). The set of selected and interconnected

components is called the system target architecture. The task of partitioning then is to

map the system speci�cation onto this architecture. In particular, behaviors are mapped

to PEs, variables are mapped to memories, and channels are mapped to buses.

In order to perform partitioning accurate information about the design has to be obtained

before. This is the task of Estimation. Estimation tools determine design metrics such

as performance (execution time) and memory requirements (code and data size) for each

part of the design with respect to the allocated components. Estimation can be performed

either statically by analyzing the speci�cation or dynamically by execution and pro�ling of

the design description. Obviously estimation has to support both software and hardware

components. The estimation results usually are stored in a table which lists each obtained

design metric for each allocated component.

The table of estimation results can then be used by the partitioner to tradeo� hardware

vs. software implementation. It is also used to determine whether each partition meets the

design constraints and to optimize the partitions with respect to an objective function.

Usually partitioning is performed sequentially in three steps. The �rst step is called be-

havioral partitioning and decides which behavior is going to be executed on which PE.

Obviously this includes the decision whether a behavior is implemented in software or in

hardware.

For example, given an allocation of two processing elements PE0 and PE1 (eg. a processor

and an ASIC) the speci�cation from Figure 3 can be partitioned as shown in Figure 5. Here

11



���
���
���
���

���
���
���
���

B6

B7

B3

B0

B4

B1

PE1

B4_start

B4_done

B1_start

B1_done

sync

B5

Top

PE0

data sync B1_start B1_done B4_start B4_done

B1_ctrl

B4_ctrl

Figure 5: Conceptual model after partitioning

the behaviors B0, B3, B5, B6, B7 are mapped to PE0 (executing in software), and the

behaviors B1 and B4 are assigned to PE1 (implemented in hardware). In order to maintain

the execution semantics of the speci�cation two additional behaviors B1 ctrl and B4 ctrl

are inserted which are synchronized with B1 and B4, respectively.

Figure 6 shows the SpecEdit view of the partitioned model. Here the allocation of PE0 and

PE1 and the partitioning of the behaviors is displayed explicitly as an additional level of

hierarchy in the Hierarchy Window.

The second partitioning step is the mapping of variables onto memories. As explained in

Section 3 the SpecC system �rst transforms all global variables in the speci�cation into

separate channels. Therefore the task of memory partitioning is to group these variable

channels to memory channels which then will be mapped to the allocated memories.

In the third step buses are allocated which connect the PEs and the memories. The task

of bus partitioning is to map the communication channels onto these buses. Usually this

12



B0

PE0

B1_ctrl

B2

B4_ctrl

B5

B6

B7

B3

PE1

B1

B4

Top

behavior  Top (...) {
      PE0  pe0 ( ... );
      PE1  pe1 ( ... );

void  main (void) {
      par {
            pe0.main( );
            pe1.main( );
      }

};

Origin ConditionTypeDestination

PE0

PE1

Behavior Description Window: Top

Hierarchy Window: Top State Transition Table Window: Top

Scheduling Window: Top Communication Window: Top

Connectivity Window: Top

Channels: 

B4_start

B1_start
sync

B4_done

B1_done

data

Figure 6: SpecEdit view of partitioned model

13



is done during communication re�nement which is described in more detail in Section 6.

In the SpecC system the sequence of allocation and partitioning tasks is determined by

the designer and may contain iterations. Iterating these steps with modi�ed allocation

or changed partitioning parameters is called design exploration. This exploration of

the design space helps to obtain an optimized implementation of the design with good

performance and less costs.

5 Scheduling

In the previous stage of allocation and partitioning, each leaf behavior is assigned to a

speci�c type of hardware to be executed. An accurate or approximate execution time for

each leaf behavior is then computed. Each leaf behavior with speci�ed hardware type

and execution time now is called a subtask. In addition, the execution orders of these

leaf behaviors are also passed to the scheduling stage. In the scheduling stage, the SpecC

scheduler inputs these subtasks and execution orders, then according to the goal speci�ed

by the users, creates a schedule in which these subtasks can be done without violating any

execution orders.

Scheduling can be categorized into either time-constrained scheduling or resource-constrained

scheduling depending on the goals of scheduling. The designer speci�es a set of timing con-

straints for time-constrained scheduling. Each timing constraint speci�es the minimum

and maximum time between two subtasks. The scheduler needs to �gure out a schedule

in which no subtask violates any of the timing constraints and tries to minimize the total

resources. On the other hand, the designer speci�es resource constraints for resource-

constrained scheduling. The scheduler then creates a schedule such that all the subtasks

are completed in shortest time possible given the restrictions on the resource usage.

In addition to the goal of scheduling, there are also two di�erent ways to do scheduling,

namely, static scheduling and dynamic scheduling. In static scheduling, each subtask

14



is executed following a �xed schedule. The scheduler computes the best schedule before

the desired system is synthesized. The schedule will not change at runtime. On the other

hand, in dynamic scheduling, the execution sequence of the subtasks is determined at

runtime. An embedded operation system maintains a pool of ready subtasks. A subtasks

becomes ready and is put into the pool once all of its predecessors are complete. As soon

as a PE �nished a subtask, it picks up another from the ready pool to execute. In this

case, the SpecC scheduler focuses on partitioning the subtasks in a way that maximizes PE

utilization and minimizes interconnection cost.

Both static scheduling and dynamic scheduling have their advantages. Static scheduling

pays no operating system overhead, which usually consumes 10% to 50% system resources.

On the other hand, dynamic scheduling can achieve higher PE utilization when execution

time of the subtasks change a lot at runtime. However, Worst Case Execution Time

(WECT) of both scheduling ways are the same. The SpecC scheduler can work in both

ways. The scheduler can analyze characteristics of all the subtasks, then uses the best way

to do scheduling.

After a schedule is created, the scheduler moves the leaf behaviors into scheduled orders,

and adds necessary signals and inserts synchronization instructions into second-level (from

leaf) behaviors. The re�ned speci�cation is then passed to communication synthesis stage.

To make sure the scheduled and the re�ned speci�cations are correct, both speci�cations

can be fed into SpecC validation tools and executed in SpecC simulation engine.

Figure 7 shows an example of scheduling performed on the partitioning model from Figure 5.

Behaviors B6, B7 and B3 executing on PE0 can be serialized in time as B6!B7!B3. Behaviors

B1 and B4 executing on PE1 can be serialized as B1!B4. Note that the scheduling algorithm

can do optimizations and remove extraneous behaviors, e.g., B1 ctrl and B4 ctrl, which

were introduced by the partitioning stage. The SpecEdit view of the scheduling model is

shown in Figure 8.

15



��
��
��
��

��
��
��
��

B1

B4

PE1

B6_st

sync

B3_st

Top

B7

PE0

B3

B6

B6_stsync B3_stdata

Figure 7: Conceptual model after scheduling

6 Communication Re�nement

The purpose of communication re�nement is to resolve abstract communication behavior

through a series of re�nements that lead to a speci�cation consisting of processing elements,

buses and memories. During this process, new processing elements may be introduced in

the form of interfaces which serve to bridge the gap between di�ering protocols. It should

be noted that communication up to this point is handled through remote procedure calls

(RPC) supplied in the interface to a given channel.

Communication synthesis consists of three main tasks:

Protocol Selection The designer must select the appropriate communication medium for

which to map the abstract channels. A library of generic and or common bus/protocol

schemes are supplied. Further, the designer has the option of including custom pro-

tocols or customizing available protocols to suit the current application. Protocol

speci�cations contained in the library will be written in terms of channel primitives

in the SpecC language and should supply common interface function calls to facilitate

16



Top

PE0

PE1

B3

B7

B6

B1

B4

behavior  Top (...) {
      PE0  pe0 ( ... );
      PE1  pe1 ( ... );

void  main (void) {
      par {
            pe0.main( );
            pe1.main( );
      }

};

sync
B1_start
B1_done
B4_start
B4_done

data

Behavior Description Window: Top

Hierarchy Window: Top

Origin ConditionTypeDestination

PE0

PE1

State Transition Table Window: Top

Scheduling Window: Top

B6

B7

B7

B4

B4

B4

B3

PE0 PE1

B4

B1

B1

Communication Window: Top

Connectivity Window: Top

Channels:

Figure 8: SpecEdit view of the scheduled model

17



reuse. For example, a given VME bus description will supply send() and receive() as

would the PCI speci�cation. In this way, we can interchange protocols as channels

and perform some simulation to obtain performance estimates. Later, these RPCs

will be replaced by local I/O instructions for software, or additional behavior to be

synthesized for hardware entities respectively.

Interface Generation In the case of previously designed components, those having their

own established communication protocols, interfaces to the remaining components in

the system must be generated and can take the form of transducers between com-

ponents. The transducer object may be viewed abstractly as a set of dual, ordered

relations between opposing signal groups. That is, a particular \view" of the pro-

tocol, either on the sender side or receiver side, is captured and reversed. As such,

the transducer generates the signals necessary to satisfy the signaling requirements of

either component it is linking. This object can then be realized as a FSM and may

be synthesized as another hardware component, merged with another synthesizable

component or be translated to software running on an associated processor.

Inlining Behavior that has been partitioned and allocated to an unde�ned component

may have its communication functionality inlined. Namely, the behavior or logic nec-

essary to initiate a communication transaction, formerly located in the channel object

is placed inside the partition that utilizes that functionality. This communication

behavior can the be handed-o� to be synthesized with the rest of the component's

functional behavior.

Finally, after protocols have been inlined and/or transducers have been generated, synthesis

of the unde�ned behavioral components including interface components may be completed

using current high-level synthesis techniques.

In our example, communication synthesis begins with the scheduled speci�cation as shown

in Figure 7. The designer would select one or more appropriate protocols from the design

library and allocate instances of this protocol in the form of busses. In our example, a

18



��������

���� ���� ����

������������

��������port1 port1

PE1PE0

port1

IBus1 IBus2

Sh.Mem

IF1

IBus0

port1 port1 port1

port2

IF0
port2 port2

sBus

IF2

Arbiter

port1

(a) (b)

S
ha

re
d 

M
em

or
y

A
rb

ite
r

IBus0 IBus1 IBus2 sBusTop

IF1IF0 IF2

B7

B3

B6

PE0

B1

B4

PE1

Figure 9: Communication Re�nement: (a) Target architecture (b) Conceptual communica-

tion model

single protocol was selected and an instance labeled sBus was allocated. Channels in the

system are then partitioned amongst the busses. Since a single bus was allocated, the

partition is straightforward and each channel is mapped to the bus. It should be noted that

channels representing global variables may also be mapped to memory elements. In the

case of our example, the global variable data is mapped to a shared memory, indicated in

the Figure 9(a).

Following the allocation and partitioning of bus elements, interfaces must be resolved be-

tween processing elements and the bus protocols they are communicating through. Common

protocol between a PE and a bus will not require further integration. However, if protocols

do not match, a transducer must be generated to link the protocols. Figure 9(a) illustrates

the connections of the PEs to the sBus through interface transducers labeled IF0, IF1 and

IF2. The SpecEdit view of the communication model is shown in Figure 10.

Further re�nement may take place. If a given processing element is synthesizable, meaning

it is a component yet to be designed, the interface component may be integrated or inlined

19



Top

PE1

B3

B7

B6

IF0

IF1

IF2

Arbiter

Sh Mem

PE0

B1

B4

p1

p1

p1

p2

p1

p1

p1 p1p1

p1

ShMem

PE0

PE1

IF0

IF1

IF2

Arbiter

p1 p1 p1 p1

Arbiter

Sbus

Sbus

p2 p2 p2

Sbus

p1

p2

p2

IF0 IF1 IF2MemPE0 PE1

Ibus1

Ibus2

Ibus0

behavior  Top (...) {
      PE0  pe0 ( ... );
      PE1  pe1 ( ... );

void  main (void) {
      par {
            pe0.main( );
            pe1.main( );
      }

};

Destination Type ConditionOrigin

ShMem

IF0

IF1
IF2

Arbiter

PE1

PE0

B6

B7

B7

B4

B4

B4

B3

PE0 PE1

B4

B1

B1

Hierarchy Window: Top

Connectivity Window: Top

Behavior Description Window: Top

State Transition Table Window: Top

Communication Window: TopScheduling Window: Top

Global Var:
IBus0
IBus1
IBus2
Sbus

Figure 10: SpecEdit view of the communication model

20



with the processing element's behavior. Additionally, if the processing element represents

a general processor and the behavior is slated for software compilation, the interface may

be translated to code in terms of I/O instructions of that processor. In such a case, the

target architecture shown in Figure 9(a) would reduce to two PEs and a shared memory,

connected through a single bus sBus.

The result of communication synthesis, a component netlist and software code for compila-

tion, can then be handed-o� to synthesis tools and target compilers for �nal synthesis.

7 Hand-o�

The last step in the synthesis ow was communication re�nement. This step generates the

hand-o� model for our system. This model is then further re�ned using traditional back-end

tools as shown in Figure 1.

The software portion of the communication (hand-o�) model consists of code in C for each

of the allocated processors in the target architecture. Compilers for each of the di�erent

processors are used to compile the C code. The hardware portion of the model consists

of behavioral models of the synthesizable ASICs in VHDL. The behavioral models can be

synthesized using high-level synthesis (HLS) tools. The interfaces between hardware and

software may also be modeled in behavioral VHDL and synthesized using the same HLS

tools. This design process generates the implementation model which consists of object code

executing on the di�erent processors and a gate-level netlist of the hardware components.

The implementation model can then be simulated, veri�ed and manufactured.

21



8 Conclusion

In this report we have proposed a co-design methodology for the design of embedded sys-

tems. We have described the various steps in a methodology that re�nes an initial speci�-

cation to a �nal implementation model. Our methodology uses the SpecC language which

provides a minimal and complete set of constructs and features required for the speci�ca-

tion of embedded systems. The designer uses SpecC to de�ne the smallest indivisible unit

of behavior and the relationship of these units in terms of hierarchy, concurrency, state

transitions etc.

We described the synthesis ow of the methodology which consists of well-de�ned transfor-

mations like allocation, partitioning, scheduling and communication re�nement. The result

of each transformation is to produce a more re�ned model. These models are all in the same

language (SpecC) and are well de�ned. These well de�ned models and transformations pro-

vide a good base for formal veri�cation. Additionally, each model described in SpecC is

executable, in that it may be compiled, run and pro�led, increasing testability. The inter-

mediate models also document the design and make it more manageable and maintainable

for future upgrades.

Hardware/software tradeo�s can be easily explored using SpecC since the language and

methodology do not distinguish between hardware and software behaviors at the higher

levels of abstraction. Further, at these high levels, the use of abstract channels as a commu-

nication medium allows easy insertion of IPs. Plug-and-play is not possible at the detailed

implementation level.

We also described a graphical user interface, SpecEdit, for our proposed co-design explo-

ration tools. This interface can be used for specifying the system as well as for performing

the re�nement transformations. Thus, SpecEdit hides the intricacies of modeling hardware

by providing a graphical interface and a C-like environment for specifying the behavior of

an embedded system.

This work has opened several avenues of research and uncovered several problems; additional

22



e�ort will be needed to solve these problems. Implementation of the proposed co-design

tool will be the next step toward a viable solution.

Acknowledgements

We would like to acknowledge the support of the various granting agencies who have con-

tributed research funding, without which this work would not have been possible. This

work was supported in part by grants from: Hitachi, Grant #-H22003; Toshiba, Grant

#-TC-20881; SRC, Grant #-97-DJ-146; and Rockwell, Grant #-RSS-24141.

23


