
Design Space Exploration through Interactive
Model Mappings for UML-based Specifications

Tim Schattkowsky1, Achim Rettberg2, Rainer Dömer3

1 Paderborn University, Germany
2 C-LAB, Germany

3 University of Cal. at Irvine, USA

1 Introduction
In previous work [3], we have introduced the Abstract Execution Platform (AEP)

as an UML-based design approach for the design of embedded hardware or software
systems. This approach is largely based on UML 2.0 Activities as a data and control
flow oriented model of computation. The resulting specifications have to be
transformed to platform specific code, e.g., HDL for a specific FPGA family. During
this transformation, the functional system description is mapped to the available
resources, e.g., logical functions within LUTs, memories and existing functional units
(like multipliers).

The design space for an AEP solution is determined by the possible mappings to
available resources and the application of general patterns like multiplexing. Thus, we
introduce an interactive mapping approach based on the application of graph
transformations to enable design space exploration in the context of our model-based
AEP design approach.

2 Interactive Model Mappings in the Design Process
A complete abstract AEP system specification is already executable as a software

system. Such a specification also conforms to the AEP SoC Profile [1] if it does not
employ any constructs not allowed by the SoC profile. However, this is just the
starting point for refining the specification to contain explicit information about how
the employed constructs have to be mapped to different possible implementations.

In our approach, design alternatives are the results of the application of different
chains of model transformations leading from a functional system specification to a
final platform specific design (see Figure 1). Starting with a complete AEP-based
system specification, implementation alternatives of the defined functional blocks can
be interactively selected based on libraries of available model transformations.

In the transformation libraries, the mappings between function blocks and specific
implementation methods are defined as graph transformation rules. For such rules, the
left-hand side defines the functional block to be matched while the right-hand side
defines a correspondence either consisting solely of AEP language elements or new
language elements that are interpreted by the platform specific model compiler

employed to create the final synthesizable HDL. For this, the original behavior model
is implicitly transformed to a canonical form of an extended UML Activity where all
expressions are completely expanded. This enables the matching of single language
elements such as multiplications while maintaining the original UML syntax for
Activities at the model level. The graph transformation rules are based on the graph
transformation approach presented in [2].

AEP profiles define syntactic subsets of the AEP for application in a more
specialized domain like SoC modeling. Syntactically, these are just UML profiles.
The transformation libraries in our approach are defined in the context of the AEP or
an AEP profile. The resulting metamodel effectively forms the type graph for the
transformations in such a library. For our approach, both left-hand side and right-hand
side have to conform to the same metamodel. Thus, the libraries contain model-to-
model transformation resulting in a model conforming to this metamodel.

A particular model may conform to several nested AEP profiles, e.g., the SoC
profile and a platform specific profile. As a result, transformations from a more
abstract library, e.g., the AEP-level transformations applied to transform the Base
Design to Design C in our example, may cause a model to be elevated to a more
abstract level of design. Thus, the selection of the considered libraries during the
interactive mapping process already determines the level of abstraction of the final
design alternative.

Base Design

Complete
System

Specification

Base DesignBase Design

Complete
System

Specification

Abstract Execution Platform (AEP)

AEP SoC Profile

Platform
Specific

Solutions

Platform X

Generic
(Software)
Solutions

Generic
Transformations

Generic
SoC

Solutions

Design C

Refined
SW

Specification

Design CDesign C

Refined
SW

Specification

Design AA

AEP
SoC

Specification

Design AADesign AA

AEP
SoC

Specification

Design A

Refined
AEP

Specification

Design ADesign A

Refined
AEP

Specification

Generic
Transformations

SoC specific
Transformations

Design B

AEP
SoC

Specification

Design BDesign B

AEP
SoC

Specification

SoC specific
Transformations

Design AAA

Platform X
specific SoC
Specification

Design AAADesign AAA

Platform X
specific SoC
Specification

Platform X specific
Transformations

Design BA

Platform Y
specific SoC
Specification

Design BADesign BA

Platform Y
specific SoC
Specification

Design BB

Platform Y
specific SoC
Specification

Design BBDesign BB

Platform Y
specific SoC
Specification

Platform Y

Platform Y specific
Transformations

Platform Y specific
Transformations

Platform S

Design CA

Platform S
specific SW

Specification

Design CADesign CA

Platform S
specific SW

Specification

Platform S specific
Transformations

Figure 1: Interactive Model Mappings in AEP-based SoC Design

For the exploration of SoC design alternatives, transformation libraries at three
different levels of abstraction are employed. First, there is a generic transformation
library containing model transformations introducing AEP-level refinement like the
explicit unrolling of loops or inlining of functions. These concepts are generally
applicable to both hardware and software systems, as the result of these
transformations can be expressed as a modified AEP specification enforcing a certain
implementation style on a construct. Thus, it enables the specification of the handling
of the usual time/space tradeoffs and generic optimizations. These transformations are
employed during the generic mapping process, where the designer can apply these
transformations directly to the original functional specifications. The resulting
specifications are still valid generic AEP specifications at roughly the same level of
abstraction. As a second step, the design may apply transformations belonging to the
SoC profile to enforce hardware specific design decisions like the use of multiplexing,
replication and pipelining. Finally, platform specific resources can be exploited
through a platform specific transformation library containing transformation rules for
mapping certain resources like predefined functional units (e.g. multipliers), different
memories or logic functions implemented in a LUT of an FPGA.

However, even for the same functional block, the mapping to available platform
resources has often to be done at the instance level to cope with limited resources.
Thus, especially for the SoC profile, the original specification can be automatically
transformed into a single instance level model. This essentially enables the
application of the same transformation rules at the instance level.

The final result of the interactive mapping process is a set of design alternatives
described as chains of transformations from the abstract Base Design. Tools can
maintain these design alternatives by saving the actual matches leading to the
application of the transformation rules. Thus, all design alternatives can be managed
and considered in later stages of the design flow, e.g., simulation. Furthermore,
consistency between the evolving Base Design and the already defined design
alternatives can be preserved while the specification evolves.

References
[1] Tim Schattkowsky, Jan Hendrik Hausmann, Gregor Engels: Using UML

Activities for System-on-Chip Design and Synthesis. In Proc. ACM/IEEE 9th
International Conference on Model Driven Engineering Languages and Systems
(MoDELS 2006), Genova, Italy, October 2006, LNCS, Springer, 2006 (to
appear).

[2] Tim Schattkowsky, Wolfgang Müller: Transformation of UML StateMachines
for Direct Execution. In Proc. 2005 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC'05), 2005.

[3] Tim Schattkowsky, Wolfgang Müller, and Achim Rettberg: A Generic Model
Execution Platform for the Design of Hardware and Software. In G. Martin, W.
Müller (eds.): UML for SoC Design. Kluwer, 2005.

	Design Space Exploration through Interactive Model Mappings for UML-based Specifications
	1 Introduction
	2 Interactive Model Mappings in the Design Process
	References

