
Out-of-Order Parallel Simulation of SystemC Models on
Many-Core Architectures

University of Tokyo, Jan. 19, 2015

(c) 2015 R. Doemer, CECS 1

Out-of-Order Parallel Simulation
of SystemC Models

on Many-Core Architectures

Collaborative Project with Intel Corp.

Rainer Dömer, Guantao Liu, Tim Schmidt
{doemer,guantaol,schmidtt}@uci.edu

Center for Embedded and Cyber-Physical Systems

University of California, Irvine

Project Key Points

• Project on Parallel SystemC Simulation
– Faster simulation on multi- and many-core hosts

– Maximum compliance with current execution semantics

– Support for parallel execution of virtual platforms

• Introduction of a SystemC Compiler
– Recoding Infrastructure for SystemC (RISC)

– Advanced static analysis for parallel execution

– Model instrumentation and code generation

• Parallel SystemC Core Library
– Out-of-order parallel scheduler, multi-threading safe primitives

– Many-core target platform (e.g. Xeon Phi™)

• Open Source
– Collaboration with Accellera SystemC Language WG

OoO Parallel SystemC Project, U. of Tokyo, Jan. 19, 2015 (c) 2015 R. Doemer, CECS 2

Out-of-Order Parallel Simulation of SystemC Models on
Many-Core Architectures

University of Tokyo, Jan. 19, 2015

(c) 2015 R. Doemer, CECS 2

OoO Parallel SystemC Project, U. of Tokyo, Jan. 19, 2015 (c) 2015 R. Doemer, CECS 3

Outline

• Out-of-Order Parallel SystemC Simulation
– Traditional Discrete Event Simulation (DES)

– Parallel Discrete Event Simulation (PDES)

– Out-of-Order Parallel Discrete Event Simulation (OoO PDES)

• Promising Experimental Results
– Embedded application example

– Parallel benchmarks

• Project Overview and Status
– SystemC compiler and out-of-order parallel simulator

– Many-core target architecture

– Virtual Platform (VP) integration

– SystemC model analysis and recoding

• Concluding Remarks

OoO Parallel SystemC Project, U. of Tokyo, Jan. 19, 2015 (c) 2015 R. Doemer, CECS 4

• Electronic System Level Models
– Abstract description of a complete system

– Hardware + Software

• Key Concepts in System Modeling
– Explicit Structure

• Block diagram structure

• Connectivity through ports

– Explicit Hierarchy
• System composed of components

– Explicit Concurrency
• Potential for parallel execution

• Potential for pipelined execution

– Explicit Communication and Computation
• Modules

• Channels and Interfaces

Project Context: ESL Design

B0 B1

B2 B3

SystemC Model

Out-of-Order Parallel Simulation of SystemC Models on
Many-Core Architectures

University of Tokyo, Jan. 19, 2015

(c) 2015 R. Doemer, CECS 3

Project Context: ESL Design

• Model Validation through Simulation!
– Efficient system-level simulation is critical

• Fast, and

• Accurate!

– Complexity of system models grows constantly
• Need for speed!

• Parallel Simulation!
– Parallelism explicitly specified in model

• System-level Description Language (SLDL)
– SystemC [Groetker et. al, 2002]: SC_THREAD, SC_METHOD

– SpecC [Gajski et. al, 2000]: par { }, pipe { }

– Parallel processing available in standard PCs
• Multi-core host PCs readily available

• Many-core technology is arriving

OoO Parallel SystemC Project, U. of Tokyo, Jan. 19, 2015 (c) 2015 R. Doemer, CECS 5

ESL Simulation: Related Work

OoO Parallel SystemC Project, U. of Tokyo, Jan. 19, 2015 (c) 2015 R. Doemer, CECS 6

Discrete Event
Simulation is slow

Modeling Techniques
•Transaction-level modeling (TLM).
•TLM temporal decoupling.
•Savoiu et al. [MEMOCODE’05]
•Razaghi et al.[ASPDAC’12]

Hardware-based Acceleration
•Sirowy et al. [DAC’10]
•Nanjundappa et al. [ASPDAC’10]
•Sinha et al. [ASPDAC’12]

SMP Parallel Simulation
•Fujimoto. [CACM’90]
•Chopard et al. [ICCS’06]
•Ezudheen et al. [PADS’09]
•Mello et al. [DATE’10]
•Schumacher et al. [CODES’11]
•Chen et al. [IEEED&T’11]
•Yun et al. [TCAD’12]

Distributed Simulation
•Chandy et al. [TSE’79]
•Huang et al. [SIES’08]
•Chen et al. [CECS’11]

Out-of-Order Parallel Simulation of SystemC Models on
Many-Core Architectures

University of Tokyo, Jan. 19, 2015

(c) 2015 R. Doemer, CECS 4

Out-of-Order PDES Technology

• Traditional Discrete Event Simulation (DES)
– Reference simulators run sequentially, only one thread at a time

(cooperative multi-threading model)

– Cannot utilize the capabilities of multi- or many-core hosts

• Parallel Discrete Event Simulation (PDES)
– Threads run in parallel (if at the same delta cycle and time)

– Simulation-cycles are absolute barriers!

 Out-of-order Parallel DE simulation (OoO PDES)
– Best technique known today, developed by CECS [DATE’12]

– Threads run in parallel and out-of-order
even in different delta and time cycles if there are no conflicts!

– Aggressive, runs maximum number of threads in parallel,
but fully preserves DES semantics and model accuracy!

OoO Parallel SystemC Project, U. of Tokyo, Jan. 19, 2015 (c) 2015 R. Doemer, CECS 7

Discrete Event Simulation (DES)

OoO Parallel SystemC Project, U. of Tokyo, Jan. 19, 2015 (c) 2015 R. Doemer, CECS 8

10:0
10:1

10:2

20:1
20:0

20:2

30:0

0:0
T:Δth4th2 th3th1• Traditional DES

– Concurrent threads of execution

– Managed by a central scheduler

– Driven by events and time advances
• Delta-cycle

• Time-cycle

 Partial temporal order with barriers

• Reference Simulator
– SystemC reference simulator

uses cooperative multi-threading

 A single thread is active at any time!

 Cannot exploit parallelism

 Cannot utilize multiple cores

Out-of-Order Parallel Simulation of SystemC Models on
Many-Core Architectures

University of Tokyo, Jan. 19, 2015

(c) 2015 R. Doemer, CECS 5

Parallel Discrete Event Simulation

OoO Parallel SystemC Project, U. of Tokyo, Jan. 19, 2015 (c) 2015 R. Doemer, CECS 9

10:0
10:1

10:2

20:1
20:0

20:2

30:0

0:0
T:Δth4th2 th3th1• Parallel DES

– Threads execute in parallel iff
• in the same delta cycle, and

• in the same time cycle

 Significant speed up!

– Synchronous PDES:
Cycle boundaries are
absolute barriers!

• Aggressive Parallel DES
– Conservative Approaches

• Careful static analysis prevents conflicts

– Optimistic Approaches
• Conflicts are detected and addressed

(roll back)

Out-of-Order Parallel DES

OoO Parallel SystemC Project, U. of Tokyo, Jan. 19, 2015 (c) 2015 R. Doemer, CECS 10

10:0
10:1

10:2

20:1
20:0

20:2

30:0

0:0
T:Δth4th2 th3th1• Out-of-Order PDES

– Threads execute in parallel iff
• in the same delta cycle, and

• in the same time cycle,

• OR if there are no conflicts!

– Can utilize advanced compiler for
static data conflict analysis

 Allows as many threads in parallel
as possible

 Significantly higher speedup!
• Results at [DATE’12], [IEEE TCAD14]

 Fully preserves…
DES execution semantics

 Accuracy in results and timing

Out-of-Order Parallel Simulation of SystemC Models on
Many-Core Architectures

University of Tokyo, Jan. 19, 2015

(c) 2015 R. Doemer, CECS 6

Synchronous vs. Out-of-Order PDES

• Simple Example:
– Parallel video and audio decoding with different frame rates

OoO Parallel SystemC Project, U. of Tokyo, Jan. 19, 2015 (c) 2015 R. Doemer, CECS 11

Audio
output
stream

Video
output
stream

DUTH.264
Decode

MP3
Decode

Stimulus

MonitorH.264
Monitor

MP3
Monitor

30fps 38.28fps

Multimedia
input

stream

1: SC_MODULE(H264dec)
2: { sc_port<read_if> r;
3: sc_port<write_if> w;
4: …
5: void main(){
6: while(1){
7: r‐>read(input_data);
8: decode_h264_frame();
9: wait(33.3, SC_MS);
10: w‐>write(out_data);
11: }
12: };

1: SC_MODULE(MP3dec)
2: { sc_port<read_if> r;
3: sc_port<write_if> w;
4: …
5: void main(){
6: while(1){
7: r‐>read(input_data);
8: decode_mp3_frame();
9: wait(26.12, SC_MS);
10: w‐>write(out_data);
11: }
12: };

Synchronous vs. Out-of-Order PDES

• Simple Example:
– Parallel video and audio decoding

with different frame rates
 Synchronous PDES

• Observes time and delta cycles
• Global time

 Out-of-Order PDES
• Breaks cycle barrier
• Local times (per thread)

 PDES:

 OoO PDES:

OoO Parallel SystemC Project, U. of Tokyo, Jan. 19, 2015 (c) 2015 R. Doemer, CECS 12

[ms]

[ms]

Input
stream

DUTH.264
Dec.

MP3
Dec.

Stimulus

MonitorH.264
Mon.

MP3
Mon.

30 fps 38.28 fps

Audio
output
stream

Video
output
stream

Out-of-Order Parallel Simulation of SystemC Models on
Many-Core Architectures

University of Tokyo, Jan. 19, 2015

(c) 2015 R. Doemer, CECS 7

Promising Experimental Results

• What speedup can OoO PDES technology achieve
on today’s many-core host platforms?
 Early results using manually coded examples

– Experimental setup
 Many Integrated Core (MIC) Platform

– 1 Intel® Xeon Phi™ Coprocessor 5110P at 1.053 GHz

– 60 cores on ring-bus, 4 hyper-threads per core

 240 parallel hardware threads available

– Highly parallel benchmarks
 GPU pipeline example (Mandelbrot)

– Embedded system example with test bench and DUT

 Parallel floating-point multiplications (fmul)
– Independent parallelism, balanced load, no communication

 Parallel Fibonacci calculation (fibo)
– Dependent parallelism, unbalanced load, some communication

OoO Parallel SystemC Project, U. of Tokyo, Jan. 19, 2015 (c) 2015 R. Doemer, CECS 13

0x

10x

20x

30x

40x

50x

1 2 4 8 16 32 64 128 256

4 Core Host,
PDES

2 CPU 6 Core Host,
PDES

2 CPU 6 Core Host,
OoO PDES

60x4 Core Xeon Phi,
Posix PDES

GPU Pipeline Benchmark

• Graphics Application: Mandelbrot Set Rendering
– Experimental Results

• Sequence of 100 Mandelbrot images (640x448, depth 4096)

• Manually created PDES model (Posix-threads based)

• Multi-core platforms: Intel® Xeon® CPUs (4 cores, 2x6 cores)

• Many-core platform: Intel® Xeon Phi™ (60 x 4 cores)

OoO Parallel SystemC Project, U. of Tokyo, Jan. 19, 2015 (c) 2015 R. Doemer, CECS 14

3.7x speedup

5.9x speedup

46x speedup

6.3x speedup

S
pe

ed
up

Threads

46x

3.7 to 6.3x

Mandelbrot Benchmark Results
on Intel® Xeon® and Xeon Phi™

Out-of-Order Parallel Simulation of SystemC Models on
Many-Core Architectures

University of Tokyo, Jan. 19, 2015

(c) 2015 R. Doemer, CECS 8

Parallel Benchmark Results

• Experimental Results (Intel® Xeon Phi Coprocessor, 60x4 cores)

OoO Parallel SystemC Project, U. of Tokyo, Jan. 19, 2015 (c) 2015 R. Doemer, CECS 15

0x

20x

40x

60x

80x

100x

120x

0

50

100

150

200

250

300

1 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240

fibo elapsed time [sec]

fmul elapsed time [sec]

fibo rel. speedup

fmul rel. speedup

Parallel Benchmark Results
on Intel® Xeon Phi™

80x

103x

E
xe

cu
tio

n
T

im
e

[s
ec

]

S
pe

ed
up

Out-of-Order PDES Technology

• OoO PDES Key Ideas
1. Dedicated SystemC compiler with advanced model analysis

 Static conflict analysis based on Segment Graphs

2. Parallel simulator with out-of-order scheduling on many cores
 Fast decision making at run-time, optimized mapping

• Fundamental Data Structure: Segment Graph
– Key to semantics-compliant out-of-order execution [DATE’12]

– Key to prediction of future thread state [DATE’13]
• “Optimized Out-of-Order Parallel DE Simulation Using Predictions”

– Key to May-Happen-in-Parallel Analysis [DATE’14]
• “May-Happen-in-Parallel Analysis based on Segment Graphs

for Safe ESL Models“ (Best Paper Award)

– Journal publication: “OoO PDES for TLM” [IEEE TCAD’14]
• Comprehensive article with HybridThreads extension

OoO Parallel SystemC Project, U. of Tokyo, Jan. 19, 2015 (c) 2015 R. Doemer, CECS 16

Out-of-Order Parallel Simulation of SystemC Models on
Many-Core Architectures

University of Tokyo, Jan. 19, 2015

(c) 2015 R. Doemer, CECS 9

Project Overview and Tool Flow

• Research and Development Tasks
1) Dedicated SystemC compiler

(RISC infrastructure)

2) Parallel SystemC library

3) Performance tuning
for many‐core hosts

4) Virtual Platform (VP)
integration

5) Model analysis
(may-happen-
in-parallel, MHP)

6) Model recoding,
transformation
and optimization

OoO Parallel SystemC Project, U. of Tokyo, Jan. 19, 2015 (c) 2015 R. Doemer, CECS 17

Parallel
SystemC
Library

SystemC
Model

SystemC
Compiler

RISC

C++ Compiler

Parallel
Executable

Parallel
C++ Model

Parallel
Simulation

VP
Engine

Virtual
Platform
Library

VP-based
Prototyping

Many-Core
Host Platform

MHP
Analysis

ToolsRISC

MHP
Analysis

ToolsRISC

Model
Analysis

ReportsReportsReports

MHP
Analysis

ToolsRISC

Recoding
Tools

RISC

Recoding
Tools

RISC

Refined
SystemC

Model

Model
Transformation

and
Optimization

Recoding
Tools

RISC

R&D Task 1: SystemC Compiler

• RISC Software Stack
 Recoding Infrastructure for SystemC

– C/C++ foundation

– ROSE compiler infrastructure

OoO Parallel SystemC Project, U. of Tokyo, Jan. 19, 2015 (c) 2015 R. Doemer, CECS 18

RISC

C/C++ Foundation

ROSE IR

• ROSE Internal Representation

• Explicit support for

• Source code analysis

• Source-to-source
transformations

Out-of-Order Parallel Simulation of SystemC Models on
Many-Core Architectures

University of Tokyo, Jan. 19, 2015

(c) 2015 R. Doemer, CECS 10

R&D Task 1: SystemC Compiler

• RISC Software Stack
 Recoding Infrastructure for SystemC

– SystemC Internal
Representation

OoO Parallel SystemC Project, U. of Tokyo, Jan. 19, 2015 (c) 2015 R. Doemer, CECS 19

RISC

C/C++ Foundation

ROSE IR

SystemC IR

• Class hierarchy to represent
SystemC objects

R&D Task 1: SystemC Compiler

OoO Parallel SystemC Project, U. of Tokyo, Jan. 19, 2015 (c) 2015 R. Doemer, CECS 20

RISC

Segment Graph

C/C++ Foundation

ROSE IR

SystemC IR

• RISC Software Stack
 Recoding Infrastructure for SystemC

– Segment Graph
• Segment boundaries (wait)
• Variable access conflict analysis

Out-of-Order Parallel Simulation of SystemC Models on
Many-Core Architectures

University of Tokyo, Jan. 19, 2015

(c) 2015 R. Doemer, CECS 11

R&D Task 1: SystemC Compiler

OoO Parallel SystemC Project, U. of Tokyo, Jan. 19, 2015 (c) 2015 R. Doemer, CECS 21

RISC

Segment Graph

C/C++ Foundation

ROSE IR

SystemC IR

• RISC Software Stack
 Recoding Infrastructure for SystemC

– Segment Graph
• Current Status:

Segment Graph for straight-line code

MyModule(sc_module_name mn):
sc_module(mn)

{ SC_THREAD(straight1); }

void straight2()
{ x = 42;

int xx = 43;
int yy;
yy;
int o = y;
wait(10, SC_NS);
wait();
int kk;
wait();
int oo;

}

RISC

R&D Task 2: Parallel SystemC Library

• Parallel Simulator with Out-of-Order Scheduler
– OoO PDES execution

OoO Parallel SystemC Project, U. of Tokyo, Jan. 19, 2015 (c) 2015 R. Doemer, CECS 22

• Fast conflict table lookup

• Truly parallel threads

• Optimal thread-to-core mapping

Out-of-Order Parallel Simulation of SystemC Models on
Many-Core Architectures

University of Tokyo, Jan. 19, 2015

(c) 2015 R. Doemer, CECS 12

R&D Task 2: Parallel SystemC Library

• Parallel Simulator with Out-of-Order Scheduler
– SystemC kernel extension

OoO Parallel SystemC Project, U. of Tokyo, Jan. 19, 2015 (c) 2015 R. Doemer, CECS 23

start

notify

wait

end

execute

this==th_root

Add notified event to events' list N

Move(this, RUN, WAIT)

Move(this, RUN, COMPLETE)
Go(schedule)

Go(schedule)
sleepExit(sim)

Delete(this)

end

Yes

Yes

Yes

No

No

No Yes
No

Lock(L)

Lock(L)

Lock(L)

unLock(L)

Release acquired channel locks

Schedule (this);
unLock(L)

if (this != th_root) {
 Lock(L); signal(Cond_parent);
 wait(Cond_this, L); unLock(L); }

Re-acquire
released

channel locks

Schedule(this);
wait(Cond_this, L);

unLock(L)

• POSIX
multi-threading

• MT-safe
SystemC
primitives

• Protected
scheduling
resources

• Protected
communication

• Example:
Life-time of a
SC_THREAD

R&D Task 2: Parallel SystemC Library

• Parallel Simulator with Out-of-Order Scheduler
– SystemC kernel extension

– Current Status:
• Multi-threading: Completed

– SC_THREAD

– SC_METHOD

• Synchronization: Completed
– sc_event, sc_event_or_list, sc_event_and_list

– wait(sc_event), wait(sc_time)

– next_trigger(sc_event), next_trigger(sc_time)

– notify(), notify(SC_ZERO_TIME), notify(sc_time)

• Communication: Ongoing
– sc_prim_channel

– sc_channel

• Advanced features: Future
– sc_trace, sc_signal, sc_bv, etc.

OoO Parallel SystemC Project, U. of Tokyo, Jan. 19, 2015 (c) 2015 R. Doemer, CECS 24

Out-of-Order Parallel Simulation of SystemC Models on
Many-Core Architectures

University of Tokyo, Jan. 19, 2015

(c) 2015 R. Doemer, CECS 13

R&D Task 2: Parallel SystemC Library

• Parallel Simulator with Out-of-Order Scheduler
– Test cases and benchmarks:

OoO Parallel SystemC Project, U. of Tokyo, Jan. 19, 2015 (c) 2015 R. Doemer, CECS 25

Benchmark
example

SC_
THREAD

SC_
METHOD wait next_trigger notify

sc_
prim_channel

fmul.cpp  

wait_event.cpp   

wait_or_list.cpp   

wait_and_list.cpp   

immediate_notify
.cpp   

next_trigger.cpp     

ProdCons_event
.cpp   

ProdCons_prim_
channel.cpp    

Mandelbrot.cpp ☐ ☐ ☐ ☐ ☐ ☐

Reaches 7.97x on 8-core host!

R&D Task 3: Many-Core Target

• Intel® Many Integrated Core Architecture

 Intel® Xeon Phi™ Coprocessor
– Provides

• 60 processor cores

• 4 hyper-threads per core

 240 parallel hardware threads!

– Hardware Features
• Vector processing unit (VPU)

• Extended Math Unit (EMU) for transcendental operations

• Bidirectional ring interconnect

– Peak performance
 over 1 teraFLOPS (double-precision)

 Uses familiar and standard programming models
 Appears as a regular Linux machine with 240 cores!

OoO Parallel SystemC Project, U. of Tokyo, Jan. 19, 2015 (c) 2015 R. Doemer, CECS 26

Out-of-Order Parallel Simulation of SystemC Models on
Many-Core Architectures

University of Tokyo, Jan. 19, 2015

(c) 2015 R. Doemer, CECS 14

R&D Task 3: Many-Core Target

• Performance Tuning for Intel® MIC Architecture
– Optimize thread-to-core mapping

Core distance matters!

– Architecture study
• Xeon Phi™ ring network

• Distributed Tag Directory (TD)

• Unknown hash-function

– Optimization Approach
• Profile core distances

• Determine TD

• Place threads close to TD

 Speedup 145% on average

 To be presented at ASPDAC
in Tokyo, January 21, 2015

OoO Parallel SystemC Project, U. of Tokyo, Jan. 19, 2015 (c) 2015 R. Doemer, CECS 27

0

200

400

600

800

1000

1200

1400

1600

1800

1 13 25 37 49 61 73 85 97 10
9

12
1

13
3

14
5

15
7

16
9

18
1

19
3

20
5

21
7

22
9

L
at

en
cy

 (
cy

cl
es

)

Core

Naive Expectation

Measured Latency

Core distance for Xeon Phi™ 5120D Coproc.

Performance speedup results
90%

110%

130%

150%

170%

190%

210%

230%

250%

1 11 21 31 41 51 61 71 81 91
S

p
ee

d
u

p

Avg. 145.11%

R&D Task 4: Virtual Platforms (VP)

• Virtual Platform and Processor Models
– Development of SW before physical HW is available

• aka. “left shift” paradigm

– Reach execution speed close to real-time

– Provide accurate programmer’s view of the system

– Offer advanced debugging capabilities
• Checkpoints

• Reverse execution

– Examples:
• Open Virtual Platforms (OVP) [Imperas’14]

• Wind River® Simics® VP [Simics’13]

 Develop a Virtual Prototype Environment (VPE)
that allows seamless integration with SystemC models
(Project year 2)

OoO Parallel SystemC Project, U. of Tokyo, Jan. 19, 2015 (c) 2015 R. Doemer, CECS 28

Out-of-Order Parallel Simulation of SystemC Models on
Many-Core Architectures

University of Tokyo, Jan. 19, 2015

(c) 2015 R. Doemer, CECS 15

R&D Task 4: Virtual Platforms (VP)

• Virtual Prototype Environment (VPE) with SystemC
– Simulator integration

• SystemC simulation engine

• VP simulator

 Identify best integration scheme
• Option A: Master and slaves

• Option B: Multiple masters connected by bridges

OoO Parallel SystemC Project, U. of Tokyo, Jan. 19, 2015 (c) 2015 R. Doemer, CECS 29

Simulator
Main
Loop

Master

Wrapper

Cycle-
Callable
Interface

Slave

Simulator 1
Main
Loop

Master Master

Simulator 2
Main
Loop

Bridge

Sync.

R&D Task 4: Virtual Platforms (VP)

• Virtual Prototype Environment (VPE) with SystemC
– Example: Multiple VPs integrated with SystemC simulator

• Virtual processors in Wrapper modules
appear as SC_THREAD’s

• Can execute in parallel, and be scheduled out-of-order

 R&D focus (year 2):
• Maximize parallel execution speed

• Maximize timing accuracy (untimed, approx. timed, time-accurate)

OoO Parallel SystemC Project, U. of Tokyo, Jan. 19, 2015 (c) 2015 R. Doemer, CECS 30

SystemC
Kernel

OoO
Parallel

Scheduler

…

Worker
Thread

Worker
Thread

Worker
Thread

SystemC
Thread

Wrapper

VPWrapper

VP
Wrapper

VP
Wrapper

VP
Wrapper

VP

Out-of-Order Parallel Simulation of SystemC Models on
Many-Core Architectures

University of Tokyo, Jan. 19, 2015

(c) 2015 R. Doemer, CECS 16

R&D Task 5: SystemC Analysis

• Compile-time Model Analysis
– Dedicated SystemC compiler

• Abstract Syntax Tree with SystemC semantics

• Recoding Infrastructure for SystemC (RISC)

– Static analysis R&D opportunities (year 3)
• Statistics of modules, channels, interfaces, …

• Deadlock and live-lock analysis

• Memory and stack size estimation

• Hot-spot identification

• Worst-Case-Execution-Time (WCET) analysis

• Race-condition and parallel access conflict analysis

• May-Happen-in-Parallel (MHP) analysis
– Based on [DATE’14, best paper award]

• …

OoO Parallel SystemC Project, U. of Tokyo, Jan. 19, 2015 (c) 2015 R. Doemer, CECS 31

SystemC
Model

MHP
Analysis

ToolsRISC

MHP
Analysis

ToolsRISC

Model
Analysis

ReportsReportsReports

MHP
Analysis

ToolsRISC

R&D Task 6: SystemC Recoding

• Model Transformation and Optimization
– SystemC source-to-source transformation

• ROSE-compiler infrastructure

• Source re-coding and re-factoring

• Model optimization

– Recoding R&D opportunities (year 3)
• Source code maintenance, formatting

• Model customization and tuning

• Back-annotation of profiling or other data
– Performance

– Power

• Code instrumentation

• Documentation

• Model refinement, synthesis

• …

OoO Parallel SystemC Project, U. of Tokyo, Jan. 19, 2015 (c) 2015 R. Doemer, CECS 32

SystemC
Model

Recoding
Tools

RISC

Recoding
Tools

RISC

Refined
SystemC

Model

Model
Transformation

and
Optimization

Recoding
Tools

RISC

Out-of-Order Parallel Simulation of SystemC Models on
Many-Core Architectures

University of Tokyo, Jan. 19, 2015

(c) 2015 R. Doemer, CECS 17

Project Timeline and Milestones

• Year 1: Parallel SystemC Compiler and Simulator
– F’14: RISC for straight-line code, library with MT-safe primitives

– W’15: RISC for functions, library with protected data structures

– S’15: RISC code generator, simulator with OoO scheduling

– Su’15: Event conflicts, simulator for parallel SystemC subset

 Goal: Stable prototype for synthesizable SystemC, 10x speedup!

• Year 2: Virtual Prototype Environment
– Simics VP integration, timing-accuracy optimization,

compiler and simulator optimization, code hardening

 Goal: Parallel SystemC tool suite release, 100x speedup!

• Year 3: Open Source Release and Standardization Efforts
– SystemC analysis for hot-spots and MHP, source-to-source

transformations, standardization efforts with Accellera

 Goal: SystemC Virtual Prototype Environment, 100x speedup!

OoO Parallel SystemC Project, U. of Tokyo, Jan. 19, 2015 (c) 2015 R. Doemer, CECS 33

Concluding Remarks

• Project on Advanced Parallel SystemC Simulation
– OoO PDES on multi- and many-core platforms

– Maximum compliance with current execution semantics

– Support for parallel execution of virtual platforms (VP)

• Dedicated SystemC Compiler
– Recoding Infrastructure for SystemC (RISC)

– Advanced static analysis for parallel execution

– Model instrumentation, code optimization, transformation

• Parallel SystemC Simulator
– Out-of-order parallel scheduler, multi-threading safe primitives

– Many-core target platform (e.g. Xeon Phi™)

• Open Source
– Collaboration with Accellera SystemC Language WG

OoO Parallel SystemC Project, U. of Tokyo, Jan. 19, 2015 (c) 2015 R. Doemer, CECS 34

Out-of-Order Parallel Simulation of SystemC Models on
Many-Core Architectures

University of Tokyo, Jan. 19, 2015

(c) 2015 R. Doemer, CECS 18

References (1)

• [HLDVT’10] W. Chen, X. Han, R. Dömer: "ESL Design and Multi-Core Validation
using the System-on-Chip Environment", Proceedings of HLDVT, Anaheim,
California, June 2010.

• [ASPDAC’11] R. Dömer, W. Chen, X. Han, A. Gerstlauer: "Multi-Core Parallel
Simulation of System-Level Description Languages", Proceedings of ASPDAC,
Yokohama, Japan, January 2011.

• [IEEE D&T’11] W. Chen, X. Han, R. Dömer: "Multicore Simulation of
Transaction-Level Models Using the SoC Environment", IEEE Design & Test of
Computers, vol. 28, no. 3, pp. 20-31, May-June 2011.

• [ASPDAC’12] W. Chen, R. Dömer: "An Optimizing Compiler for Out-of-Order
Parallel ESL Simulation Exploiting Instance Isolation", Proceedings of ASPDAC,
Sydney, Australia, February 2012.

• [ASPDAC’12] R. Dömer, W. Chen, X. Han: "Parallel Discrete Event Simulation
of Transaction Level Models", Proceedings of ASPDAC, Sydney, Australia,
February 2012.

• [DATE’12] W. Chen, X. Han, R. Dömer: "Out-of-Order Parallel Simulation for
ESL Design", Proceedings of DATE, Dresden, Germany, March 2012.

OoO Parallel SystemC Project, U. of Tokyo, Jan. 19, 2015 (c) 2015 R. Doemer, CECS 35

References (2)

• [HLDVT’12] W. Chen, C. Chang, X. Han, R. Dömer: "Eliminating Race
Conditions in System-Level Models by using Parallel Simulation Infrastructure",
Proceedings of HLDVT 2012, Huntington Beach, California, November 2012.

• [IEEE D&T’13] W. Chen, X. Han, C. Chang, R. Dömer: "Advances in Parallel
Discrete Event Simulation for Electronic System-Level Design", IEEE Design &
Test of Computers, vol. 30, no. 1, pp. 45-54, Jan.-Feb. 2013.

• [DATE’13] W. Chen, R. Dömer: "Optimized Out-of-Order Parallel Discrete Event
Simulation Using Predictions", Proceedings of DATE, Grenoble, France, March
2013.

• [DATE’14] W. Chen, X. Han, R. Dömer: "May-Happen-in-Parallel Analysis based
on Segment Graphs for Safe ESL Models", Proceedings of DATE, Dresden,
Germany, March 2014. (Best Paper Award!)

• [IEEE TCAD14] W. Chen, X. Han, C. Chang, G. Liu, R. Dömer: "Out-of-Order
Parallel Discrete Event Simulation for Transaction Level Models", IEEE
Transactions on CAD, vol. 33, no. 12, pp. 1859-1872, December 2014.

• [ASPDAC’15] G. Liu, T. Schmidt, R. Dömer, A. Dingankar, D. Kirkpatrick:
"Optimizing Thread-to-Core Mapping on Manycore Platforms with Distributed
Tag Directories", Accepted for publication at ASPDAC 2015, Tokyo, Japan,
January 2015.

OoO Parallel SystemC Project, U. of Tokyo, Jan. 19, 2015 (c) 2015 R. Doemer, CECS 36

