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Project Key Points

• Project on Parallel SystemC Simulation
– Faster simulation on multi- and many-core hosts

– Maximum compliance with current execution semantics

– Support for parallel execution of virtual platforms

• Introduction of a SystemC Compiler
– Recoding Infrastructure for SystemC (RISC)

– Advanced static analysis for parallel execution

– Model instrumentation and code generation

• Parallel SystemC Core Library
– Out-of-order parallel scheduler, multi-threading safe primitives

– Many-core target platform (e.g. Xeon Phi™)

• Open Source
– Collaboration with Accellera SystemC Language WG
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Outline

• Out-of-Order Parallel SystemC Simulation
– Traditional Discrete Event Simulation (DES)

– Parallel Discrete Event Simulation (PDES)

– Out-of-Order Parallel Discrete Event Simulation (OoO PDES)

• Promising Experimental Results
– Embedded application example

– Parallel benchmarks

• Project Overview and Status
– SystemC compiler and out-of-order parallel simulator

– Many-core target architecture

– Virtual Platform (VP) integration

– SystemC model analysis and recoding

• Concluding Remarks
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• Electronic System Level Models
– Abstract description of a complete system

– Hardware + Software

• Key Concepts in System Modeling 
– Explicit Structure

• Block diagram structure

• Connectivity through ports

– Explicit Hierarchy
• System composed of components

– Explicit Concurrency
• Potential for parallel execution

• Potential for pipelined execution

– Explicit Communication and Computation
• Modules

• Channels and Interfaces

Project Context: ESL Design

B0 B1

B2 B3

SystemC Model
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Project Context: ESL Design

• Model Validation through Simulation!
– Efficient system-level simulation is critical

• Fast, and

• Accurate!

– Complexity of system models grows constantly
• Need for speed!

• Parallel Simulation!
– Parallelism explicitly specified in model

• System-level Description Language (SLDL)
– SystemC [Groetker et. al, 2002]: SC_THREAD, SC_METHOD

– SpecC [Gajski et. al, 2000]: par { }, pipe { }

– Parallel processing available in standard PCs
• Multi-core host PCs readily available

• Many-core technology is arriving
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ESL Simulation: Related Work
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Discrete Event 
Simulation is slow

Modeling Techniques
•Transaction-level modeling (TLM).
•TLM temporal decoupling.
•Savoiu et al. [MEMOCODE’05]
•Razaghi et al.[ASPDAC’12]

Hardware-based Acceleration
•Sirowy et al. [DAC’10]
•Nanjundappa et al. [ASPDAC’10]
•Sinha et al. [ASPDAC’12]

SMP Parallel Simulation
•Fujimoto. [CACM’90]
•Chopard et al. [ICCS’06]
•Ezudheen et al. [PADS’09]
•Mello et al. [DATE’10]
•Schumacher et al. [CODES’11]
•Chen et al. [IEEED&T’11]
•Yun et al. [TCAD’12]

Distributed Simulation
•Chandy et al. [TSE’79]
•Huang et al. [SIES’08]
•Chen et al. [CECS’11]
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Out-of-Order PDES Technology

• Traditional Discrete Event Simulation (DES)
– Reference simulators run sequentially, only one thread at a time

(cooperative multi-threading model)

– Cannot utilize the capabilities of multi- or many-core hosts

• Parallel Discrete Event Simulation (PDES)
– Threads run in parallel (if at the same delta cycle and time)

– Simulation-cycles are absolute barriers!

 Out-of-order Parallel DE simulation (OoO PDES)
– Best technique known today, developed by CECS [DATE’12]

– Threads run in parallel and out-of-order
even in different delta and time cycles if there are no conflicts!

– Aggressive, runs maximum number of threads in parallel,
but fully preserves DES semantics and model accuracy!

OoO Parallel SystemC Project, U. of Tokyo, Jan. 19, 2015 (c) 2015 R. Doemer, CECS 7

Discrete Event Simulation (DES)
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30:0

0:0
T:Δth4th2 th3th1• Traditional DES

– Concurrent threads of execution

– Managed by a central scheduler

– Driven by events and time advances
• Delta-cycle

• Time-cycle

 Partial temporal order with barriers

• Reference Simulator
– SystemC reference simulator

uses cooperative multi-threading

 A single thread is active at any time!

 Cannot exploit parallelism

 Cannot utilize multiple cores
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Parallel Discrete Event Simulation
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T:Δth4th2 th3th1• Parallel DES

– Threads execute in parallel iff
• in the same delta cycle, and

• in the same time cycle

 Significant speed up!

– Synchronous PDES:
Cycle boundaries are
absolute barriers!

• Aggressive Parallel DES
– Conservative Approaches

• Careful static analysis prevents conflicts

– Optimistic Approaches
• Conflicts are detected and  addressed 

(roll back)

Out-of-Order Parallel DES
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T:Δth4th2 th3th1• Out-of-Order PDES

– Threads execute in parallel iff
• in the same delta cycle, and

• in the same time cycle,

• OR if there are no conflicts!

– Can utilize advanced compiler for
static data conflict analysis

 Allows as many threads in parallel
as possible

 Significantly higher speedup!
• Results at [DATE’12], [IEEE TCAD14]

 Fully preserves…
DES execution semantics

 Accuracy in results and timing 
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Synchronous vs. Out-of-Order PDES

• Simple Example:
– Parallel video and audio decoding with different frame rates
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Audio
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stream
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output
stream
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Decode
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Decode
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MonitorH.264 
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MP3
Monitor

30fps 38.28fps

Multimedia
input

stream

1: SC_MODULE(H264dec)
2: { sc_port<read_if> r;
3:   sc_port<write_if> w;
4:  …
5:  void main(){
6:   while(1){
7:      r‐>read(input_data);
8:      decode_h264_frame();
9:      wait(33.3, SC_MS);
10:     w‐>write(out_data);
11:  }
12: };

1: SC_MODULE(MP3dec)
2: { sc_port<read_if> r;
3:   sc_port<write_if> w;
4:   …
5:   void main(){
6:   while(1){
7:       r‐>read(input_data);
8:       decode_mp3_frame();
9:       wait(26.12, SC_MS);
10:      w‐>write(out_data);
11:   }
12: };

Synchronous vs. Out-of-Order PDES

• Simple Example:
– Parallel video and audio decoding

with different frame rates
 Synchronous PDES

• Observes time and delta cycles
• Global time

 Out-of-Order PDES
• Breaks cycle barrier
• Local times (per thread)

 PDES:

 OoO PDES:
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Promising Experimental Results

• What speedup can OoO PDES technology achieve
on today’s many-core host platforms?
 Early results using manually coded examples

– Experimental setup
 Many Integrated Core (MIC) Platform

– 1 Intel® Xeon Phi™ Coprocessor 5110P at 1.053 GHz

– 60 cores on ring-bus, 4 hyper-threads per core

 240 parallel hardware threads available

– Highly parallel benchmarks
 GPU pipeline example (Mandelbrot)

– Embedded system example with test bench and DUT

 Parallel floating-point multiplications (fmul)
– Independent parallelism, balanced load, no communication

 Parallel Fibonacci calculation (fibo)
– Dependent parallelism, unbalanced load, some communication
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GPU Pipeline Benchmark

• Graphics Application: Mandelbrot Set Rendering
– Experimental Results

• Sequence of 100 Mandelbrot images (640x448, depth 4096)

• Manually created PDES model (Posix-threads based)

• Multi-core platforms: Intel® Xeon® CPUs (4 cores, 2x6 cores)

• Many-core platform: Intel® Xeon Phi™ (60 x 4 cores)
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3.7x speedup

5.9x speedup

46x speedup

6.3x speedup
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Threads

46x

3.7 to 6.3x

Mandelbrot Benchmark Results
on Intel® Xeon® and Xeon Phi™
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Parallel Benchmark Results

• Experimental Results (Intel® Xeon Phi Coprocessor, 60x4 cores)
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Out-of-Order PDES Technology

• OoO PDES Key Ideas
1. Dedicated SystemC compiler with advanced model analysis

 Static conflict analysis based on Segment Graphs

2. Parallel simulator with out-of-order scheduling on many cores
 Fast decision making at run-time, optimized mapping

• Fundamental Data Structure: Segment Graph
– Key to semantics-compliant out-of-order execution [DATE’12]

– Key to prediction of future thread state [DATE’13]
• “Optimized Out-of-Order Parallel DE Simulation Using Predictions”

– Key to May-Happen-in-Parallel Analysis [DATE’14]
• “May-Happen-in-Parallel Analysis based on Segment Graphs

for Safe ESL Models“ (Best Paper Award)

– Journal publication: “OoO PDES for TLM” [IEEE TCAD’14]
• Comprehensive article with HybridThreads extension
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Project Overview and Tool Flow

• Research and Development Tasks
1) Dedicated SystemC compiler

(RISC infrastructure)

2) Parallel SystemC library

3) Performance tuning
for many‐core hosts

4) Virtual Platform (VP)
integration

5) Model analysis
(may-happen-
in-parallel, MHP)

6) Model recoding,
transformation
and optimization
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and
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Tools

RISC

R&D Task 1: SystemC Compiler

• RISC Software Stack
 Recoding Infrastructure for SystemC

– C/C++ foundation

– ROSE compiler infrastructure

OoO Parallel SystemC Project, U. of Tokyo, Jan. 19, 2015 (c) 2015 R. Doemer, CECS 18

RISC

C/C++ Foundation

ROSE IR

• ROSE Internal Representation

• Explicit support for

• Source code analysis

• Source-to-source 
transformations
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R&D Task 1: SystemC Compiler

• RISC Software Stack
 Recoding Infrastructure for SystemC

– SystemC Internal
Representation
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RISC

C/C++ Foundation

ROSE IR

SystemC IR

• Class hierarchy to represent
SystemC objects

R&D Task 1: SystemC Compiler
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RISC

Segment Graph

C/C++ Foundation

ROSE IR

SystemC IR

• RISC Software Stack
 Recoding Infrastructure for SystemC

– Segment Graph
• Segment boundaries (wait)
• Variable access conflict analysis
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R&D Task 1: SystemC Compiler
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RISC

Segment Graph

C/C++ Foundation

ROSE IR

SystemC IR

• RISC Software Stack
 Recoding Infrastructure for SystemC

– Segment Graph
• Current Status:

Segment Graph for straight-line code

MyModule(sc_module_name mn):
sc_module(mn)

{  SC_THREAD(straight1); }

void straight2()
{ x = 42;

int xx = 43;
int yy;
yy;
int o = y;
wait(10, SC_NS);
wait();
int kk;
wait();
int oo;

}

RISC

R&D Task 2: Parallel SystemC Library

• Parallel Simulator with Out-of-Order Scheduler
– OoO PDES execution

OoO Parallel SystemC Project, U. of Tokyo, Jan. 19, 2015 (c) 2015 R. Doemer, CECS 22

• Fast conflict table lookup

• Truly parallel threads

• Optimal thread-to-core mapping
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R&D Task 2: Parallel SystemC Library

• Parallel Simulator with Out-of-Order Scheduler
– SystemC kernel extension
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start

notify

wait

end

execute

this==th_root

Add notified event to events' list N

Move(this, RUN, WAIT)

Move(this, RUN, COMPLETE)
Go(schedule)

Go(schedule)
sleepExit(sim)

Delete(this)

end

Yes

Yes

Yes

No

No

No Yes
No

Lock(L)

Lock(L)

Lock(L)

unLock(L)

Release acquired channel locks

Schedule (this);
unLock(L)

if (this != th_root) {
  Lock(L); signal(Cond_parent);
  wait(Cond_this, L); unLock(L); }

Re-acquire
released

channel locks

Schedule(this);
wait(Cond_this, L);

unLock(L)

• POSIX
multi-threading

• MT-safe
SystemC
primitives

• Protected
scheduling
resources

• Protected
communication

• Example:
Life-time of a
SC_THREAD

R&D Task 2: Parallel SystemC Library

• Parallel Simulator with Out-of-Order Scheduler
– SystemC kernel extension

– Current Status:
• Multi-threading: Completed

– SC_THREAD

– SC_METHOD

• Synchronization: Completed
– sc_event, sc_event_or_list, sc_event_and_list

– wait(sc_event), wait(sc_time)

– next_trigger(sc_event), next_trigger(sc_time)

– notify(), notify(SC_ZERO_TIME), notify(sc_time)

• Communication: Ongoing
– sc_prim_channel

– sc_channel

• Advanced features: Future
– sc_trace, sc_signal, sc_bv, etc.

OoO Parallel SystemC Project, U. of Tokyo, Jan. 19, 2015 (c) 2015 R. Doemer, CECS 24
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R&D Task 2: Parallel SystemC Library

• Parallel Simulator with Out-of-Order Scheduler
– Test cases and benchmarks:
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Benchmark
example

SC_
THREAD

SC_
METHOD wait next_trigger notify

sc_
prim_channel

fmul.cpp  

wait_event.cpp   

wait_or_list.cpp   

wait_and_list.cpp   

immediate_notify
.cpp   

next_trigger.cpp     

ProdCons_event
.cpp   

ProdCons_prim_
channel.cpp    

Mandelbrot.cpp ☐ ☐ ☐ ☐ ☐ ☐

Reaches 7.97x on 8-core host!

R&D Task 3: Many-Core Target

• Intel® Many Integrated Core Architecture

 Intel® Xeon Phi™ Coprocessor
– Provides

• 60 processor cores

• 4 hyper-threads per core

 240 parallel hardware threads!

– Hardware Features
• Vector processing unit (VPU)

• Extended Math Unit (EMU) for transcendental operations

• Bidirectional ring interconnect

– Peak performance
 over 1 teraFLOPS (double-precision)

 Uses familiar and standard programming models
 Appears as a regular Linux machine with 240 cores!

OoO Parallel SystemC Project, U. of Tokyo, Jan. 19, 2015 (c) 2015 R. Doemer, CECS 26
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R&D Task 3: Many-Core Target

• Performance Tuning for Intel® MIC Architecture
– Optimize thread-to-core mapping

Core distance matters!

– Architecture study
• Xeon Phi™ ring network

• Distributed Tag Directory (TD)

• Unknown hash-function

– Optimization Approach
• Profile core distances

• Determine TD

• Place threads close to TD

 Speedup 145% on average

 To be presented at ASPDAC
in Tokyo, January 21, 2015

OoO Parallel SystemC Project, U. of Tokyo, Jan. 19, 2015 (c) 2015 R. Doemer, CECS 27

0

200

400

600

800

1000

1200

1400

1600

1800

1 13 25 37 49 61 73 85 97 10
9

12
1

13
3

14
5

15
7

16
9

18
1

19
3

20
5

21
7

22
9

L
at

en
cy

 (
cy

cl
es

)

Core

Naive Expectation

Measured Latency

Core distance for Xeon Phi™ 5120D Coproc.

Performance speedup results
90%

110%

130%

150%

170%

190%

210%

230%

250%

1 11 21 31 41 51 61 71 81 91
S

p
ee

d
u

p

Avg. 145.11%

R&D Task 4: Virtual Platforms (VP)

• Virtual Platform and Processor Models
– Development of SW before physical HW is available

• aka. “left shift” paradigm

– Reach execution speed close to real-time

– Provide accurate programmer’s view of the system

– Offer advanced debugging capabilities
• Checkpoints

• Reverse execution

– Examples:
• Open Virtual Platforms (OVP) [Imperas’14]

• Wind River® Simics® VP [Simics’13]

 Develop a Virtual Prototype Environment (VPE)
that allows seamless integration with SystemC models
(Project year 2)

OoO Parallel SystemC Project, U. of Tokyo, Jan. 19, 2015 (c) 2015 R. Doemer, CECS 28
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R&D Task 4: Virtual Platforms (VP)

• Virtual Prototype Environment (VPE) with SystemC
– Simulator integration

• SystemC simulation engine

• VP simulator

 Identify best integration scheme
• Option A: Master and slaves

• Option B: Multiple masters connected by bridges
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Loop

Bridge

Sync.

R&D Task 4: Virtual Platforms (VP)

• Virtual Prototype Environment (VPE) with SystemC
– Example: Multiple VPs integrated with SystemC simulator

• Virtual processors in Wrapper modules
appear as SC_THREAD’s

• Can execute in parallel, and be scheduled out-of-order

 R&D focus (year 2):
• Maximize parallel execution speed

• Maximize timing accuracy (untimed, approx. timed, time-accurate)
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R&D Task 5: SystemC Analysis

• Compile-time Model Analysis
– Dedicated SystemC compiler

• Abstract Syntax Tree with SystemC semantics

• Recoding Infrastructure for SystemC (RISC)

– Static analysis R&D opportunities (year 3)
• Statistics of modules, channels, interfaces, …

• Deadlock and live-lock analysis

• Memory and stack size estimation

• Hot-spot identification

• Worst-Case-Execution-Time (WCET) analysis

• Race-condition and parallel access conflict analysis

• May-Happen-in-Parallel (MHP) analysis
– Based on [DATE’14, best paper award]

• …
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R&D Task 6: SystemC Recoding

• Model Transformation and Optimization
– SystemC source-to-source transformation

• ROSE-compiler infrastructure

• Source re-coding and re-factoring

• Model optimization

– Recoding R&D opportunities (year 3)
• Source code maintenance, formatting

• Model customization and tuning

• Back-annotation of profiling or other data
– Performance

– Power

• Code instrumentation

• Documentation

• Model refinement, synthesis

• …
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Project Timeline and Milestones

• Year 1: Parallel SystemC Compiler and Simulator
– F’14: RISC for straight-line code, library with MT-safe primitives

– W’15: RISC for functions, library with protected data structures

– S’15: RISC code generator, simulator with OoO scheduling

– Su’15: Event conflicts, simulator for parallel SystemC subset

 Goal: Stable prototype for synthesizable SystemC, 10x speedup!

• Year 2: Virtual Prototype Environment
– Simics VP integration, timing-accuracy optimization,

compiler and simulator optimization, code hardening

 Goal: Parallel SystemC tool suite release, 100x speedup!

• Year 3: Open Source Release and Standardization Efforts
– SystemC analysis for hot-spots and MHP, source-to-source

transformations, standardization efforts with Accellera

 Goal: SystemC Virtual Prototype Environment, 100x speedup!

OoO Parallel SystemC Project, U. of Tokyo, Jan. 19, 2015 (c) 2015 R. Doemer, CECS 33

Concluding Remarks

• Project on Advanced Parallel SystemC Simulation
– OoO PDES on multi- and many-core platforms

– Maximum compliance with current execution semantics

– Support for parallel execution of virtual platforms (VP)

• Dedicated SystemC Compiler
– Recoding Infrastructure for SystemC (RISC)

– Advanced static analysis for parallel execution

– Model instrumentation, code optimization, transformation

• Parallel SystemC Simulator
– Out-of-order parallel scheduler, multi-threading safe primitives

– Many-core target platform (e.g. Xeon Phi™)

• Open Source
– Collaboration with Accellera SystemC Language WG
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