
Advances in Parallel Discrete Event Simulation EECS Colloquium, October 17, 
2012

(c) 2012 R. Doemer et.al. 1

Advances in
Parallel Simulation of System Models

Rainer Dömer
doemer@uci.edu

With contributions by Weiwei Chen and Xu Han

Center for Embedded Computer Systems

University of California, Irvine

This work has been supported in part by NSF Award #0747523.

EECS Colloquium, October 17, 2012 (c) 2012 R. Doemer, et.al. 2

Embedded Systems

• System embedded into another system
– Constraints from external input

– Application specific 

• Omnipresent in our environment
– In many application domains 

– In 2005  [Source Netrino]

• Only 2% of all processors in workstations

• Remaining 8.8 billion in embedded systems

– Pervasive

Source: PhilipsSource: Miele

Source: P. Chou, UCI

Source: Edumicator

Source: www.medicacorp.com/Source: www.trouper.com



Advances in Parallel Discrete Event Simulation EECS Colloquium, October 17, 
2012

(c) 2012 R. Doemer et.al. 2

EECS Colloquium, October 17, 2012 (c) 2012 R. Doemer, et.al. 3

• System Level Modeling
– Abstract description of a complete system

– Hardware + Software

• Key Concepts in System Modeling 
– Explicit Structure

• Block diagram structure

• Connectivity through ports

– Explicit Hierarchy
• System composed of components

– Explicit Concurrency
• Potential for parallel execution

• Potential for pipelined execution

– Explicit Communication and Computation
• Channels and Interfaces

• Behaviors / Modules

Embedded System Design

B0 B1

B2 B3

System Model

EECS Colloquium, October 17, 2012 (c) 2012 R. Doemer, et.al. 4

Outline

• Embedded System Validation

• Parallel Simulation
– Traditional Discrete Event Simulation (DES)

– Parallel Discrete Event Simulation (PDES)

– Potential and Reality: Experimental Results
• Parallel Benchmarks

• Embedded Application Examples

• Advanced Parallel Simulation
– Out-of-Order Parallel DES

– Approach

– Experiments and Results

• Conclusions



Advances in Parallel Discrete Event Simulation EECS Colloquium, October 17, 
2012

(c) 2012 R. Doemer et.al. 3

Embedded System Validation

• Validation through Simulation!
– Efficient system-level simulation is critical

• Fast, and

• Accurate!

– Complexity of system models grows constantly
• Need for speed!

• Parallel Simulation!
– Parallelism explicitly specified in model

• System-level Description Language (SLDL)
– SystemC [Groetker et. al, 2002]: SC_THREAD, SC_METHOD

– SpecC [Gajski et. al, 2000]: par { }, pipe { }

– Symmetric Multi-Processor (SMP) architecture
• Multi-core host PCs readily available

• Many-core machines are coming

EECS Colloquium, October 17, 2012 (c) 2012 R. Doemer, et.al. 5

Related Work: Faster Simulation

EECS Colloquium, October 17, 2012 (c) 2012 R. Doemer, et.al. 6

Discrete Event 
Simulation is slow

Modeling Techniques
•Transaction-level modeling (TLM).

•TLM temporal decoupling.
•Savoiu et al. [MEMOCODE’05]

•Razaghi et al.[ASPDAC’12]

Hardware-based Acceleration
•Sirowy et al. [DAC’10]

•Nanjundappa et al. [ASPDAC’10]
•Sinha et al. [ASPDAC’12]

SMP Parallel Simulation
•Fujimoto. [CACM’90]

•Chopard et al. [ICCS’06]
•Ezudheen et al. [PADS’09]

•Mello et al. [DATE’10]
•Schumacher et al. [CODES’11]

•Chen et al. [IEEED&T’11]
•Yun et al. [TCAD’12]

Distributed Simulation
•Chandy et al. [TSE’79]
•Huang et al. [SIES’08]
•Chen et al. [CECS’11]



Advances in Parallel Discrete Event Simulation EECS Colloquium, October 17, 
2012

(c) 2012 R. Doemer et.al. 4

EECS Colloquium, October 17, 2012 (c) 2012 R. Doemer, et.al. 7

Discrete Event Simulation

• Traditional Discrete Event (DE) Simulation
– Execution semantics used in

• SLDLs, i.e. SpecC, SystemC
• HDLs, i.e. VHDL, Verilog

– Non-deterministic sequential execution of “parallel” threads
• Delta cycles

• Definitions:
– At any time, each thread t is in one of the following sets:

• READY: set of threads ready to execute (initially root thread)
• WAIT: set of threads suspended by wait (initially Ø)
• WAITFOR: set of threads suspended by waitfor (initially Ø)

– Notified events are stored in a set N
• notify e1 adds event e1 to N
• wait e1 will wakeup when e1 is in N
• Consumption of event e means event e is taken out of N
• Expiration of notified events means N is set to Ø

EECS Colloquium, October 17, 2012 (c) 2012 R. Doemer, et.al. 8

Discrete Event Simulation

• Simulation Algorithm

Select thread tREADY, execute t

Add notified events to Nnotify

Move tREADY to WAIT

Move tREADY to WAITFOR

wait

waitfor

READY=Ø

Set N=Ø

READY=Ø

Update simulation time, move earliest tWAITFOR to READY

READY=Ø

Stop

Start

NO

YES

NO

YES

NO

YES

YES

YES

YES

Move all tWAIT waiting for events eN to READY

NO



Advances in Parallel Discrete Event Simulation EECS Colloquium, October 17, 
2012

(c) 2012 R. Doemer et.al. 5

Discrete Event Simulation (DES)

EECS Colloquium, October 17, 2012 (c) 2012 R. Doemer, et.al. 9

10:0
10:1

10:2

20:1
20:0

20:2

30:0

0:0
T:∆th4th2 th3th1• Traditional DES

– Concurrent threads of execution

– Managed by a central scheduler

– Driven by events and time advances
• Delta-cycle

• Time-cycle

 Partial temporal order with barriers

• Reference TLM Simulators
– Both SystemC and SpecC

use cooperative multi-threading

 A single thread is active at any time!

 Cannot exploit multiple parallel cores

– Example: SystemC

Preemptive Discrete Event Simulation

EECS Colloquium, October 17, 2012 (c) 2012 R. Doemer, et.al. 10

10:0
10:1

10:2

20:1
20:0

20:2

30:0

0:0
T:∆th4th2 th3th1• SLDL Execution Semantics

– SystemC prescribes
Cooperative Multi-Threading

• SystemC LRM defines:
“process instances execute without 
interruption”

 Preemptive scheduling forbidden!

– SpecC specifies
Preemptive Multi-Threading

• SpecC LRM defines:
”preemptive execution”,
”No atomicity is guaranteed”

 Preemptive scheduling assumed!

 Need critical regions with
mutually exclusive access: Channels!



Advances in Parallel Discrete Event Simulation EECS Colloquium, October 17, 
2012

(c) 2012 R. Doemer et.al. 6

EECS Colloquium, October 17, 2012 (c) 2012 R. Doemer, et.al. 11

Parallel Discrete Event Simulation (PDES)

• Parallel DE Simulation Algorithm
– Threads managed

in READY queue

– Scheduler
picks N threads
and executes
them in parallel

– N = number
of available
CPU cores

– Time advances
• In delta-cycle

• In timed-cycle

EECS Colloquium, October 17, 2012 (c) 2012 R. Doemer, et.al. 12

Parallel Discrete Event Simulation (PDES)

• Synchronization is required!
– Need to protect shared data structures by locks

for mutual exclusive access by concurrent threads

1. Protecting scheduling resources
– Central lock for scheduler

– Condition variable for each thread

2. Protecting communication
– One lock per channel instance

– Lock protects critical region

 Channel acts as monitor
for encapsulated variables

 Locks and locking methods
are automatically inserted!



Advances in Parallel Discrete Event Simulation EECS Colloquium, October 17, 
2012

(c) 2012 R. Doemer et.al. 7

EECS Colloquium, October 17, 2012 (c) 2012 R. Doemer, et.al. 13

Parallel Discrete Event Simulation (PDES)

• Life-cycle
of a Thread
in our Multi-core
Parallel Simulator

– Locks and
condition variables
guarantee safe
synchronization and
communication of
concurrent threads

Parallel Discrete Event Simulation (PDES)

EECS Colloquium, October 17, 2012 (c) 2012 R. Doemer, et.al. 14

10:0
10:1

10:2

20:1
20:0

20:2

30:0

0:0
T:∆th4th2 th3th1• Parallel DES

– Threads execute in parallel iff
• in the same delta cycle, and

• in the same time cycle

 Significant speed up!

 Naïve Promise:
Linear Speedup with SMP!
 But: Amdahl’s Law still applies!

 Reality check:
Experiments to evaluate
 Potential vs. real applications



Advances in Parallel Discrete Event Simulation EECS Colloquium, October 17, 
2012

(c) 2012 R. Doemer et.al. 8

PDES Experiments and Results

• What is the Potential Amount of Parallelism
that we can exploit?

– Experimental Setup:
• Parallel SpecC Simulator on SMP Host PC

• 2 Intel Xeon X5650 CPUs at 2.66 GHz

• 6 cores each

• 2 hyper-threads per core

24 parallel processing units available!

– Experiments:
• 2 highly parallel benchmarks

Upper bound for SMP capabilities of host PC

• 2 typical embedded applications

Realistic industrial use cases

EECS Colloquium, October 17, 2012 (c) 2012 R. Doemer, et.al. 15

PDES Experiments: Parallel Benchmarks

• Parallel Floating-point Multiplications (fmul)
– 10 million floating-point multiplications

– 256 parallel instances

– No communication, no shared variables

 Balanced load
• evenly distributed

• Parallel Fibonacci Calculation (fibo)
– Fibonacci-series calculation

• fib(n) = fib(n-1) + fib(n-2), where fib(0) = 0, fib(1) = 1

– Up to 256 parallel instances
• Parallel decomposition up to max. depth of 8,

then classic recursive calculation

– Shared variables for input, output (plus a few counters)

 Imbalanced load
• distributed by the nature of Fibonacci numbers

• converges against 1.618 (golden ratio)

EECS Colloquium, October 17, 2012 (c) 2012 R. Doemer, et.al. 16



Advances in Parallel Discrete Event Simulation EECS Colloquium, October 17, 
2012

(c) 2012 R. Doemer et.al. 9

PDES Experiments: Parallel Benchmarks

• Experimental Results

EECS Colloquium, October 17, 2012 (c) 2012 R. Doemer, et.al. 17

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

fibo  elapsed time [sec]

fmul elapsed time [sec]

fibo  rel. speedup

fmul rel. speedup

EECS Colloquium, October 17, 2012 (c) 2012 R. Doemer, et.al. 18

PDES Experiments: Embedded Examples

• Parallelized H.264 Video Decoder
– Video frames divided

into 4 independent slices

– 4 parallel
slice decoders

– Sequential
slice reader
and synchronizer

– Maximum
parallelism:
2.05

• Parallelized JPEG Image Encoder
– 3 color components encoded in parallel

– Sequential Huffman encoding

Slice 

S
yn

ch
ron

izer



Advances in Parallel Discrete Event Simulation EECS Colloquium, October 17, 
2012

(c) 2012 R. Doemer et.al. 10

PDES Experiments: Embedded Examples

• Simulation Results for H.264 Video Decoder

• Simulation Results for JPEG Image Encoder

 Multi-core parallelism significantly reduces simulation time!

EECS Colloquium, October 17, 2012 (c) 2012 R. Doemer, et.al. 19

PDES Experiments: Embedded Examples

• More Simulation Results for H.264 Video Decoder

• More Simulation Results for JPEG Image Encoder

 Parallelism available in application is quite limited!

EECS Colloquium, October 17, 2012 (c) 2012 R. Doemer, et.al. 20



Advances in Parallel Discrete Event Simulation EECS Colloquium, October 17, 
2012

(c) 2012 R. Doemer et.al. 11

EECS Colloquium, October 17, 2012 (c) 2012 R. Doemer, et.al. 21

PDES Summary

• Embedded System Validation relies on Simulation
– Discrete Event Simulation (DES)
– Reference simulators execute sequentially,

one thread at a time

• Parallel Discrete Event Simulation (PDES)
– Exploits available parallelism in system models
– Allows efficient execution on multi-core hosts
– Shared data structures can be automatically protected

• Channels define critical regions
• Necessary synchronization can be automatically inserted

• Experimental Results
– Multi-core PDES shows significant simulation speedup
– Speedup is limited by explicitly specified parallelism!

Beyond Regular PDES…

EECS Colloquium, October 17, 2012 (c) 2012 R. Doemer, et.al. 22

10:0
10:1

10:2

20:1
20:0

20:2

30:0

0:0
T:∆th4th2 th3th1• Parallel DES

– Threads execute in parallel iff
• in the same delta cycle, and

• in the same time cycle

 Significant speed up!

– Cycle boundaries are
absolute barriers

• Aggressive Parallel DES
– Conservative Approaches

• Careful static analysis prevents conflicts

– Optimistic Approaches
• Conflicts are detected and  addressed 

(roll back)



Advances in Parallel Discrete Event Simulation EECS Colloquium, October 17, 
2012

(c) 2012 R. Doemer et.al. 12

Out-of-Order Parallel DES

EECS Colloquium, October 17, 2012 (c) 2012 R. Doemer, et.al. 23

10:0
10:1

10:2

20:1
20:0

20:2

30:0

0:0
T:∆th4th2 th3th1• Out-of-Order PDES

– Threads execute in parallel iff
• in the same delta cycle, and

• in the same time cycle,

• OR if there are no conflicts!

– Needs compiler support for
static data conflict analysis!

 Preserves the accuracy of event 
handling and simulation time

 Allows as many threads in parallel
as possible

 Results in higher speedup!
• Examples: [DATE’12, ASPDAC’12]

OoO PDES Simulation States

• Break global temporal barrier
– localize simulation time (T:∆) to the threads.

– attach timestamps to the events.

EECS Colloquium, October 17, 2012 (c) 2012 R. Doemer, et.al. 24

READY 

WAIT 

RUN 

WAITFOR 

thread is  
issued 

waits for  
event e 

event e  
is notified 

waits for  
time t Simulation  

time is 
advanced  

to t 

Static States of Regular PDES Dynamic States of OoO PDES

READYt,δ RUNt,δ

WAITt,δ

READYt,δ+1

READYt+
d1,0

… … … … … …

WAITFORWAITFORt+
d2,0

READYt+
d1,1

WAITt,δ+1

WAITWAITt+d
1,0

RUNt,δ+1

RUNt+d1,

0

RUNt+d1,

1

WAITFORWAITFORt+
d1,0



Advances in Parallel Discrete Event Simulation EECS Colloquium, October 17, 
2012

(c) 2012 R. Doemer et.al. 13

OoO PDES Scheduling

EECS Colloquium, October 17, 2012 (c) 2012 R. Doemer, et.al. 25

• No need to wait till the 
global cycle boundaries.

• Dynamically update 
simulation states.

• Conflicts checking
– Data hazard: RAW, WAR, 

WAW for shared variables.

– Conflicts Prediction: 
check at runtime according 
to the simulation states.

OoO PDES Conflict Analysis

• Compiler support for data conflict analysis
– Segment:

SLDL code executed by a thread between two scheduling steps.

– Segment Boundary:
SLDL statements which call the scheduler, e.g. wait, par, etc.

– Segment Graph: 

• the connections among segments 

• derived from the control flow graph (CFG)

• data access information for each segments

– Segment data conflict table:
referred to at runtime for  fast scheduling decision.

(c) 2012 R. Doemer, et.al. 26EECS Colloquium, October 17, 2012



Advances in Parallel Discrete Event Simulation EECS Colloquium, October 17, 
2012

(c) 2012 R. Doemer et.al. 14

waitfor 1

seg3 

seg4

waitfor 2

thread_b1

OoO PDES Segment Graph

EECS Colloquium, October 17, 2012 (c) 2012 R. Doemer, et.al. 27

par

par end

seg0
thread_Main

seg2 thread_Main

seg1

waitfor 1

seg1

seg3 

seg4

waitfor 2

thread_b2

1: #include <stdio.h>
2: int array[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
3: behavior B(in int begin, in int end, out int sum)
4: { int i;
5:   void main(){
6:    int tmp; tmp = 0; i = begin;
7:   waitfor 1;   // v3, segment 3 starts
8:    while(i <= end){    
9:      waitfor 2; // v4, segment 4 starts

10:      tmp += array[i]; i ++;
11:   }
12:    sum = tmp; }
13: };
14: behavior Main()
15: {int sum1, sum2;
16:  B b1(0, 4, sum1); B b2(5, 9, sum2);
17:  int main(){
18:    par{ // v1, segment 1 starts
19:      b1.main();
20:      b2.main(); 
21:     } // v2, segment 2 starts
22:    printf("summation 1 is :%d \n", sum1);   
23:    printf("summation 2 is :%d \n", sum2); }};

OoO PDES Segment Conflict Table

EECS Colloquium, October 17, 2012 (c) 2012 R. Doemer, et.al. 28

seg 0 1 2 3 4

0

1

2

3 T T

4 T T

1: #include <stdio.h>
2: int array[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
3: behavior B(in int begin, in int end, out int sum)
4: { int i;
5:   void main(){
6:    int tmp; tmp = 0; i = begin;
7:   waitfor 1;   // v3, segment 3 starts
8:    while(i <= end){    
9:      waitfor 2; // v4, segment 4 starts

10:      tmp += array[i]; i ++;
11:   }
12:    sum = tmp; }
13: };
14: behavior Main()
15: {int sum1, sum2;
16:  B b1(0, 4, sum1); B b2(5, 9, sum2);
17:  int main(){
18:    par{ // v1, segment 1 starts
19:      b1.main();
20:      b2.main(); 
21:     } // v2, segment 2 starts
22:    printf("summation 1 is :%d \n", sum1);   
23:    printf("summation 2 is :%d \n", sum2); }};

seg 0 1 2 3 4

0 F F F F F

1 F F F T T

2 F F F T T

3 F T T T T

4 F T T T T

 E.g.: Seg3 and Seg4 cannot 
run in parallel out of the order



Advances in Parallel Discrete Event Simulation EECS Colloquium, October 17, 
2012

(c) 2012 R. Doemer et.al. 15

OoO PDES Conflicts Checking

• Scheduling: Fast checking at runtime
– Timestamp Comparison
– Segment Conflict Table Lookup

• Timestamp Comparison (th1 running, th2 Candidate)

– th1.timestamp == th2.timestamp, as regular PDES
– th1.timestamp > th2.timestamp, issue th2
– th1.timestamp > th2.timestamp, Check Conflicts

• Conflict Prediction
– th1 delivery an event and bring thread th3 with earlier 

timestamps.
– th1 will be followed by a new segment with earlier 

timestamp than th2.
– Build tables to lookup at runtime.

EECS Colloquium, October 17, 2012 (c) 2012 R. Doemer, et.al. 29

OoO PDES Experiments and Results

EECS Colloquium, October 17, 2012 (c) 2012 R. Doemer, et.al. 30

• Parallelized JPEG Image Encoder
– 3 color components encoded in parallel

– Sequential Huffman encoding

– A color image with 3216x2136

• Parallelized H.264 Video Decoder
– 4 parallel slice decoders

– Sequential slice reader and synchronizer

– Communication via double handshake channels

– Video frames divided into 4 independent slices 

– 1079 frames (about 36 seconds of video) and 1280x720 pixels 
per frame

 Results measured on a host PC with a 4-core CPU 
(Intel® Core™ Quad) at 3.0 GHz 



Advances in Parallel Discrete Event Simulation EECS Colloquium, October 17, 
2012

(c) 2012 R. Doemer et.al. 16

OoO PDES Compilation Results

EECS Colloquium, October 17, 2012 (c) 2012 R. Doemer, et.al. 31

Out-of-order PDES takes more compilation time due to conflict analysis!

0 

0.5 

1 

1.5 

2 

spec arch sched net 

Compilation Time of the JPEG Encoder Model (sec)  

Traditional DES Regular PDES Out-of-order PDES 

0 
5 

10 
15 
20 
25 
30 

spec arch sched net 

Compilation Time of the H.264 Decoder Model (sec) 

Traditional DES Regular PDES Out-of-order PDES 

OoO PDES Simulation Results

EECS Colloquium, October 17, 2012 (c) 2012 R. Doemer, et.al. 32

Out-of-order PDES significantly improve the simulation efficiency!

0 
0.5 

1 
1.5 

2 
2.5 

3 
3.5 

spec arch sched net 

Simulation Run Time of the JPEG Encoder Model (sec) 

Traditional DES Regular PDES Out-of-order PDES 

0 
20 
40 
60 
80 

100 
120 

spec arch sched net 

Simulation Run Time of the H.264 Decoder Model (sec) 

Traditional DES Regular PDES Out-of-order PDES 



Advances in Parallel Discrete Event Simulation EECS Colloquium, October 17, 
2012

(c) 2012 R. Doemer et.al. 17

Concluding Remarks

• PDES can significantly speed up System Simulation!

• What is the Potential of Parallelism we can exploit?
– SMP Host Platforms

• Multi-core PCs are readily available, many-core platforms coming

Nearly unlimited potential!

 Parallelism in Application sets an upper bound!
• Designer needs to identify and explicitly state the parallelism

Need more research on effective parallelization!

• Out-of-Order PDES
• Aggressive, breaks the cycle barrier, but preserves accuracy

 Limited by the quality of static analysis in the compiler
• Open question: How many real dependencies do exist?

• The better the analysis, the less false dependencies!

Need more research on advanced static analysis!

EECS Colloquium, October 17, 2012 (c) 2012 R. Doemer, et.al. 33

References

• [DATE’12] W. Chen, X. Han, R. Dömer: "Out-of-Order Parallel Simulation for 
ESL Design", Proceedings of DATE, Dresden, Germany, March 2012.

• [ASPDAC’12] R. Dömer, W. Chen, X. Han: "Parallel Discrete Event Simulation 
of Transaction Level Models", Proceedings of ASPDAC, Sydney, Australia, 
February 2012.

• [ASPDAC’12] W. Chen, R. Dömer: "An Optimizing Compiler for Out-of-Order 
Parallel ESL Simulation Exploiting Instance Isolation", Proceedings of ASPDAC, 
Sydney, Australia, February 2012.

• [CECS-TR’12] W. Chen, R. Dömer: "A Distributed Parallel Simulator for 
Transaction Level Models with Relaxed Timing", CECS TR 11-02, May 2011.

• [IEEE D&T’11] W. Chen, X. Han, R. Dömer: "Multicore Simulation of 
Transaction-Level Models Using the SoC Environment", IEEE Design & Test of 
Computers, vol. 28, no. 3, pp. 20-31, May-June 2011.

• [ASPDAC’11] R. Dömer, W. Chen, X. Han, A. Gerstlauer: "Multi-Core Parallel 
Simulation of System-Level Description Languages", Proceedings of ASPDAC, 
Yokohama, Japan, January 2011.

• [HLDVT’10] W. Chen, X. Han, R. Dömer: "ESL Design and Multi-Core Validation 
using the System-on-Chip Environment", Proceedings of HLDVT, Anaheim, 
California, June 2010.

EECS Colloquium, October 17, 2012 (c) 2012 R. Doemer, et.al. 34


