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Embedded Systems

• System embedded into another system
– Constraints from external input

– Application specific 

• Omnipresent in our environment
– In many application domains 

– In 2005  [Source Netrino]

• Only 2% of all processors in workstations

• Remaining 8.8 billion in embedded systems

– Pervasive

Source: PhilipsSource: Miele

Source: P. Chou, UCI

Source: Edumicator

Source: www.medicacorp.com/Source: www.trouper.com
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• System Level Modeling
– Abstract description of a complete system

– Hardware + Software

• Key Concepts in System Modeling 
– Explicit Structure

• Block diagram structure

• Connectivity through ports

– Explicit Hierarchy
• System composed of components

– Explicit Concurrency
• Potential for parallel execution

• Potential for pipelined execution

– Explicit Communication and Computation
• Channels and Interfaces

• Behaviors / Modules

Embedded System Design

B0 B1

B2 B3

System Model
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Outline

• Embedded System Validation

• Parallel Simulation
– Traditional Discrete Event Simulation (DES)

– Parallel Discrete Event Simulation (PDES)

– Potential and Reality: Experimental Results
• Parallel Benchmarks

• Embedded Application Examples

• Advanced Parallel Simulation
– Out-of-Order Parallel DES

– Approach

– Experiments and Results

• Conclusions
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Embedded System Validation

• Validation through Simulation!
– Efficient system-level simulation is critical

• Fast, and

• Accurate!

– Complexity of system models grows constantly
• Need for speed!

• Parallel Simulation!
– Parallelism explicitly specified in model

• System-level Description Language (SLDL)
– SystemC [Groetker et. al, 2002]: SC_THREAD, SC_METHOD

– SpecC [Gajski et. al, 2000]: par { }, pipe { }

– Symmetric Multi-Processor (SMP) architecture
• Multi-core host PCs readily available

• Many-core machines are coming
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Related Work: Faster Simulation
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Discrete Event 
Simulation is slow

Modeling Techniques
•Transaction-level modeling (TLM).

•TLM temporal decoupling.
•Savoiu et al. [MEMOCODE’05]

•Razaghi et al.[ASPDAC’12]

Hardware-based Acceleration
•Sirowy et al. [DAC’10]

•Nanjundappa et al. [ASPDAC’10]
•Sinha et al. [ASPDAC’12]

SMP Parallel Simulation
•Fujimoto. [CACM’90]

•Chopard et al. [ICCS’06]
•Ezudheen et al. [PADS’09]

•Mello et al. [DATE’10]
•Schumacher et al. [CODES’11]

•Chen et al. [IEEED&T’11]
•Yun et al. [TCAD’12]

Distributed Simulation
•Chandy et al. [TSE’79]
•Huang et al. [SIES’08]
•Chen et al. [CECS’11]
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Discrete Event Simulation

• Traditional Discrete Event (DE) Simulation
– Execution semantics used in

• SLDLs, i.e. SpecC, SystemC
• HDLs, i.e. VHDL, Verilog

– Non-deterministic sequential execution of “parallel” threads
• Delta cycles

• Definitions:
– At any time, each thread t is in one of the following sets:

• READY: set of threads ready to execute (initially root thread)
• WAIT: set of threads suspended by wait (initially Ø)
• WAITFOR: set of threads suspended by waitfor (initially Ø)

– Notified events are stored in a set N
• notify e1 adds event e1 to N
• wait e1 will wakeup when e1 is in N
• Consumption of event e means event e is taken out of N
• Expiration of notified events means N is set to Ø
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Discrete Event Simulation

• Simulation Algorithm

Select thread tREADY, execute t

Add notified events to Nnotify

Move tREADY to WAIT

Move tREADY to WAITFOR

wait

waitfor

READY=Ø

Set N=Ø

READY=Ø

Update simulation time, move earliest tWAITFOR to READY

READY=Ø

Stop

Start

NO

YES

NO

YES

NO

YES

YES

YES

YES

Move all tWAIT waiting for events eN to READY

NO
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Discrete Event Simulation (DES)
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T:∆th4th2 th3th1• Traditional DES

– Concurrent threads of execution

– Managed by a central scheduler

– Driven by events and time advances
• Delta-cycle

• Time-cycle

 Partial temporal order with barriers

• Reference TLM Simulators
– Both SystemC and SpecC

use cooperative multi-threading

 A single thread is active at any time!

 Cannot exploit multiple parallel cores

– Example: SystemC

Preemptive Discrete Event Simulation
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T:∆th4th2 th3th1• SLDL Execution Semantics

– SystemC prescribes
Cooperative Multi-Threading

• SystemC LRM defines:
“process instances execute without 
interruption”

 Preemptive scheduling forbidden!

– SpecC specifies
Preemptive Multi-Threading

• SpecC LRM defines:
”preemptive execution”,
”No atomicity is guaranteed”

 Preemptive scheduling assumed!

 Need critical regions with
mutually exclusive access: Channels!
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Parallel Discrete Event Simulation (PDES)

• Parallel DE Simulation Algorithm
– Threads managed

in READY queue

– Scheduler
picks N threads
and executes
them in parallel

– N = number
of available
CPU cores

– Time advances
• In delta-cycle

• In timed-cycle
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Parallel Discrete Event Simulation (PDES)

• Synchronization is required!
– Need to protect shared data structures by locks

for mutual exclusive access by concurrent threads

1. Protecting scheduling resources
– Central lock for scheduler

– Condition variable for each thread

2. Protecting communication
– One lock per channel instance

– Lock protects critical region

 Channel acts as monitor
for encapsulated variables

 Locks and locking methods
are automatically inserted!
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Parallel Discrete Event Simulation (PDES)

• Life-cycle
of a Thread
in our Multi-core
Parallel Simulator

– Locks and
condition variables
guarantee safe
synchronization and
communication of
concurrent threads

Parallel Discrete Event Simulation (PDES)
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– Threads execute in parallel iff
• in the same delta cycle, and

• in the same time cycle

 Significant speed up!

 Naïve Promise:
Linear Speedup with SMP!
 But: Amdahl’s Law still applies!

 Reality check:
Experiments to evaluate
 Potential vs. real applications
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PDES Experiments and Results

• What is the Potential Amount of Parallelism
that we can exploit?

– Experimental Setup:
• Parallel SpecC Simulator on SMP Host PC

• 2 Intel Xeon X5650 CPUs at 2.66 GHz

• 6 cores each

• 2 hyper-threads per core

24 parallel processing units available!

– Experiments:
• 2 highly parallel benchmarks

Upper bound for SMP capabilities of host PC

• 2 typical embedded applications

Realistic industrial use cases
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PDES Experiments: Parallel Benchmarks

• Parallel Floating-point Multiplications (fmul)
– 10 million floating-point multiplications

– 256 parallel instances

– No communication, no shared variables

 Balanced load
• evenly distributed

• Parallel Fibonacci Calculation (fibo)
– Fibonacci-series calculation

• fib(n) = fib(n-1) + fib(n-2), where fib(0) = 0, fib(1) = 1

– Up to 256 parallel instances
• Parallel decomposition up to max. depth of 8,

then classic recursive calculation

– Shared variables for input, output (plus a few counters)

 Imbalanced load
• distributed by the nature of Fibonacci numbers

• converges against 1.618 (golden ratio)
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PDES Experiments: Parallel Benchmarks

• Experimental Results
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PDES Experiments: Embedded Examples

• Parallelized H.264 Video Decoder
– Video frames divided

into 4 independent slices

– 4 parallel
slice decoders

– Sequential
slice reader
and synchronizer

– Maximum
parallelism:
2.05

• Parallelized JPEG Image Encoder
– 3 color components encoded in parallel

– Sequential Huffman encoding

Slice 

S
yn

ch
ron

izer
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PDES Experiments: Embedded Examples

• Simulation Results for H.264 Video Decoder

• Simulation Results for JPEG Image Encoder

 Multi-core parallelism significantly reduces simulation time!
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PDES Experiments: Embedded Examples

• More Simulation Results for H.264 Video Decoder

• More Simulation Results for JPEG Image Encoder

 Parallelism available in application is quite limited!
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Advances in Parallel Discrete Event Simulation EECS Colloquium, October 17, 
2012

(c) 2012 R. Doemer et.al. 11

EECS Colloquium, October 17, 2012 (c) 2012 R. Doemer, et.al. 21

PDES Summary

• Embedded System Validation relies on Simulation
– Discrete Event Simulation (DES)
– Reference simulators execute sequentially,

one thread at a time

• Parallel Discrete Event Simulation (PDES)
– Exploits available parallelism in system models
– Allows efficient execution on multi-core hosts
– Shared data structures can be automatically protected

• Channels define critical regions
• Necessary synchronization can be automatically inserted

• Experimental Results
– Multi-core PDES shows significant simulation speedup
– Speedup is limited by explicitly specified parallelism!

Beyond Regular PDES…
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– Threads execute in parallel iff
• in the same delta cycle, and

• in the same time cycle

 Significant speed up!

– Cycle boundaries are
absolute barriers

• Aggressive Parallel DES
– Conservative Approaches

• Careful static analysis prevents conflicts

– Optimistic Approaches
• Conflicts are detected and  addressed 

(roll back)
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Out-of-Order Parallel DES
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– Threads execute in parallel iff
• in the same delta cycle, and

• in the same time cycle,

• OR if there are no conflicts!

– Needs compiler support for
static data conflict analysis!

 Preserves the accuracy of event 
handling and simulation time

 Allows as many threads in parallel
as possible

 Results in higher speedup!
• Examples: [DATE’12, ASPDAC’12]

OoO PDES Simulation States

• Break global temporal barrier
– localize simulation time (T:∆) to the threads.

– attach timestamps to the events.
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OoO PDES Scheduling
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• No need to wait till the 
global cycle boundaries.

• Dynamically update 
simulation states.

• Conflicts checking
– Data hazard: RAW, WAR, 

WAW for shared variables.

– Conflicts Prediction: 
check at runtime according 
to the simulation states.

OoO PDES Conflict Analysis

• Compiler support for data conflict analysis
– Segment:

SLDL code executed by a thread between two scheduling steps.

– Segment Boundary:
SLDL statements which call the scheduler, e.g. wait, par, etc.

– Segment Graph: 

• the connections among segments 

• derived from the control flow graph (CFG)

• data access information for each segments

– Segment data conflict table:
referred to at runtime for  fast scheduling decision.

(c) 2012 R. Doemer, et.al. 26EECS Colloquium, October 17, 2012
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waitfor 1

seg3 

seg4

waitfor 2

thread_b1

OoO PDES Segment Graph
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par

par end

seg0
thread_Main

seg2 thread_Main

seg1

waitfor 1

seg1

seg3 

seg4

waitfor 2

thread_b2

1: #include <stdio.h>
2: int array[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
3: behavior B(in int begin, in int end, out int sum)
4: { int i;
5:   void main(){
6:    int tmp; tmp = 0; i = begin;
7:   waitfor 1;   // v3, segment 3 starts
8:    while(i <= end){    
9:      waitfor 2; // v4, segment 4 starts

10:      tmp += array[i]; i ++;
11:   }
12:    sum = tmp; }
13: };
14: behavior Main()
15: {int sum1, sum2;
16:  B b1(0, 4, sum1); B b2(5, 9, sum2);
17:  int main(){
18:    par{ // v1, segment 1 starts
19:      b1.main();
20:      b2.main(); 
21:     } // v2, segment 2 starts
22:    printf("summation 1 is :%d \n", sum1);   
23:    printf("summation 2 is :%d \n", sum2); }};

OoO PDES Segment Conflict Table
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seg 0 1 2 3 4

0

1

2

3 T T

4 T T

1: #include <stdio.h>
2: int array[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
3: behavior B(in int begin, in int end, out int sum)
4: { int i;
5:   void main(){
6:    int tmp; tmp = 0; i = begin;
7:   waitfor 1;   // v3, segment 3 starts
8:    while(i <= end){    
9:      waitfor 2; // v4, segment 4 starts

10:      tmp += array[i]; i ++;
11:   }
12:    sum = tmp; }
13: };
14: behavior Main()
15: {int sum1, sum2;
16:  B b1(0, 4, sum1); B b2(5, 9, sum2);
17:  int main(){
18:    par{ // v1, segment 1 starts
19:      b1.main();
20:      b2.main(); 
21:     } // v2, segment 2 starts
22:    printf("summation 1 is :%d \n", sum1);   
23:    printf("summation 2 is :%d \n", sum2); }};

seg 0 1 2 3 4

0 F F F F F

1 F F F T T

2 F F F T T

3 F T T T T

4 F T T T T

 E.g.: Seg3 and Seg4 cannot 
run in parallel out of the order
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OoO PDES Conflicts Checking

• Scheduling: Fast checking at runtime
– Timestamp Comparison
– Segment Conflict Table Lookup

• Timestamp Comparison (th1 running, th2 Candidate)

– th1.timestamp == th2.timestamp, as regular PDES
– th1.timestamp > th2.timestamp, issue th2
– th1.timestamp > th2.timestamp, Check Conflicts

• Conflict Prediction
– th1 delivery an event and bring thread th3 with earlier 

timestamps.
– th1 will be followed by a new segment with earlier 

timestamp than th2.
– Build tables to lookup at runtime.
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OoO PDES Experiments and Results
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• Parallelized JPEG Image Encoder
– 3 color components encoded in parallel

– Sequential Huffman encoding

– A color image with 3216x2136

• Parallelized H.264 Video Decoder
– 4 parallel slice decoders

– Sequential slice reader and synchronizer

– Communication via double handshake channels

– Video frames divided into 4 independent slices 

– 1079 frames (about 36 seconds of video) and 1280x720 pixels 
per frame

 Results measured on a host PC with a 4-core CPU 
(Intel® Core™ Quad) at 3.0 GHz 
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OoO PDES Compilation Results
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Out-of-order PDES takes more compilation time due to conflict analysis!
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OoO PDES Simulation Results
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Out-of-order PDES significantly improve the simulation efficiency!
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Concluding Remarks

• PDES can significantly speed up System Simulation!

• What is the Potential of Parallelism we can exploit?
– SMP Host Platforms

• Multi-core PCs are readily available, many-core platforms coming

Nearly unlimited potential!

 Parallelism in Application sets an upper bound!
• Designer needs to identify and explicitly state the parallelism

Need more research on effective parallelization!

• Out-of-Order PDES
• Aggressive, breaks the cycle barrier, but preserves accuracy

 Limited by the quality of static analysis in the compiler
• Open question: How many real dependencies do exist?

• The better the analysis, the less false dependencies!

Need more research on advanced static analysis!
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