
Towards Parallel Simulation of Multi-Domain System Models DAC '15 Workshop,
June 7, 2015

(c) 2015 R. Doemer, CECS 1

Towards Parallel Simulation
of Multi‐Domain System Models

Keynote

DAC 2015 Workshop
System-to-Silicon Performance Modeling and Analysis

Rainer Dömer

Center for Embedded and Cyber-Physical Systems

University of California, Irvine

Towards Parallel Simulation…

• System Modeling
– Models

– Domains

– Dimensions

• System Simulation
– Discrete Event Simulation (DES)

– Parallel Discrete Event Simulation (PDES)

– Out-of-Order Parallel Discrete Event Simulation (OoO PDES)

• Parallel SystemC Project
– Dependency Analysis using Segment Graphs

– Early Experimental Results

• Concluding Remarks

Towards Parallel Simulation of Multi-Domain System Models (c) 2015 R. Doemer, CECS 2

Towards Parallel Simulation of Multi-Domain System Models DAC '15 Workshop,
June 7, 2015

(c) 2015 R. Doemer, CECS 2

System Modeling

• What is a Model?
– A model is an abstraction of reality.

• What is Abstraction?
– Abstraction is the intentional omission

or simplification of details.
Reduces system complexity!

 Allows to focus on the essentials!

• What is Modeling?
– Creating and shaping a model:

• Choosing and including properties of interest

• Simplifying of characteristics of limited interest

• Omitting of aspects of no interest

• Our Interest
– Cyber-Physical and Embedded Systems

Towards Parallel Simulation of Multi-Domain System Models (c) 2015 R. Doemer, CECS 3

1E0

1E1

1E2

1E3

1E4

1E5

1E6

1E7

System
Components

Abstraction
Level

Gate

RTL

Algorithm

System

Transistor

B0 B1

B2 B3

System Model

System Modeling Domains

• Traditional Properties of Interest in System Design
– Functionality (execution)

• Computation of functional result (data values)

• Validation of correctness, Boolean value

– Performance (estimation of speed, meeting deadlines)
• Execution time t [s], optimization goal

– Structure (number and type of components, estimation of cost,)
• Chip area [mm2], optimization goal

• New Domains of Increasing Importance
– Energy consumption (i.e. battery run-time)

• Power P [W] = E [J] / t [s], optimization goal with threshold

– Thermal behavior (need for cooling)
• Temperature T [oC], threshold value, T < Tcritical

– Reliability, degradation, aging
• Mean time between failures MTBF [s], optimization goal

– …

Towards Parallel Simulation of Multi-Domain System Models (c) 2015 R. Doemer, CECS 4

Towards Parallel Simulation of Multi-Domain System Models DAC '15 Workshop,
June 7, 2015

(c) 2015 R. Doemer, CECS 3

System Modeling Domains

• Traditional Properties of Interest in System Design
– Functionality (execution)

• Computation of functional result (data values)

• Validation of correctness, Boolean value

– Performance (estimation of speed, meeting deadlines)
• Execution time t [s], optimization goal

– Structure (number and type of components, estimation of cost,)
• Chip area [mm2], optimization goal

• New Domains of Increasing Importance
– Energy consumption (i.e. battery run-time)

• Power P [W] = E [J] / t [s], optimization goal with threshold

– Thermal behavior (need for cooling)
• Temperature T [oC], threshold value, T < Tcritical

– Reliability, degradation, aging
• Mean time between failures MTBF [s], optimization goal

– …

Towards Parallel Simulation of Multi-Domain System Models (c) 2015 R. Doemer, CECS 5

Extra-Functional
Properties

(e.g. [Ramesh’12], [Hartmann’15])

– (check!)

– (max!)

– (min!)

– (min!)

– (min!)

– (max!)

• Traditional Properties
– Functionality

– Performance

– Cost

• New Properties
– Power

– Thermal effects

– Reliability

– Degradation,
Aging

– …

 Properties in different dimensions can be modeled independently!

 Opportunity to exploit dimensions for parallel simulation!

System Modeling Dimensions

Towards Parallel Simulation of Multi-Domain System Models (c) 2015 R. Doemer, CECS 6

Function Time t [s]

Area A [mm2]

Power P [W]

Temp. T [oC] = f(t,P,A,…)

MTBF [s] = f(T,t,…)

Towards Parallel Simulation of Multi-Domain System Models DAC '15 Workshop,
June 7, 2015

(c) 2015 R. Doemer, CECS 4

System Modeling Dimensions

• SystemC Example:
– Function

– Structure

– Timing

– Power consumption

– Thermal behavior

– Reliability degradation

Towards Parallel Simulation of Multi-Domain System Models (c) 2015 R. Doemer, CECS 7

SC_MODULE(Component)
{ sc_port<i_data> DataIn, DataOut;

SC_CTOR(Component)
{ SC_THREAD(main);
}
void main()
{ ...

x = f(DataIn->read());
wait(delay1(), SC_NS);
consume(power1(), mW);
dissipate(temp1(), degC);
age(mtbf1(), SC_SEC);
...
while(cond(x))
{ ...

y = g(x);
wait(delay2(), SC_NS);
consume(power2(), mW);
dissipate(temp2(), degC);
age(mtbf2(), SC_SEC);

}
DataOut->write(y);

}
};Function Time t [s]

Area A [mm2]

Power P [W]

Temp. T [oC] = f(t,P,A,…)

MTBF [s] = f(T,t,…)

System Simulation

• Traditional Discrete Event Simulation
– well‐suited for functional validation and

performance vs. cost trade-offs

– but cannot cope with the additional complexities and
extra‐functional properties of new domains
Growing complexity impacts execution speed!

 True system simulation must advance to
1) efficiently integrate new domains and dimensions

2) fully exploit parallel execution

 Utilize parallelism to ensure scalability!

• Example project:
• Out-of-Order Parallel Simulation of SystemC Models

 Parallel, fast, and accurate

Towards Parallel Simulation of Multi-Domain System Models (c) 2015 R. Doemer, CECS 8

Towards Parallel Simulation of Multi-Domain System Models DAC '15 Workshop,
June 7, 2015

(c) 2015 R. Doemer, CECS 5

Parallel Simulation, Key Points

• Project on Advanced Parallel SystemC Simulation
– Out-of-Order PDES on many-core host platforms

– Maximum compliance with current execution semantics

– Supported with funding by Intel® Corp.

• Introduction of a Dedicated SystemC Compiler
– Recoding Infrastructure for SystemC (RISC)

– Advanced static analysis for parallel execution

– Model instrumentation and code generation

• Parallel SystemC Core Library
– Out-of-order parallel scheduler, multi-thread safe primitives

– Many-core target platform (e.g. Intel® Xeon Phi™)

• Open Source
– Collaboration with Accellera SystemC Language WG

Towards Parallel Simulation of Multi-Domain System Models (c) 2015 R. Doemer, CECS 9

Discrete Event Simulation

• Traditional Discrete Event Simulation (DES)
– Reference simulators run sequentially, only one thread at a time

(cooperative multi-threading model)

– Cannot utilize the capabilities of multi- or many-core hosts

• Parallel Discrete Event Simulation (PDES)
– Threads run in parallel (if at the same delta cycle and time)

– Simulation-cycles are absolute barriers!

 Out-of-order Parallel DE Simulation (OoO PDES)
– Threads run in parallel and out-of-order [DATE’12]

even in different delta and time cycles if there are no conflicts!

– Aggressive, runs maximum number of threads in parallel,
but fully preserves DES semantics and model accuracy!

Towards Parallel Simulation of Multi-Domain System Models (c) 2015 R. Doemer, CECS 10

Towards Parallel Simulation of Multi-Domain System Models DAC '15 Workshop,
June 7, 2015

(c) 2015 R. Doemer, CECS 6

Discrete Event Simulation (DES)

Towards Parallel Simulation of Multi-Domain System Models (c) 2015 R. Doemer, CECS 11

10:0
10:1

10:2

20:1
20:0

20:2

30:0

0:0
T:Δth4th2 th3th1• Traditional DES

– Concurrent threads of execution

– Managed by a central scheduler

– Driven by events and time advances
• Delta-cycle

• Time-cycle

 Partial temporal order with barriers

• IEEE Standard Simulator
– SystemC reference simulator

uses cooperative multi-threading

 A single thread is active at any time!

 Cannot exploit parallelism

 Cannot utilize multiple cores

Parallel Discrete Event Simulation (PDES)

Towards Parallel Simulation of Multi-Domain System Models (c) 2015 R. Doemer, CECS 12

10:0
10:1

10:2

20:1
20:0

20:2

30:0

0:0
T:Δth4th2 th3th1• Parallel DES

– Threads execute in parallel iff
• in the same delta cycle, and

• in the same time cycle

 Significant speed up!

– Synchronous PDES:
Cycle boundaries are
absolute barriers!

• Aggressive Parallel DES
– Conservative Approaches

• Careful static analysis prevents conflicts

– Optimistic Approaches
• Conflicts are detected and addressed

(roll back)

Towards Parallel Simulation of Multi-Domain System Models DAC '15 Workshop,
June 7, 2015

(c) 2015 R. Doemer, CECS 7

Out-of-Order Parallel DES

Towards Parallel Simulation of Multi-Domain System Models (c) 2015 R. Doemer, CECS 13

10:0
10:1

10:2

20:1
20:0

20:2

30:0

0:0
T:Δth4th2 th3th1• Out-of-Order PDES

– Threads execute in parallel iff
• in the same delta cycle, and

• in the same time cycle,

• OR if there are no conflicts!

– Can utilize advanced compiler for
static data conflict analysis

 Allows as many threads in parallel
as possible

 Significantly higher speedup!
• Results at [DATE’12], [IEEE TCAD14]

 Fully preserves…
DES execution semantics

 Accuracy in results and timing

Out-of-Order PDES Technology

• OoO PDES Key Ideas
1. Dedicated SystemC compiler with advanced model analysis

 Static conflict analysis based on Segment Graphs

2. Parallel simulator with out-of-order scheduling on many cores
 Fast decision making at run-time, optimized mapping

• Fundamental Data Structure: Segment Graph
– Key to semantics-compliant out-of-order execution [DATE’12]

– Key to prediction of future thread state [DATE’13]
• “Optimized Out-of-Order Parallel DE Simulation Using Predictions”

– Key to May-Happen-in-Parallel Analysis [DATE’14]
• “May-Happen-in-Parallel Analysis based on Segment Graphs

for Safe ESL Models“ (Best Paper Award)

– Journal publication: “OoO PDES for TLM” [IEEE TCAD’14]
• Comprehensive article with HybridThreads extension

Towards Parallel Simulation of Multi-Domain System Models (c) 2015 R. Doemer, CECS 14

Towards Parallel Simulation of Multi-Domain System Models DAC '15 Workshop,
June 7, 2015

(c) 2015 R. Doemer, CECS 8

Project Overview and Tool Flow

• Research and Development Tasks
1) Dedicated SystemC compiler

(RISC infrastructure)

2) Parallel SystemC
headers and library

3) Performance tuning
for many‐core hosts

4) Virtual Platform (VP)
integration

5) Model analysis
(may-happen-
in-parallel, MHP)

6) Model recoding,
transformation
and optimization

Towards Parallel Simulation of Multi-Domain System Models (c) 2015 R. Doemer, CECS 15

SystemC
Model

SystemC
Compiler

RISC

C++ Compiler

Parallel
Executable

Parallel
C++ Model

Parallel
Simulation

VP
Engine

Virtual
Platform
Library

VP-based
Prototyping

Many-Core
Host Platform

MHP
Analysis

ToolsRISC

MHP
Analysis

ToolsRISC

Model
Analysis

ReportsReportsReports

MHP
Analysis

ToolsRISC

Recoding
Tools

RISC

Recoding
Tools

RISC

Refined
SystemC

Model

Model
Transformation

and
Optimization

Recoding
Tools

RISC
Parallel

SystemC
Library

Parallel
SystemC
Headers

R&D Task 1: SystemC Compiler

• RISC Software Stack
 Recoding Infrastructure for SystemC

– C/C++ foundation

– ROSE compiler infrastructure

Towards Parallel Simulation of Multi-Domain System Models (c) 2015 R. Doemer, CECS 16

RISC

C/C++ Foundation

ROSE IR

• ROSE Internal Representation

• Explicit support for

• Source code analysis

• Source-to-source
transformations

Towards Parallel Simulation of Multi-Domain System Models DAC '15 Workshop,
June 7, 2015

(c) 2015 R. Doemer, CECS 9

R&D Task 1: SystemC Compiler

• RISC Software Stack
 Recoding Infrastructure for SystemC

– SystemC Internal
Representation

Towards Parallel Simulation of Multi-Domain System Models (c) 2015 R. Doemer, CECS 17

RISC

C/C++ Foundation

ROSE IR

SystemC IR

• Class hierarchy to represent
SystemC objects

R&D Task 1: SystemC Compiler

Towards Parallel Simulation of Multi-Domain System Models (c) 2015 R. Doemer, CECS 18

RISC

Segment Graph

C/C++ Foundation

ROSE IR

SystemC IR

• RISC Software Stack
 Recoding Infrastructure for SystemC

1) Segment Graph construction

2) Segment conflict analysis

Compilation,
Simulation

SystemC Compiler

RISCsystemc.h

Model.cpp

Segment Graph
Construction

Parallel Access
Conflict Analysis

…
Model

_par.cpp

SystemC Model Parallel
C++ Model

Seg 2

Seg 1

Seg 3

Seg 4 Seg 5

Seg 6

Segment Graph

Conflict Seg 1 Seg 2 Seg 3

Seg 1 True

Seg 2 True True

Seg 3 True

Seg 3
R: a, b
W: x, y
RW:

Seg 2
R: a, b
W: x
RW: z

Towards Parallel Simulation of Multi-Domain System Models DAC '15 Workshop,
June 7, 2015

(c) 2015 R. Doemer, CECS 10

R&D Task 1: SystemC Compiler

• Segment Graph Construction
– Segment Graph is a directed graph

• Nodes: Segments

Code statements executed
between two scheduling steps

– Expression statements

– Control flow statements (if, while, …)

– Function calls

• Edges: Segment boundaries

 Primitives that trigger scheduler entry
– wait(event)

– wait(time)

 Segment Graph can be constructed statically
by the compiler from the model source code

• (see example on next slide)

Towards Parallel Simulation of Multi-Domain System Models (c) 2015 R. Doemer, CECS 19

Seg 2

Seg 1

Seg 3

Seg 4 Seg 5

Seg 6

Segment Graph

R&D Task 1: SystemC Compiler

• Segment Graph Construction
– Example: Source code and Segment Graph

Towards Parallel Simulation of Multi-Domain System Models (c) 2015 R. Doemer, CECS 20

int a;

if(cond) {

int b;

wait(1);

int c;

} else {

int d;

}

int e;

wait(2);

int f;

while(cond) {

int g;

}

int h;

int a;
condition
int b;
int d;
int e;

int c;
int e;

int f;
condition
int g;
int h

Towards Parallel Simulation of Multi-Domain System Models DAC '15 Workshop,
June 7, 2015

(c) 2015 R. Doemer, CECS 11

R&D Task 1: SystemC Compiler

• Segment Graph Construction: Current Status
– Support for straight-line code

Towards Parallel Simulation of Multi-Domain System Models (c) 2015 R. Doemer, CECS 21

void straight()
{

x = 42;
int xx = 43;
int yy;
yy;
int o = y;

wait(10, SC_NS);

wait();

int kk;

wait();

int oo;
}

Segment ID: 0

input_straight.cpp:24 (this) -> x = 42

input_straight.cpp:25 int xx = 43;

input_straight.cpp:26 int yy;

input_straight.cpp:27 yy

input_straight.cpp:28 int o =(this) -> y;

Segment ID: 1 (input_straight.cpp:30)

Segment ID: 2 (input_straight.cpp:32)

input_straight.cpp:34 int kk;

Segment ID: 3 (input_straight.cpp:37)

input_straight.cpp:39 int oo;

R&D Task 1: SystemC Compiler

• Segment Graph Construction: Current Status
– Support for conditional statements
 if, if-else, switch-case

(with break)

Towards Parallel Simulation of Multi-Domain System Models (c) 2015 R. Doemer, CECS 22

void if_statement()
{

wait();
int aaa;
if(test) {

int bbb;
wait();
int ccc;

}
int ddd;
wait();
int eee;

}

Segment ID: 0

Segment ID: 1 (input_if_else.cpp:27)

compilerGenerated:0 (this) -> test

input_if_else.cpp:34 int ddd;

input_if_else.cpp:28 int aaa;

input_if_else.cpp:30 int bbb;

Segment ID: 2 (input_if_else.cpp:31)

input_if_else.cpp:32 int ccc;

input_if_else.cpp:34 int ddd;

Segment ID: 3 (input_if_else.cpp:35)

input_if_else.cpp:36 int eee;

Towards Parallel Simulation of Multi-Domain System Models DAC '15 Workshop,
June 7, 2015

(c) 2015 R. Doemer, CECS 12

R&D Task 1: SystemC Compiler

• Segment Graph Construction: Current Status
– Support for loop statements
 while, do-while, for

(with break, continue)

Towards Parallel Simulation of Multi-Domain System Models (c) 2015 R. Doemer, CECS 23

void while_continue_statement()
{

int kk;
while(test){

int aa;
wait();
int bb;
if(test1) {

continue;
}
int oo;
wait();
int cc;

}
int dd;
wait();

} Segment ID: 3 (input_while_continue.cpp:62)

Segment ID: 0

input_while_continue.cpp:49 int kk;

compilerGenerated:0 (this) -> test

input_while_continue.cpp:51 int aa;

input_while_continue.cpp:61 int dd;

Segment ID: 2 (input_while_continue.cpp:58)

input_while_continue.cpp:59 int cc;

compilerGenerated:0 (this) ->; test

input_while_continue.cpp:51 int aa;

input_while_continue.cpp:61 int dd;

Segment ID: 1 (input_while_continue.cpp:52)

input_while_continue.cpp:53 int bb;

compilerGenerated:0 (this) -> test1

input_while_continue.cpp:55 continue;

input_while_continue.cpp:57 int oo;

compilerGenerated:0 (this) -> test

input_while_continue.cpp:51 int aa;

input_while_continue.cpp:61 int dd;

R&D Task 1: SystemC Compiler

• Segment Graph Construction: Current Status
– Support for function calls
 f(x), return

Towards Parallel Simulation of Multi-Domain System Models (c) 2015 R. Doemer, CECS 24

int g1()
{

int g_0;
wait();
int g_1 = 33;
if(g_1 == 88) {

int g_2;
wait();
int g_3 = 44;
return 43;
int DEAD_CODE;

}
int g_4;
wait();
int g_5;
wait();
int g_6;
int return_value = 2;
return return_value;

}

Segment ID: 1 (input_function_calls.cpp:152)

input_function_calls.cpp:153 int bb;

input_function_calls.cpp:154 (this) -> g1();

input_function_calls.cpp:162 int g_0;

Segment ID: 2 (input_function_calls.cpp:163)

input_function_calls.cpp:164 int g_1 = 33;

input_function_calls.cpp:166 g_1 == 88

input_function_calls.cpp:167 int g_2;

input_function_calls.cpp:173 int g_4;

Segment ID: 3 (input_function_calls.cpp:168)

input_function_calls.cpp:169 int g_3 = 44;

input_function_calls.cpp:170 43

input_function_calls.cpp:155 int cc;

Segment ID: 5 (input_function_calls.cpp:176)

input_function_calls.cpp:177 int g_6;

input_function_calls.cpp:178 int return_value = 2;

input_function_calls.cpp:179 return_value

input_function_calls.cpp:155 int cc;

Segment ID: 4 (input_function_calls.cpp:174)

input_function_calls.cpp:175 int g_5;

Segment ID: 6 (input_function_calls.cpp:156)

input_function_calls.cpp:157 int dd;

Segment ID: 0

input_function_calls.cpp:151 int aa;

void f()
{

int aa;
wait();
int bb;
g1();
int cc;
wait();
int dd;

}

Towards Parallel Simulation of Multi-Domain System Models DAC '15 Workshop,
June 7, 2015

(c) 2015 R. Doemer, CECS 13

void main()
{ wait();

f();
wait();

}

R&D Task 1: SystemC Compiler

• Segment Graph Construction: Current Status
– Support for recursive function calls

 Direct, indirect recursion

Towards Parallel Simulation of Multi-Domain System Models (c) 2015 R. Doemer, CECS 25

void f()
{ wait();

if(xx>0) {
wait();
g();
wait();

}
wait();
return;

}

void g()
{ xx--;

wait();
if(xx>0) {

wait();
int before_rec;
f();
int after_rec;
wait();

} else {
wait();
return;

}
}

Segment ID: 0

Segment ID: 7 (input_recursive.cpp:163)

Segment ID: 10 (input_recursive.cpp:153)

Segment ID: 9 (input_recursive.cpp:178)

Segment ID: 1 (input_recursive.cpp:151)

input_recursive.cpp:152 (this) -> recursive1();

Segment ID: 2 (input_recursive.cpp:159)

input_recursive.cpp:160 (this) -> xx > 0

Segment ID: 5 (input_recursive.cpp:180)

compilerGenerated:0

Segment ID: 6 (input_recursive.cpp:174)

input_recursive.cpp:175 int before_rec;

input_recursive.cpp:176 (this) -> recursive1()

Segment ID: 4 (input_recursive.cpp:172)

input_recursive.cpp:173 (this) -> xx > 0

Segment ID: 8 (input_recursive.cpp:165)

compilerGenerated:0

input_recursive.cpp:177 int after_rec;

Segment ID: 3 (input_recursive.cpp:161)

input_recursive.cpp:162 (this) -> recursive2();

input_recursive.cpp:171 (this) -> xx--

R&D Task 1: SystemC Compiler

• Segment Conflict Analysis
– Need to comply with SystemC LRM [IEEE Std 1666™]

• Cooperative (or co-routine) multitasking semantics
– “process instances execute without interruption”

– System designer “can assume that a method process
will execute in its entirety without interruption”

 A parallel implementation “would be obliged
to analyze any dependencies between processes and
constrain their execution to match the co-routine semantics.”

– Must avoid race conditions when using shared variables!
 Prevent conflicting segments to be scheduled in parallel

Towards Parallel Simulation of Multi-Domain System Models (c) 2015 R. Doemer, CECS 26

Conflict Seg 1 Seg 2 Seg 3

Seg 1 True

Seg 2 True True

Seg 3 True

Seg 3
R: a, b
W: x, y
RW:

Seg 2
R: a, b
W: x
RW: z

Towards Parallel Simulation of Multi-Domain System Models DAC '15 Workshop,
June 7, 2015

(c) 2015 R. Doemer, CECS 14

R&D Task 1: SystemC Compiler

• Segment Conflict Analysis: Current Status
– Variable access analysis for Read, Write, and Read/Write

– Example:

Towards Parallel Simulation of Multi-Domain System Models (c) 2015 R. Doemer, CECS 27

class Conflict: public sc_module {
SC_CTOR(Conflict)
{ SC_THREAD(thread1);

SC_THREAD(thread2);
}
int x, y, z;

void thread1()
{

int a;
a = 2;
wait();
a = x + y;
wait();
z++;

}
};

void thread2()
{

int b = 2;
x = y;
wait();
x = y * z;
wait();
z++;
wait();
x++;

}

Segment ID: 0

conflict.cpp:24 int a;

conflict.cpp:25 a = 2

Segment ID: 3

conflict.cpp:34 int b = 2;

conflict.cpp:35 x = y

Segment ID: 1 (conflict.cpp:26)

conflict.cpp:27 a = x + y

Segment ID: 2 (conflict.cpp:28)

conflict.cpp:29 z++

Segment ID: 4 (conflict.cpp:36)

conflict.cpp:37 x = y * z

Segment ID: 5 (conflict.cpp:38)

conflict.cpp:39 z++

Segment ID: 6 (conflict.cpp:40)

conflict.cpp:41 x++

Segment Graph

Segment ID: 0

conflict.cpp:24 int a;

conflict.cpp:25 a = 2

Segment ID: 3

conflict.cpp:34 int b = 2;

conflict.cpp:35 x = y

Segment ID: 1 (conflict.cpp:26)

conflict.cpp:27 a = x + y

Segment ID: 2 (conflict.cpp:28)

conflict.cpp:29 z++

Segment ID: 4 (conflict.cpp:36)

conflict.cpp:37 x = y * z

Segment ID: 5 (conflict.cpp:38)

conflict.cpp:39 z++

Segment ID: 6 (conflict.cpp:40)

conflict.cpp:41 x++

R&D Task 1: SystemC Compiler

• Segment Conflict Analysis: Current Status
– Variable access analysis for Read, Write, and Read/Write

– Example:

Towards Parallel Simulation of Multi-Domain System Models (c) 2015 R. Doemer, CECS 28

Segment Graph
Segment
Variable

Accesses

Towards Parallel Simulation of Multi-Domain System Models DAC '15 Workshop,
June 7, 2015

(c) 2015 R. Doemer, CECS 15

R&D Task 1: SystemC Compiler

• Segment Conflict Analysis: Current Status
– Variable access analysis for Read, Write, and Read/Write

– Example:

Towards Parallel Simulation of Multi-Domain System Models (c) 2015 R. Doemer, CECS 29

Segment
Variable

Accesses
Segment Data Conflict Table

x

x

R&D Task 2: Parallel SystemC Library

• Parallel Simulator with Out-of-Order Scheduler
– OoO PDES execution

Towards Parallel Simulation of Multi-Domain System Models (c) 2015 R. Doemer, CECS 30

• Fast conflict table lookup

• Truly parallel threads

• Optimal thread-to-core mapping

Towards Parallel Simulation of Multi-Domain System Models DAC '15 Workshop,
June 7, 2015

(c) 2015 R. Doemer, CECS 16

R&D Task 2: Parallel SystemC Library

Towards Parallel Simulation of Multi-Domain System Models (c) 2015 R. Doemer, CECS 31

• Inter-Thread Communication Protection
– Need to comply with SystemC LRM [IEEE Std 1666™]

• Cooperative (or co-routine) multitasking semantics
– Execution “without interruption”

– Must protect inter-thread communication in channels!
 Insert a mutex lock into channel instances

– To lock the channel on thread entry

– To unlock the channel on thread exit

Channel

Thread 2Thread 1

R&D Task 2: Parallel SystemC Library

Towards Parallel Simulation of Multi-Domain System Models (c) 2015 R. Doemer, CECS 32

• Inter-Thread Communication Protection
– Need to comply with SystemC LRM [IEEE Std 1666™]

• Cooperative (or co-routine) multitasking semantics
– Execution “without interruption”

– Must protect inter-thread communication in channels!
• Primitive SystemC channels

 Static protection (parallel SystemC headers, library)

• User-defined hierarchical channels
 Dynamic protection through source code instrumentation

 Design Flow with Model Instrumentation by SystemC compiler

C++
Compiler

Parallel
Simulation

SystemC Compiler

RISCsystemc.h

Model.cpp

… Source Code
Instrumentation

systemc
_par.h

Model
_par.cpp

SystemC Model

Parallel
SystemC
Library

Parallel
C++ Model

Towards Parallel Simulation of Multi-Domain System Models DAC '15 Workshop,
June 7, 2015

(c) 2015 R. Doemer, CECS 17

Early Experimental Results

• Intel® Many Integrated Core Architecture

 Intel® Xeon Phi™ Coprocessor
– Provides

• 60 processor cores

• 4 hyper-threads per core

 240 parallel hardware threads!

– Hardware Features
• Vector processing unit (VPU)

• Extended Math Unit (EMU) for transcendental operations

• Bidirectional ring interconnect

– Peak performance
 over 1 teraFLOPS (double-precision)

 Uses familiar and standard programming models
 Appears as a regular Linux machine with 240 cores!

Towards Parallel Simulation of Multi-Domain System Models (c) 2015 R. Doemer, CECS 33

0x

10x

20x

30x

40x

50x

1 2 4 8 16 32 64 128 256

4 Core Host,
PDES

2 CPU 6 Core Host,
PDES

2 CPU 6 Core Host,
OoO PDES

60x4 Core Xeon Phi,
Posix PDES

Early Experimental Results

• Graphics Application: Mandelbrot Set Renderer
– Experimental Results

• Sequence of 100 Mandelbrot images (640x448, depth 4096)

• Manually created PDES model (Posix-threads based)

• Multi-core platforms: Intel® Xeon® CPUs (4 cores, 2x6 cores)

• Many-core platform: Intel® Xeon Phi™ (60 x 4 cores)

Towards Parallel Simulation of Multi-Domain System Models (c) 2015 R. Doemer, CECS 34

3.7x speedup

5.9x speedup

46x speedup

6.3x speedup

S
pe

ed
up

Threads

46x

3.7 to 6.3x

Mandelbrot Benchmark Results
on Intel® Xeon® and Xeon Phi™

Towards Parallel Simulation of Multi-Domain System Models DAC '15 Workshop,
June 7, 2015

(c) 2015 R. Doemer, CECS 18

Early Experimental Results

• Experimental Results (Intel® Xeon Phi Coprocessor, 60x4 cores)

Towards Parallel Simulation of Multi-Domain System Models (c) 2015 R. Doemer, CECS 35

0x

20x

40x

60x

80x

100x

120x

0

50

100

150

200

250

300

1 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240

fibo elapsed time [sec]

fmul elapsed time [sec]

fibo rel. speedup

fmul rel. speedup

Parallel Benchmark Results
on Intel® Xeon Phi™

80x

103x

E
xe

cu
tio

n
T

im
e

[s
ec

]

S
pe

ed
up

Concluding Remarks

• Project on Advanced Parallel SystemC Simulation
– Out-of-Order PDES on many-core host platforms

– Maximum compliance with current execution semantics

– Supported with funding by Intel® Corp.

• Introduction of a Dedicated SystemC Compiler
– Recoding Infrastructure for SystemC (RISC)

– Advanced static analysis for parallel execution

– Model instrumentation, code optimization, transformation

• Parallel SystemC Core Library
– Out-of-order parallel scheduler, multi-thread safe primitives

– Many-core target platform (e.g. Intel® Xeon Phi™)

• Open Source
– Collaboration with Accellera SystemC Language WG

Towards Parallel Simulation of Multi-Domain System Models (c) 2015 R. Doemer, CECS 36

Towards Parallel Simulation of Multi-Domain System Models DAC '15 Workshop,
June 7, 2015

(c) 2015 R. Doemer, CECS 19

Conclusion

• System simulation must

1) integrate new domains for extra-functional properties
– Performance

– Structure

– Energy consumption

– Thermal behavior

– Reliability, degradation, aging

2) exploit parallel execution to ensure scalability

• Independent domains form new dimensions
 Exploit independent dimensions for parallel simulation

Towards Parallel Simulation of Multi-Domain System Models (c) 2015 R. Doemer, CECS 37

References

• [Hartmann’15] P. Hartmann, K. Gruettner, W. Nebel: “Advanced SystemC Tracing and
Analysis Framework for Extra-Functional Properties”, Proceedings of ARC Symposium,
Bochum, Germany, 2015.

• [UTokyo’15] R. Dömer, G. Liu, T. Schmidt:
"Out-of-Order Parallel Simulation of SystemC Models on Many-Core Architectures",
Presentation at University of Tokyo, Japan, January 2015.

• [IEEE TCAD14] W. Chen, X. Han, C. Chang, G. Liu, R. Dömer:
"Out-of-Order Parallel Discrete Event Simulation for Transaction Level Models",
IEEE Transactions on CAD, vol. 33, no. 12, pp. 1859-1872, December 2014.

• [DATE’14] W. Chen, X. Han, R. Dömer: "May-Happen-in-Parallel Analysis based on
Segment Graphs for Safe ESL Models", Proceedings of DATE, Dresden, Germany, March
2014. (Best Paper Award!)

• [DATE’13] W. Chen, R. Dömer: "Optimized Out-of-Order Parallel Discrete Event Simulation
Using Predictions", Proceedings of DATE, Grenoble, France, March 2013.

• [Ramesh’12] U. Ramesh: “A taxonomy for extra-functional properties of embedded system”,
Master’s thesis, Maelardalen University, Sweden, 2012.

• [DATE’12] W. Chen, X. Han, R. Dömer: "Out-of-Order Parallel Simulation for ESL Design",
Proceedings of DATE, Dresden, Germany, March 2012.

• [Maehne’09] T. Maehne, A. Vachoux: “Supporting Dimensional Analysis in SystemC-AMS”,
Proceedings of BMAS Workshop, San Jose, 2009.

Towards Parallel Simulation of Multi-Domain System Models (c) 2015 R. Doemer, CECS 38

