
Fast and Accurate Processor Models

for Efficient MPSoC Design

Gunar Schirner

University of California, Irvine

Andreas Gerstlauer

University of Texas at Austin

and

Rainer Dömer

University of California, Irvine

With growing system complexity and ever increasing software content, the development of embed-
ded software for upcoming MPSoC architectures is a tremendous challenge. Traditional ISS-based
validation becomes infeasible due to the large complexity.

Addressing the need for flexible and fast simulating models, we introduce in this paper our

approach of abstract processor modeling in the context of multi-processor architectures. We
combine modeling of computation on processors with an abstract RTOS and accurate interrupt
handling into a versatile, multi-faceted processor model with several levels of features.

Our processor models are utilized in a framework allowing designers to develop a system in

a top-down manner using automatic model generation and compilation down to a given MPSoC
architecture. During generation, instances of our processor models are integrated into a system
model combining software, hardware and bus communication. The generated system model serves

for rapid design space exploration and a fast and accurate system validation.
Our experimental results show the benefits of our processor modeling using an actual multi-

processor mobile phone baseband platform. Our abstract models of this complex system reach a
simulation speed of 300MCycles/sec within a high accuracy of less than 3% error. In addition,

our results quantify the speed/accuracy trade-off at varying abstraction levels of our models to
guide future processor model designers.

Categories and Subject Descriptors: I.6.4 [Simulation and Modeling]: Model Validation and
Analysis

General Terms: Design

Additional Key Words and Phrases: processor modeling, system level design, TLM, transaction
level model, performance prediction/estimation, Multi-Processor System-on-Chip, MPSoC

Author’s addresses: Gunar Schirner, Center for Embedded Computer Systems, UC Irvine, Irvine,
CA 92697-2625, USA; email: hschirne@uci.edu; Andreas Gerstlauer, Department of Electri-

cal and Computer Engineering, University of Texas at Austin, Austin, TX 78712; email: ger-
stl@ece.utexas.edu; Rainer Dömer, Center for Embedded Computer Systems, UC Irvine, Irvine,
CA 92697-2625, USA; email: doemer@uci.edu
Permission to make digital/hard copy of all or part of this material without fee for personal

or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,

to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20?? ACM 1084-4309/20??/0400-0001 $5.00

ACM Transactions on Design Automation of Electronic Systems, Vol. ?, No. ?, ?? 20??, Pages 1–24.

2 · Schirner, Gerstlauer and Dömer

1. INTRODUCTION

As system complexity increases in general, the software content in current and fu-
ture system designs grows even more so. Recent state-of-the art MPSoC system
architectures increasingly employ a large number of processors. Validation and de-
bugging of embedded software for such systems is becoming a tremendous challenge,
and more and more infeasible with current methods.

Transaction Level Modeling (TLM) is a widely accepted approach for abstracting
communication. It dramatically increases the simulation speed and is an efficient
enabler for exploring a larger design space. Motivated by the more than encouraging
results of communication TLM, we will focus in this paper on abstraction of compu-
tation. We address the need for abstract modeling and simulation of programmable
processors, which play an increasingly significant role in todays MPSoCs, allowing
adaptation to emerging standards and specific customer demands.

Traditionally, embedded software is validated and debugged using Instruction Set
Simulators (ISSs) which provide functional and timing accurate simulation on a host
platform at a very fine granularity. However, interpreting ISSs simulate very slowly,
especially when multiple instances are integrated into a MPSoC system simulation.
Therefore, ISS-based validation and debugging is not sufficient to match the needs
for rapid design space exploration at the system level. Thus, a higher level of
abstraction is needed.

Performance

Ac
cu

rac
y

Low High

In-
accurate

Accurate

ISS
real
HW

C-code

Proc.
TLM

Fig. 1. Trade-off in system simulation.

Abstracting a software execution environment results in a trade-off between sim-
ulation performance and simulation accuracy as shown in Figure 1. Using an ISS
yields an accurate but slow simulation. A purely functional C-code execution that
does not express any target performance metric is on the other extreme. It shows
a high simulation performance, however, is very inaccurate in structure and tim-
ing. A model, such as a processor TLM, is desirable which abstractly reflects the
processor characteristics, simulates fast and yet shows sufficiently accurate timing
results.

In this article, we present our approach of abstracting the software execution
environment while retaining a high accuracy of the models. In particular, we de-
scribe our abstract processor modeling as an integral part of current MPSoCs.
Our processor models provide a high-level software execution environment with

ACM Transactions on Design Automation of Electronic Systems, Vol. ?, No. ?, ?? 20??.

Fast and Accurate Processor Models for efficient MPSoC Design · 3

accurately timed execution, real-time operating system (RTOS) services and ex-
ternal communication. Our models exhibit highest simulation performance while
maintaining an acceptable accuracy in simulated timing, and exhibiting the actual
structure of the software architecture (e.g. drivers and interrupts). Using our ab-
stract processor models in conjunction with transaction-level models (TLMs) of
communication [Schirner and Dömer 2008] dramatically increases the execution
speed in a co-simulation environment. With high accuracy in timing, our models
enable an early functional and fast simulation of the desired target architecture,
clearly exposing the implications of programming and architectural decisions, and
thus allowing rapid validation, debugging and design space exploration.

1.1 Problem Definition

With the importance of embedded software within an MPSoC design, fast and
accurate simulation of embedded software is needed. The traditional ISS based
co-simulation satisfies all functional requirements, however at a very low speed.
Faster simulation capabilities are needed to aid efficient exploration, validation and
debugging.

We address the need for fast software simulation by abstracting the software ex-
ecution environment providing timed execution, dynamic scheduling and external
communication. We develop a corresponding high-level, abstract processor model.
We aim to significantly increase simulation performance while maintaining an ac-
ceptable accuracy in simulated timing, and properly reflecting the structure of the
software architecture (e.g. drivers and interrupts).

We focus on a Multi-Processor SoC (MPSoC) target architecture as outlined in
Figure 2. It consists of a set of processors, where each processor is connected to a
processor specific main bus. We assume that each processor contains an internal
memory, which stores the execution binaries and local variables. Additionally, we
associate a customizable Programmable Interrupt Controller (PIC) and a timer
with each processor.

CE
.
.
.

Processor N
Ext. IP N1

Core Mem

Processor Bus N

PIC Timer

Processor 1
Ext. IP 11

Core Mem

Processor Bus 1

PIC Timer

Ext. IP NM

...

MEM 11

MEM N1

...

...

Fig. 2. Generic MPSoC target architecture.

Each processor communicates with external memory (holding globally shared
variables) and with custom hardware IP blocks (through memory mapped I/O and
interrupts) over the processor main bus. Any number of IP blocks and memories
may be connected to each bus. A processor can also communicate with other

ACM Transactions on Design Automation of Electronic Systems, Vol. ?, No. ?, ?? 20??.

4 · Schirner, Gerstlauer and Dömer

processors and external IPs or memories connected to other busses through one or
more Communication Elements (CEs)1, such as a bridges or a routers.

At the input, we assume that the user application is given in the form of C code for
each task, including information about task relations and explicit communication
between tasks. Furthermore, we assume that data about execution delays for each
task is available. We make this assumption to segregate the two main error sources
for modeling software execution: (a) target specific user code profiling and back
annotation, (b) errors due to processor feature abstraction (see Section 4.1.2). In
this article, we focus on the processor modeling and therefore are interested only
in the error due to feature abstraction. The equally important target specific user
code profiling is outside of the scope of this publication.

1.2 Outline

The article is organized as follows: after a brief introduction of related work in
Section 1.3, we will outline our overall MPSoC development approach in Section 2.
Section 3 then describes our abstract processor modeling approach in detail by in-
crementally describing its features. In Section 4, we validate our modeling approach
using a set of industrial-strength MPSoC examples. We analyze the simulation per-
formance and the achievable accuracy in detail. Finally, we conclude the paper with
a summary in Section 5.

1.3 Related Work

System level modeling has become an important research area that aims to improve
the SoC design process and its productivity. Languages for capturing SoC models
have been developed, e.g. SystemC [Grötker et al. 2002] and SpecC [Gajski et al.
2000]. The languages provide means to describe systems, but by themselves do not
offer any modeling solutions.

Using TLM [Grötker et al. 2002; Ghenassia 2005; Montoreano 2007] for capturing
and designing communication architectures has received much attention. Abstract-
ing computation, on the other hand, as an essential element of the system level
exploration has only later gained attention. Bouchhima et al. [2005] describe an
abstract CPU subsystem that allows execution of target code on top of a hardware
abstraction layer that simulates the processor capabilities. Their approach includes
multiple processors on a higher level of abstraction. In contrast, our proposed solu-
tion provides a finer grained model with the resulting feature observability advan-
tages at similar simulation performance levels. Kempf et al. [2005] introduce their
Virtual Processing Unit for analysis of task mapping and scheduling effects using a
quantitative model. They do not, however, include any processor specific features,
such as interrupts. Furukawa et al. [2007] introduce a HW/SW cosimulator which
uses a host compiled RTOS approach. To simulate a target processor, the target
RTOS is compiled to run natively on the simulation host and the user application
executes on top of that RTOS. Each simulated processor (target RTOS) runs in
an own process and communication is realized through a backplane tool which also
facilitates communication with SystemC modules and RTL hardware simulators.

1In extension to what is shown in Figure 2, we assume that the busses may be arranged as a

hierarchy of busses.

ACM Transactions on Design Automation of Electronic Systems, Vol. ?, No. ?, ?? 20??.

Fast and Accurate Processor Models for efficient MPSoC Design · 5

The approach includes simulation of interrupts, however does not reflect target
processor execution timing.

At the very high abstraction level of application modeling, Ptolemy [Buck et al.
1994] uses a modeling environment that integrates different models of computation
(such as petri nets and boolean dataflow) in a hierarchically connected graph.

The traditional approach of ISS based co-simulation is provided by several com-
mercial vendors, such as ARM’s SoC Designer with MaxSim Technology [ARM],
VaST Systems’ virtual system prototyping tools [VaST], CoWare’s Virtual Plat-
form Designer [CoWare], ARC’s xISS [ARC], and Virtutech’s Simics [Virtutech].
Typically, commercial ISS vendors advertise simulation speeds of up to 200+MIPS
on off-the-shelf PCs. In addition, ISS based co-simulation is also used in many
academic projects, such as the MPARM [Benini et al. 2005] platform. To improve
the speed of co-simulation with multiple ISS instances, Yi et al. [2007] propose
a trace-driven virtual synchronization which greatly reduces the synchronization
overhead between ISS instances. Significant research effort has been invested to
improve ISS performance [Nohl et al. 2002; Mong and Zhu 2004; Reshadi et al.
2009]. Nohl et al. [2002] present just-in-time cache compiled simulation a hybrid
between compiled ISS and interpretive ISS, which maintains the performance of a
compiled solution while reducing the large memory requirements associated with a
purely compiled approach. The presented approach reached 8 MCycles/sec on an
1.2 GHz Athlon. Reshadi et al. [2009] demonstrate with a similar hybrid between
compiled ISS and interpretive ISS a performance of 12 MCycles/sec on a 1 GHz
P3. Conversely, our solution does not aim for instruction accuracy and reaches
up to 600 MCycles/sec (see section Section 4.2), still one magnitude faster after
correcting for the simulation platform.

A newer research direction is a hybrid simulation approach that alternates be-
tween ISS-based simulation and natively compiled execution. One example is
HySim [Gao et al. 2008], which can switch between binary interpretation in an
ISS and native execution to gin simulation performance. For the hand-over, it
keeps a consistent memory content between the two versions. Since the approach
includes a binary interpretation, it can also simulate 3rd party binary code, as well
as assembly. An ISS-based simulation within HySim of a MIPS32 core averages
with 2.7 MIPS, while the native execution averages with 185MIPS. On the other
hand, our abstract processor simulates at higher speeds, as it does not require the
synchronization overhead with the ISS.

In previous work [Schirner et al. 2007], we have introduced our processor modeling
for a single processor system and have shown a simple DSP example application.
In this article, we extend the concepts to multi-processor systems. We also add
abstract modeling of an RTOS, and support Programmable Interrupt Controllers
(PIC). Furthermore, we present more detailed descriptions. Finally, our experi-
mental results stem from a wider range of applications, showing the more general
applicability and benefits of our approach.

2. CONTEXT: OUR MPSOC DEVELOPMENT APPROACH

Before we describe our abstract processor modeling, we will show in this section how
the models are used in our electronic system-level (ESL) flow. Figure 3 shows our

ACM Transactions on Design Automation of Electronic Systems, Vol. ?, No. ?, ?? 20??.

6 · Schirner, Gerstlauer and Dömer

Specification

System Compiler

.c.c.c.c

Data-
base

Architecture
Decisions

TLM
BFM

Software Synthesis RTOS,
FW

Models

CPU1
.bin

CPU2
.bin

ISS HW + ISS
Implementation
Model

Fig. 3. SCE software development framework.

framework for programming, validation and debugging of embedded software for
MPSoCs. At the input, we assume the user application as a set of communicating
processes with C code for each task, including information about task relations and
inter-process communication (IPC).

We have developed the System-on-Chip Environment (SCE) [Dömer et al. 2008],
an ESL framework that takes the application specification and compiles it down to
an implementation on a target architecture, creating a binary for each processor
in an MPSoC architecture, describing the hardware components, and their con-
nectivity. The designer specifies the architecture by selecting components from
the database. The designer also selects a mapping of application tasks and IPC
channels to those components.

Our SCE framework automatically generates the processor models that we de-
scribe in this article. In a stepwise process, SCE inserts necessary implementations
of task scheduling, bus drivers, interrupt handlers, hardware abstraction layers and
other firmware. Furthermore, SCE performs back-annotation of task execution de-
lays at the function level for timing feedback during simulation. At its output, SCE
generates transaction-level (TLM) and bus-functional (BFM) models of the target
platform running the application. In addition, SCE can produce intermediate sys-
tem models at varying levels of detail.

The generated models are then used as an input to the software synthesis back-
end [Schirner et al. 2009]. This automatically synthesizes the embedded software
for each processor down to the final binary image. The software synthesis includes
generation of C code for the application tasks, bus drivers and firmware. It targets
the code for a chosen RTOS implementation to perform processor initialization,
multi-tasking and interrupt handling. The software synthesis furthermore includes
cross-compilation and generates a binary for each processor.

The generated images can be directly loaded onto the target platform for execu-
tion. They are the final implementation for the software. The back-end synthesis
also allows validation of the final target binaries independent of the availability
of the hardware platform. For that, the back-end synthesis generates additionally

ACM Transactions on Design Automation of Electronic Systems, Vol. ?, No. ?, ?? 20??.

Fast and Accurate Processor Models for efficient MPSoC Design · 7

an ISS-based co-simulation model. This model is based on the system BFM. It
describes all hardware and includes one ISS instance per processor.

Although all models are generated automatically by SCE, we do not want to
deviate into the synthesis aspect in this article. Instead, we focus on the abstract
processor modeling itself.

3. ABSTRACT PROCESSOR MODELING

Our models are captured in a System Level Design Language (SLDL). We chose
SpecC [Gajski et al. 2000] for our experiments. The concepts however, are appli-
cable to other SLDSs, i.e. SystemC, as well. The SLDL framework provides a
timed, fast, discrete event simulation natively on a simulation host. Our processor
models abstract away the processor micro architecture and do not simulate the in-
struction set architecture (ISA). Instead, they abstractly reflect the behavior of the
processor and the software execution environment, including all desired features
like RTOS task scheduling, external bus communication, and interrupt handling
with processor suspension, interrupt nesting, and interrupt priorities.

Observing SW execution on a typical processor, we can identify several layers
of functionality. We have organized our models in layers along features. We will
uses these layers to incrementally describe our model. In total, we will show three
intermediate models until reaching the actual proposed processor TLM. For our de-
tailed analysis, we will consider the intermediate models, then the TLM, and finally
also investigate the accuracy of a processor BFM. We will compare the models to
an ISS-based reference model. This detailed analysis, including the intermediate
models, will allow us to evaluate each feature individually for its cost in simulation
speed and contribution to timing accuracy.

The subsequent sections describe each step of the processor modeling, starting
with the innermost layer.

3.1 Application

In order to achieve maximum simulation speed, we execute the application natively
on the simulation host. This is the innermost layer of our abstract processor, as
depicted in in the box CPU in Figure 4.

The user code is captured in the SLDL as a hierarchical composition of behaviors
separating computation and communication. Behaviors can be flexibly constructed
to execute sequentially, in parallel, in a pipelined fashion, or state machine con-
trolled.

Communication is expressed using a set of standardized abstract channels for
high-level, typed message passing. These standardized channels offer synchronous
and asynchronous communication with the option of one-way, two-way data traffic,
or synchronization only. Additionally, behaviors may communicate through shared
variables. The connectivity between behaviors (either through channels or global
variables) is expressed through ports, where channel/variable instances connect
to. As such, our application model captures the three aspects of computation,
communication, and connectivity.

For processor modeling, we distinguish between internal communication (tasks
on the same processor) and external communication (to other processing elements).
The internal communication, as shown with channels C1 and C2 in Figure 4, largely

ACM Transactions on Design Automation of Electronic Systems, Vol. ?, No. ?, ?? 20??.

8 · Schirner, Gerstlauer and Dömer

HW2

HW1CPU

B2 B3C1
C2

B1

B5

C3

C4

B4

Fig. 4. Application model and external communication.

remains unchanged throughout adding the more detailed layers. The external com-
munication (e.g. as initiated by behavior B3 through C3 and C4) on the other
hand, will be refined throughout the modeling stages to follow a generic portable
communication stack [Gerstlauer et al. 2007]. Note that for illustration purposes,
Figure 4 additionally shows external hardware components HW1 and HW2, which
are not part of the processor model.

At the level of the application model, external communication is the same in
functionality as the internal communication (i.e. untimed, without bus connectiv-
ity). Global variables, which are shared between processing elements, are accessed
directly at this abstraction level without special synchronization or bus communi-
cation.

The user application is executed natively on the simulation host inside the dis-
crete event simulation environment to achieve highest simulation speeds. In order
to exhibit target-specific execution timing, the application C code is back-annotated
with estimated execution timing. In general, the granularity of timing annotation
influences the achievable accuracy and the simulation performance. A very fine
granularity of back annotating each individual C-operation would yield a high ac-
curacy, since this captures data dependent execution2. However, such fine granular-
ity will also result in a large number of wait-for-time statements, therefore slowing
down the simulation. On the other hand, a too coarse grain back annotation would
not express data dependent execution sufficiently.

…
void f(){
 waitfor(5);
 if() {
 …
 }
 …
}

Logical time

5 10 150

Fig. 5. Timing back annotation.

Timing information can be automatically back annotated (e.g. see [Cai et al.
2005]). In our case, the system compiler inserts wait-for-time statements at the
function level (see Figure 5). We chose to back annotate at the function level, since
the applications of our examples are sufficiently separated into functions, which
already express data dependency and do not have much data dependency below
the function level.

2Also the preemption simulation improves significantly, which we will discuss in Section 3.2.

ACM Transactions on Design Automation of Electronic Systems, Vol. ?, No. ?, ?? 20??.

Fast and Accurate Processor Models for efficient MPSoC Design · 9

3.2 Task Scheduling (OS Kernel)

Concurrent execution of software on an inherently sequential processor requires an
operating system on the target. In order to explore the effects of dynamic scheduling
decisions, SCE inserts an abstract RTOS model [Gerstlauer et al. 2003] as shown
in Figure 6. The abstract RTOS model emulates the dynamic scheduling on top
of the SLDL framework. Since it integrates with the simulation environment, it
enables high execution performance, thus allowing early exploration of scheduling
policy decisions.

OS

RTOS MODEL

CPU

Task
B2

Task
B3

C1
C2

B1

Fig. 6. Task model.

Application

SLDL

Task
Scheduler

Task B2 Task B3

Fig. 7. Abstract scheduler switching
between tasks.

In order to execute on top of the OS model, each parallel executing behavior is
refined into a task (e.g. Task B2, Task B2), defining task execution control and
scheduling policy parameters (i.e. task priority). A sequentially executing behavior
becomes part of its parent task. For example, behavior B1 becomes part of the
processor main task, since it is only executed on startup. It spawns Task B2 and
Task B3.

To simulate the dynamic scheduling, each primitive that potentially triggers
scheduling is wrapped to interact with the abstract RTOS model. Such primitives
include task start, channel communication, and wait-for-time statements.

As a result, the abstract RTOS model controls each task’s state and decides the
task scheduling specific to the selected scheduling policy (e.g. priority based or
first come first serve (FCFS)). It switches between the tasks (Figure 7) so that at
any point only a single task is running on top of the underlying SLDL. Our OS
model allows to observe the number of context switches, the performance effects of
the selected scheduling policy, and the idle time for each processor in the MPSoC
system.

3.3 Firmware (External Communication)

In addition to the OS kernel, the processor firmware has to include the necessary
drivers for all external communication. Figure 8 shows the model extended with
a firmware representation and adds an additional layer, the Hardware Abstraction
Layer (HAL). External communication is first refined to untyped streams (captured
in the half channels labeled Net). These data streams perform data typing (e.g.
adjusting for differences in endianess or data size) between processing elements and
therefore enable communication in a heterogeneous system. Each abstract channel
in the model is refined to a network layer link, which marshals the user data into

ACM Transactions on Design Automation of Electronic Systems, Vol. ?, No. ?, ?? 20??.

10 · Schirner, Gerstlauer and Dömer

the untyped byte stream. SCE automatically generates the marshalling code de-
pending on the user data types. Similarly, external communication through shared
variables (e.g. memory mapped IO) is wrapped into proper channel communication,
performing the data marshalling.

HALOS
CPU

Task
B2

Ne
t

Ne
t

C1

B1

Task
B3C2

RTOS MODEL

Dr
ive

r

TLM

Dr
ive

r

INTA INTB INTC

UsrInt1
Sem
SemUsrInt2

Fig. 8. Firmware model.

sample.send(v1);

void send(…) {
intr.receive();
bus.masterWrite(0xA000,

&tmp,
len);

}

Ap
p.

Dr
ive

r

Fig. 9. Example of inserted driver
code for synchronization.

In addition to the data typing, SCE generates low level software drivers that
implement external bus communication and synchronize with external sources. The
Driver, implemented as a half channel, adds system absolute addressing and maps
the external communication to the processor bus (see an example driver code in
Figure 9). The processor bus is modeled at the transaction level. The processor bus
TLM simulates the bus at a granularity of user transactions, which are arbitrary
sized blocks of data.

The selection of synchronization is an important issue for embedded system de-
sign. The type (e.g. interrupt or polling) and the granularity of synchronization
significantly influence system performance. The firmware level adds modeling of the
external synchronization to allow early exploration of the synchronization options.

Depending on the designer’s decisions, the system compiler generates the low level
drivers to synchronize using polling or interrupts. In case of polling, the generated
driver code checks the external status with a designer selectable polling period.
In the latter case of interrupt synchronization, the system compiler generates an
interrupt handler that is registered to the external interrupt source.

To simulate interrupt handling, the firmware model captures the interrupt inputs
of a programmable interrupt controller (PIC) connected to the processor (INTA -
INTC in Figure 8). This model abstracts away the actual processor interrupt
for simulation speed. Interrupt inputs are implemented as channels and can be
triggered directly by external sources (such as a slave). The interrupt input channel
then triggers the execution of one or more user interrupt handlers. The example in
Figure 8 shows the option of interrupt sharing, were two user interrupts share the
same interrupt input. Here, each user interrupt handler contains additional code to
determine its interrupt source. Finally, the user interrupt handler uses a standard
channel (i.e. semaphore) to release its driver after successful synchronization.

The firmware model is the first to contain the complete software (including the
driver and interrupt code). The firmware layer marks the boundary between soft-
ware implementation and hardware features of the processor.

ACM Transactions on Design Automation of Electronic Systems, Vol. ?, No. ?, ?? 20??.

Fast and Accurate Processor Models for efficient MPSoC Design · 11

3.4 Processor Transaction Level Model

To complete our processor model a description of the processor hardware is needed.
This includes hardware interrupt handling, interrupt scheduling, timer and PIC
hardware, and simulation of bus accesses at bus transaction granularity.

So far (i.e. the firmware model), an interrupt triggering HW directly calls the
interrupt handler. Thus, interrupts are not scheduled and may execute concurrently
to the user application. An example of unscheduled interrupt handling is shown in
Figure 10(a). The tasks B1 and B2 are scheduled by the abstract RTOS model.
However an incoming interrupt at t1 executes in parallel to B1, which is not realistic
for a real processor. Hence, the model finishes the sequence incorrectly early at t2

instead of t3.

time

TB1

IntA

t1 t2

TB2

t3
(a) Unscheduled.

time

TB1

IntA

t1 t2

TB2

t3
(b) Scheduled.

Fig. 10. Hardware interrupt scheduling.

Our processor TLM, shown in Figure 11, reflects the additional hardware needed
for a scheduled interrupt handling. It models the actual interrupt chain of the
processor. It represents external interrupt wires, which are monitored by a PIC
and multiplexed into the processor interrupt signal(s). An interrupt behavior HW
Int inside the processor monitors its interrupt input(s) and triggers execution of
the system interrupt handler. The system interrupt handler, in turn, communicates
with the PIC to determine the actual interrupt source and executes the appropriate
user interrupt handler.

CoreHALOS
CPU

Task
B2 Ne

t

C1

B1

Task
B3C2

RTOS MODEL ATLM

M
AC

HW
Int

Timer

PIC

Source
Status
Mask

Control
Load
Value

INT1

INTA INTB INTC

UsrInt1

SysInt

Dr
ive

r
Dr

ive
r

INTC
INTB
INTA INTA

INTB
INTC

Sem
SemUsrInt2

Ne
t

INT0SysInt1

Fig. 11. Processor Transaction Level Model.

ACM Transactions on Design Automation of Electronic Systems, Vol. ?, No. ?, ?? 20??.

12 · Schirner, Gerstlauer and Dömer

Our processor TLM offers interrupt scheduling to avoid that interrupts are exe-
cuted in parallel with application tasks. The behavior HW Int monitors the pro-
cessor interrupt line(s). Upon occurrence of an interrupt, HW Int suspends the
processor simulation - all SW behaviors inside the HAL shell (as indicated by the
half circle around the bottom right corner of the HAL shell). Therefore all tasks of
that processor are now suspended.

The behavior HW Int implements the HW interrupt scheduling and calls the
system interrupt handler SysInt via a channel call. To handle multiple occurring
interrupts, the HW Int observes interrupt priorities and nesting for an accurate
scheduling. Additionally, it provides interrupt related control registers to the driver
software, e.g. for enabling and disabling interrupts.

The system interrupt handler communicates through the bus interface with the
PIC determining the incoming external interrupt. The system interrupt handler
releases through the interrupt channel (e.g. INTC) the actual user interrupt (e.g.
UserInt2). The user interrupt handlers are modeled as high priority tasks inside
the abstract RTOS model. At this point, the hardware and low level interrupt
handling is completed. The call chain, initiated by the HW Int, terminates and the
HAL shell is released from the suspended state. Next, the abstract RTOS model
schedules the highest priority ready task, the user interrupt handler UserInt2 in
this case.

As a result, the complete interrupt chain is replicated for an interrupt execution
of a processor and is modeled closely to existing hardware. This allows us to
accurately simulate the interrupt execution overhead and provides proper interrupt
scheduling. The effects of the scheduled interrupts are shown in Figure 10(b). In
constrast to the unscheduled version, the interrupt handler IntA now preempts the
execution of all tasks. The simulation sequence in this example now correctly ends
at t3.

External communication in the processor TLM is modeled by a transaction level
model of the bus, providing a cycle approximate simulation with user transaction
granularity.

3.5 Processor Bus Functional Model (BFM)

To obtain a bus-functional variant of our processor model, we employ a pin- and
cycle-accurate model of the processor bus interface. The modeling of computation
is identical to the TLM. The communication, on the other hand, is further refined.
SCE introduces a bus-specific Media Access Layer (MAC) that splits the arbitrary
sized user transactions into bus transactions (bus protocol primitives). The BFM
includes protocol channels that provide bus access with a bus transaction granu-
larity and implement each bus interface pin accurately. Channels implement state
machines to realize the bus protocol to drive and sample the individual bus wires.
Additional active components (such as arbiter, multiplexer) are inserted if needed
to accurately implement the bus protocol. Using the BFM allows us to attach RTL
components and to create signal traces of the bus traffic (Figure 12) for debugging
purposes.

ACM Transactions on Design Automation of Electronic Systems, Vol. ?, No. ?, ?? 20??.

Fast and Accurate Processor Models for efficient MPSoC Design · 13

time

HGRANT
HCNTRL
HADDR
HWDATA
HREADY

0x27000000

HCLK
HREQ

nonseq.
word

0xA000 0000

0x2F00 9801

Fig. 12. Bus trace in BFM.

3.6 ISS-based Cosimulation Model

In order to validate SW binaries and for a detailed cycle-accurate SW execution,
we use an Instruction Set Simulator (ISS) based reference model. This model
includes a behavioral model of all hardware components and an ISS instance for
each processor in the system. Each ISS is wrapped to adapt the ISS API to the
simulation environment, as shown in Figure 13.

Timer

Control
Load
Value

Prot.

PIC

Source
Status
Mask
Prot.

INT0
INTA
INTB
INTC

ISS

Drivers

SW Application

HW AbstractionINT

RTOS
Drivers

ISS Wrapper
Pr

ot
.

Int.
MEM

FIQ
IRQ INT1

Fig. 13. Bus Functional Model with ISS.

We use ISSs that are available in library form with a cycle callable interface.
Each ISS is called within an own wrapper module that executes the ISS cycle-by-
cycle. The wrapper uses the ISS API to detect ISS external memory accesses and
translates them to transactions on the simulated bus. It also listens to incoming
interrupt signals to the processor and forwards them to the ISS. An ISS typically
includes internal memory for storing the executed binaries and local variables.

From the software perspective, the ISS-based model represents the real imple-
mentation. It executes the final binaries, accesses external hardware through the
bus, and allows interrupt-based synchronization.

3.7 Model Benefits

To summarize our layered processor model, Table I lists the features captured and
also indicates at which level each feature is introduced. The most abstract model
at the application level implements only a single feature. On the other hand, the
ISS reference realizes all listed features.

Our most abstract model, the application model, allows with the target approx-
imate computation timing an early functional validation of the specification. It
exposes the hierarchical task graph and allows observing of data and control flow
across multiple processors.

ACM Transactions on Design Automation of Electronic Systems, Vol. ?, No. ?, ?? 20??.

14 · Schirner, Gerstlauer and Dömer

Table I. Summary of model features.

Level

Task
Firm

w
are

TLM BFM
BFM

 -ISS

Features
Target approx. computation timing
Task mapping, dynamic scheduling
Task communication, synchronization
Interrupt handlers, low level SW drivers
HW interrupt handling, int. scheduling
Cycle- and pin-accurate communication
Cycle-accurate computation

Appl.

With the task model, additionally the effects of dynamic scheduling are observ-
able in simulation. It enables selecting a proper scheduling scheme and priority
distribution for all tasks in the system. It is the most abstract model that en-
ables monitoring of the processor utilization. It therefore is important for design
decisions regarding load balancing within a multi-processor system.

The firmware model completes the modeling of software. It shows the synchro-
nization across the network, interaction between interrupt handlers and tasks. This
model enables firmware and driver debugging at a high-level.

The TLM adds a detailed model of the interrupt chain. The designer therefore
can accurately observe the interrupt latencies for each processor and the overall in-
terrupt overhead in the processor load. Furthermore, the designer can validate the
efficient selection of the synchronization scheme and the interrupt priority assign-
ment across the complex MPSoC. This model provides a detailed view of the busses
in the system (e.g. in terms of utilization, contention, and access latency). With
this rich detail, the TLM serves as a validation platform with a high confidence
level.

The BFM, in turn, allows observing all bus traffic in pin and cycle accurate detail.
This exposes all communication details and provides observability beyond what is
typically feasible in real hardware. Furthermore, the BFM enables the integration
of RTL-only IP components. Finally, the cycle-accurate ISS-based model allows
validation of the software binaries before availability of the final hardware. It
provides very fine-grained performance measurements of the system.

4. EXPERIMENTAL RESULTS

To validate our approach for abstract processor modeling, we will now separately
analyze the output of each modeling layer to compare the effects with respect to
simulation speed and timing accuracy.

We have applied our approach to an industry-strength cellphone example, in-
cluding three subsystems: a GSM 06.60 voice transcoder [ETSI 1996], a MP3 audio
decoder, and a JPEG image compressor [Bhaskaran and Konstantinides 1997]. We
have mapped these applications to a MPSoC platform (Figure 14) similar to the
baseband platform used in the RAZR cellphone [Giridhar 2005]. This platform
includes two processors, an ARM7TDMI [ARM 2001] and a Motorola DSP56600
[Motorola 1996] connected by a transducer. The ARM processor executes cell-
phone control tasks, MP3 decoding, and JPEG encoding, using the MicroC/OS-II
[Labrosse 2002] RTOS for priority scheduling. The DSP is dedicated to GSM

ACM Transactions on Design Automation of Electronic Systems, Vol. ?, No. ?, ?? 20??.

Fast and Accurate Processor Models for efficient MPSoC Design · 15

Custom HWDSP 5660k
Encoder
Decoder

INTD
INTC
INTB

Codebook
search

Cust. HWCust. HWCust. HW Cust. HW
Enc.
Input

Enc.
Output

Dec.
Input

Dec.
Output

DSP Port A
INTA

ARM7TDMI

MP3
JPEG IRQ

FIQ

Control

AMBA AHB

PIC

Cust. HWCust. HW Cust. HW
MP3
IN

BMP
IN

JPEG
Output

Trans-
ducer

Cust. HW
Key-
board

Cust. HW
Display

Cust. HW
Left

SYNTH
Cust. HW
Right
SYNTH

Cust.
HW

MAD
Ouput

Cust. HW
PCM
OUT

DHS

INT0

INT31
...

Timer DHS

DHS

10
0M

Hz

60
M
Hz

Fig. 14. Example cellphone architecture.

transcoding. Its encoding and decoding tasks are scheduled by a custom priority-
based scheduler.

Computation intensive operations, such as the MP3 synthesis filter and the GSM
codebook search, are mapped to custom hardware accelerators. Ten additional
hardware units perform I/O operations, including the keypad and display interfaces
to the user.

4.1 Setup

Following our modeling approach, we have specified the phone application and
stand-alone versions of each subsystem in the SpecC SLDL for our experiments
and used our SCE framework to automatically generate the individual models.
Please note that our SCE framework [Dömer et al. 2008] is separated into indi-
vidual compilation stages. We have simulated all3 models on a 3.0GHz Pentium
IV running Linux Redhat Enterprise 3. For all tests, we use the same input data
consisting of GSM voice samples, a MP3 audio stream, and a BMP picture. To
balance the impact of each application, each input data set is sized to represent 1.5
seconds of real-time; voice/audio samples (for MP3, GSM) and computation time
(for picture encoding). The hardware blocks are simulated at behavioral level with
cycle-approximate timing.

We use the ISS-based model for cycle-accurate reference execution of software.
We have integrated the ISS SoftwareARM (SWARM) [Dales 2000] for simulating
the ARM7TDMI and a Motorola proprietary ISS for simulating the DSP.

We analyze our models focusing on two aspects: the performance, since an in-
creased speed is the main goal of abstraction, and the loss in accuracy, as a side
effect of abstracting features. Combining both, we can quantitatively evaluate the
quality of our processor abstraction. We now describe our performance and accu-
racy metrics.

4.1.1 Performance Metrics. We report the performance measurements using
three metrics. First, we measure and report the simulation time. This is the time
it takes to simulate our test data set on the simulation host. Second, we then use
the simulation time to compute the speedup over the ISS-based simulation. This

3Note the Motorola proprietary ISS for the DSP56600 was only available for Sun SPARC Solaris.
Hence, we have executed the ISS models that include the DSP56600 on a Sun Fire V240 with a
1.5GHz UltraSPARC IIIi processor. To estimate a comparable simulation time on the Pentium
VI, we have scaled the measured simulation time (divided by 1.42) according to the performance

ratio between the processors using the SPECint2000 benchmark.

ACM Transactions on Design Automation of Electronic Systems, Vol. ?, No. ?, ?? 20??.

16 · Schirner, Gerstlauer and Dömer

indicates the relative improvement over the reference solution. Finally, we calculate
the number of cycles simulated per second, providing an absolute reference. For
that, we first measure the number of cycles when using the cycle-accurate ISS, and
then divide by simulation time of the abstract model. Please note that this metric
does not include the cycles computed by hardware.

4.1.2 Accuracy Metrics. Accuracy can be segregated into many aspects. For the
purpose of this article, we will distinguish three aspects of accuracy: functionality,
represented feature detail, and timing. For our analysis, we will fix the first, vary
the second, and measure the third aspect.

The first aspect of functional accuracy requires that the model executes the al-
gorithms described in the specification and that the correct data is received by
external hardware components. Since this is a necessary requirement for a func-
tional simulation, all our models are functionally accurate. The second aspect is
the represented detail level, which states how many features of the processor are
actually present in the model. We vary this aspect in our model under test, ranging
from only a timed execution (as in the application model) to the pin accurate pro-
cessor model BFM. The third aspect is the accuracy in timing which we measure
in our tests.

Within the aspect of timing accuracy, we can identify two main sources of possible
errors. One, the timing back annotation of the user code and two, the presence of
modeled features in the actual processor model. Both contribute to the timing
accuracy of a model. However, it is difficult to measure them separately.

In this paper, we focus on the processor models and their inaccuracies due to
feature abstraction. Target-specific profiling of user code and the timing back an-
notation are outside the scope of this paper. We therefore minimize the effect of the
timing back annotation by using the most accurate available numbers. Therefore,
the accuracy measured in our tests reflects only the errors induced by feature ab-
straction. We obtain accurate timing information by simulating the application on
a cycle-accurate ISS. We use the same input data for obtaining the execution tim-
ing via the ISS, and for measuring the accuracy of our abstract models. As stated
before, we back-annotate at the function level. Note that the ISS-based approach
for the timing back-annotation is not efficient for exploration of new designs. It,
however, allows us here to better examine the quality of our processor modeling.

To calculate the timing error in our models, we use the simulated delay per
individual frame (speech frame for the GSM, PCM frame for the MP3, and stripe
for the JPEG). While executing the model under test, we record the simulated
delay for each frame and compare it against the ISS-based reference model. For
this paper, we define the error in simulated frame delay as a percentage error over
the reference model:

dISS : frame delay in ISS simulation

dtest : frame delay in model under test

errori = 100 ∗
|dtest − dISS |

dISS

(1)

Given this definition, accurate models exhibit 0% error. We determine the error
for each individual frame, and report the average error over all frames for each
subsystem.

ACM Transactions on Design Automation of Electronic Systems, Vol. ?, No. ?, ?? 20??.

Fast and Accurate Processor Models for efficient MPSoC Design · 17

For our analysis, we first focus on performance and then on accuracy. We will
discuss these metrics separately for each subsystem within our example to illustrate
the application and platform dependency. Later, we analyze the entire system
combining performance and accuracy measurements.

4.2 Performance Analysis

The achievable performance depends significantly on the system setup, especially
on the balance between computation in software and in hardware. Furthermore,
the amount of bus communication and its complexity affects performance. To
isolate the impact of the system composition, we analyze three sets of systems.
First, we examine software-only solutions of each subsystem. Second, we investigate
hardware-assisted versions of each subsystem. Finally, we will analyze the complete
cellphone system as outlined before. These respectively correspond to traditional
simulation using a single ISS, co-simulation of a single ISS with additional hardware,
and co-simulation of multiple ISS’s in a system simulation.

4.2.1 Performance of SW-only Systems. In the software-only version of each
subsystem, all computation is performed on the processor. Input and output are
mapped to external hardware components to maintain a realistic test. These I/O
blocks, however, perform only a negligible amount of computation. Therefore, the

0.01
0.1

1
10

100
1000

10000
100000

Appl. Task FW TLM BFM ISS

Si
mu

lat
ion

 Ti
me

 [s
]

MP3
JPEGGSM (SW)

Fig. 15. Simulation time for SW-only systems.

Table II. Simulation performance of SW-only systems.

Appl. Task FW TLM BFM ISS

Simulation MP3 0.09 0.12 0.13 0.61 48.8 3921

Time [s] JPEG 0.40 0.09 0.10 0.20 48.6 3209

GSM 0.29 0.29 0.29 0.31 2.5 158813

Speedup MP3 43563 32672 30159 6427 80 1

JPEG 8022 35653 32088 16044 66 1
GSM 54762 54761.8 54762 51229 6456 1

Sim. Perf. MP3 2080 1560 1440 307 3.8 0.05

[MCycles

sec
] JPEG 318 1415 1273 637 2.6 0.04

GSM 411 411 411 384 48.4 0.01

ACM Transactions on Design Automation of Electronic Systems, Vol. ?, No. ?, ?? 20??.

18 · Schirner, Gerstlauer and Dömer

model’s performance is dominated by our processor model (including its bus inter-
face and interrupt synchronization), and allows us to focus on it for the analysis.

Figure 15 shows the simulation time for each software-only subsystem, when
individually simulated. Table II shows the numerical results and compares them in
terms of speedup and simulation performance.

The simulation time for the SW-only subsystems remains in the same range up
to the firmware model. Here, the model abstracts away most of the processor fea-
tures and the simulation speed is limited by the algorithm computation. Starting
with the TLM, processor features start dominating the simulation effort and the
results become specific for the modeled processor. The JPEG shows exception-
ally long simulation time for the application model. It’s specification frequently
uses pipelined constructs, which leads to many parallel simulation threads in the
application model, slowing down the simulation. These pipelined constructs are
statically scheduled in the task model, reducing the simulation time.

The TLM shows a sustained simulation performance of 307 MCycles/sec to
637 MCycles/sec depending on the application. In addition to what is shown in
the table, we measured a peak performance of 2,800 MCycles/sec in code sections
without external communication, which demonstrates the performance potential
when excluding the impact of the processor bus Adding bit- and cycle-accurate
communication in the BFM reduces the performance to about 3 MCycles/sec. The
GSM application shows shallower drop in performance with adding details. The
abstracter models are limited by the application complexity and the emulation of
multiply accumulate operations. The GSM TLM and BFM, however, profit from
the a simpler processor model (e.g. no external PIC), a simpler single master bus
model, and from comparatively little communication.

4.2.2 Performance of HW/SW Systems. The HW/SW systems are the subsys-
tems of the cellphone example. We use the MP3 with significant HW support (4
accelerator blocks and 4 busses in total) as shown in Figure 14. To examine multi-
tasking between different applications, we also examine a combined MP3 and JPEG
(at lower priority). The third example is the GSM with HW acceleration for the
codebook search. Figure 16 shows the simulation time for each HW/SW subsystem
and Table III gives the numerical results.

0.1

1

10

100

1000

10000

Appl. Task FW TLM BFM ISS

Si
mu

lat
ion

 Ti
me

 [s
]

MP3
GSM
MP3+JPEG

Fig. 16. Simulation time for HW/SW systems.

ACM Transactions on Design Automation of Electronic Systems, Vol. ?, No. ?, ?? 20??.

Fast and Accurate Processor Models for efficient MPSoC Design · 19

Table III. Simulation performance of HW/SW systems.

Appl. Task FW TLM BFM ISS

Simulation MP3 0.10 0.11 0.11 0.37 174.8 1383

Time [s] MP3+JPEG 0.55 0.22 0.22 0.66 239.4 4838

GSM 0.29 0.30 0.31 0.60 5.8 94713

Speedup MP3 13835 12577 12577 3739 8 1

MP3+JPEG 8797 21992 21992 7331 20 1

GSM 32658 31570 30551 15785 1627 1

Sim. Perf. MP3 1440 1309 1309 389 0.8 0.10

[MCycles

sec
] MP3+JPEG 367 916 916 305 0.8 0.04

GSM 341 330 319 165 17.0 0.02

In general, the number of simulated cycles is lower with the additional hardware
and communication, since we do not account computation on hardware compo-
nents or bus communication toward the simulation cycles. With this definition,
the TLM reaches half of the previous performance with a range from 165 MCy-
cles/sec to 389 MCycles/sec. For the MP3, less than one third of the computation
is performed on the processor (the SW-only frame delay of 32ms drops to 9ms with
the HW support)4 so that the TLM performance slightly increases. With the in-
creased communication, the gap between TLM and BFM is larger. The BFM only
reaches 0.8 MCycles/sec for the ARM based systems. The GSM with the simpler
communication still reaches 17 MCycles/sec.

Summarizing the performance measurements, our processor abstraction provides
very high simulation speeds. The achievable performance is higher with an in-
creased software content (up to 637 MCycles/sec sustained, 2,800 MCycles/sec
peak). Abstracting beyond the FW level is not efficient, since the performance
does not significantly increase further.

4.3 Accuracy Analysis

After having asserted the benefits of abstract processor modeling in terms of sim-
ulation performance, we will now look at the achievable accuracy with abstract
simulation. Again we separate our analysis into SW-only and HW/SW systems.

4.3.1 Accuracy of SW-only Systems. As described earlier, we express the error
as the average timing error in the simulated frame delay. Table IV shows the results
for the SW-only version of the subsystems.

Table IV. Simulation accuracy of SW-only systems.

Appl. Task FW TLM BFM ISS

MP3 (SW) 46.19% 1.51% 1.51% 1.63% 1.63% 0%

JPEG 58.13% 3.64% 3.61% 2.32% 2.32% 0%

GSM (SW) 6.78% 1.13% 1.10% 0.72% 0.72% 0%

4Note that we only count the processor cycles for computing the simulation performance. The
cycles for computation in HW are ignored. However, CPU idle cycles are counted toward the

performance.

ACM Transactions on Design Automation of Electronic Systems, Vol. ?, No. ?, ?? 20??.

20 · Schirner, Gerstlauer and Dömer

For SW-only subsystems, only modeling of the Task level significantly reduces
the error. Here, parallel executing tasks are scheduled on the processor. Each
further simulation level, which models the external communication in more detail,
does not significantly reduce the error. The SW-only systems insignificantly use
external communication. The error remains constant at about a 2% level. The
JPEG subsystem still profits from the TLM simulation since it uses the bus slightly
more comparing to the other two examples.

4.3.2 Accuracy of HW/SW Systems. With the additional communication and
synchronization present in the HW/SW systems, the abstract models exhibit a
higher error amount (see Figure 17 and Table V). For the ARM-based systems, the
error drops linearly from ≈50% error for the application down to few percent for the
TLM. The FW level, that produced excellent results in the SW-only measurements,
now exhibits more than 10% error. The TLM simulates with less than 2% error.
The JPEG+MP3 has a slightly higher error of 3%, due to the frequent preemption
of the JPEG encoder by the MP3 decoder.

0
10
20
30
40
50
60

Appl. Task FW TLM BFM ISS

Av
er

ag
e E

rro
r [

%]

MP3
GSM
MP3+JPEG

Fig. 17. Simulation accuracy of HW/SW systems.

Table V. Simulation accuracy of HW/SW systems.

Appl. Task FW TLM BFM ISS

MP3 45.72% 21.11% 13.02% 1.17% 1.17% 0%

MP3+JPEG 56.06% 14.90% 10.64% 3.09% 3.09% 0%

GSM 16.37% 3.56% 3.53% 1.68% 1.68% 0%

4.4 Performance and Accuracy in System Simulation

Combining the performance and the accuracy measurements yields the trade-off in
system simulation. We show this trade-off for a simulation of all three subsystems
of the cellphone, as shown in Figure 14.

Figure 18 shows the results of our performance and accuracy analysis for the
cellphone system with all subsystems running concurrently. It shows the simulation

ACM Transactions on Design Automation of Electronic Systems, Vol. ?, No. ?, ?? 20??.

Fast and Accurate Processor Models for efficient MPSoC Design · 21

0
5

10
15
20
25
30
35
40
45

Appl. Task FW TLM BFM ISS

Av
er

ag
e E

rro
r [

%]
0.1
1
10
100
1000
10000
100000

Si
mu

lat
ion

 Ti
me

 [s
]Avg. Error

Sim. Time

Fig. 18. Performance and accuracy for cellphone system simulation.

Table VI. Performance and accuracy for cellphone system simulation.

Appl. Task FW TLM BFM ISS

Avg. Error 42.2% 11.4% 7.25% 2.93% 2.93% 0%

Sim Time [s] 0.78 0.57 0.58 1.6 250 113633

Sim. Perf.

[MCycles

sec
]

614 840 825 299 1.91 0.07

Speedup 14568 19935 19591 7102 45 1

time and the average system error, which we define as the mean of the subsystem
errors. For reference, Table VI lists the detailed numerical results.

Our combined cellphone example simulates 3 seconds of real-time, with 180
million DSP cycles and 300 million ARM processor cycles. The simulation time
increases over-exponentially with the added features. Our processor TLM exe-
cutes 299MCycles/sec and is four orders of magnitude faster than the ISS-based
co-simulation. With an increased abstraction, a higher error in simulated time has
to be accepted. Our processor TLM exhibits a average error of only 2.9%. Rep-
resenting fewer processor features further increases the simulation performance at
the cost of a larger error. The firmware compilation step, for example, simulates
825 MCycles/sec, with a 7.25% error.

Our measurements clearly show the TLM trade-off between simulation perfor-
mance and accuracy. Both the TLM and the firmware compilation step indicate
efficient alternatives based on the preference for accuracy and speed, respectively.
Adding further detail with the BFM does not yield a further advantage in accuracy.
However, BFM s are suitable for a pin level integration of RTL IP components and
provide a cycle detailed view of the bus traffic.

5. SUMMARY AND CONCLUSION

In this paper, we have presented our approach for system level software model-
ing using abstract processor models. We use a layered modeling approach that
allows models at varying abstraction level to be generated automatically by our
SCE framework. We have incrementally described our processor models with the
essential features of task mapping, dynamic scheduling, interrupt handling, low
level firmware, and hardware interrupt handling.

ACM Transactions on Design Automation of Electronic Systems, Vol. ?, No. ?, ?? 20??.

22 · Schirner, Gerstlauer and Dömer

We have evaluated our approach using an industrial strength cellphone example
with GSM 06.60 speech transcoding, MP3 decoding and JPEG encoding mapped
to a heterogeneous MPSoC with custom hardware blocks. We have used our SCE
framework to automatically generate the processor models and intermediate com-
pilation steps to analyze five levels of abstraction. We analyzed each level in detail
with respect to the gain in simulation performance and the loss in accuracy.

Our results show the tremendous benefits of our abstract processor modeling
of fast and accurate simulation. For SW-centric examples, our proposed TLM
executes up to 600 MCycles/sec sustained and up to 2,800 MCycles/sec peak, which
is multiple orders of magnitude faster than a traditional cycle-accurate ISS -based
simulation. For the complex cellphone example, our model reaches 300 MCycles/sec
and exhibits an error of only 2.9%. An even higher speed of 825 MCycles/sec is
achieved by the firmware model (with an error of 7.25%).

Our processor models enable rapid design space exploration at an early stage of
the design process. Automatically generating the models improves productivity for
software development. It exposes performance implications of the design choices
already early in the process. Furthermore, our processor TLM, with its rich set of
details, serves as a platform for a fast functional validation with a high confidence
level.

Acknowledgments

The authors would like to acknowledge the contribution of Prof. Daniel D. Gajski’s
Embedded Systems Methodology Group in the Center for Embedded Computer
Systems at UC Irvine. Especially, the authors thank Junyu Peng and Dongwan
Shin for their support of the architecture and communication refinement tools.
Furthermore, the authors thank Pramod Chandraiah for providing the initial spec-
ification model of the MP3 decoder.

REFERENCES

ARC. ARC xISS Simulators. http://www.arc.com/software/simulation/xiss.html.

ARM. SoC Developer with MaxSim Technology. http://www.arm.com/products/DevTools/

MaxSim.html.

ARM. 2001. ARM7TDMI (Rev 3) Product Overview. http://www.arm.com/pdfs/DVI0027B 7 R3.

pdf.

Benini, L., Bertozzi, D., Bogoliolo, A., Menichelli, F., and Olivieri, M. 2005. MPARM:

Exploring the Multi-Processor SoC Design Space with SystemC. Journal of VLSI Signal Pro-
cessing 41, 2, 169–184.

Bhaskaran, V. and Konstantinides, K. 1997. Image and Video Compression Standards: Al-

gorithms and Architectures, 2nd edition. Kluwer Academic Publishers.

Bouchhima, A., Bacivarov, I., Yousseff, W., Bonaciu, M., and Jerraya, A. 2005. Using Ab-

stract CPU Subsystem Simulation Model for High Level HW/SW Architecture Exploration. In
Proceedings of the Asia and South Pacific Design Automation Conference (ASPDAC). Shang-
hai, China.

Buck, J., Ha, S., Lee, E. A., and Messerschmitt, D. G. 1994. Ptolemy: A Framework for
Simulating and Prototyping Heterogeneous Systems. International Journal of Computer Sim-
ulation 4, 2 (April), 155–182.

Cai, L., Gerstlauer, A., and Gajski, D. D. 2005. Multi-Metric and Multi-Entity Character-
ization of Applications for Early System Design Exploration. In Proceedings of the Asia and

South Pacific Design Automation Conference (ASPDAC). Shanghai, China.

ACM Transactions on Design Automation of Electronic Systems, Vol. ?, No. ?, ?? 20??.

Fast and Accurate Processor Models for efficient MPSoC Design · 23

CoWare. Virtual Platform Designer. http://www.coware.com.

Dales, M. 2000. SWARM 0.44 Documentation. Department of Computer Science, University of
Glasgow.

Dömer, R., Gerstlauer, A., Peng, J., Shin, D., Cai, L., Yu, H., Abdi, S., and Gajski, D. D.

2008. System-on-Chip Environment: A SpecC-based Framework for Heterogeneous MPSoC

Design. 2008, 647953, 13.

ETSI. 1996. Digital cellular telecommunications system; Enhanced Full Rate (EFR) speech

transcoding, GSM 06.60 ed. European Telecommunication Standards Institute (ETSI).

Furukawa, T., Honda, S., Tomiyama, H., and Takada, H. 2007. A hardware/software cosimula-

tor with RTOS supports for multiprocessor embedded systems. In Proceedings of International
Conference on Embedded Software and Systems. Daegu, Korea.

Gajski, D., Zhu, J., Dömer, R., Gerstlauer, A., and Zhao, S. 2000. SpecC: Specification
Language and Design Methodology. Kluwer Academic Publishers.

Gao, L., Karuri, K., Kraemer, S., Leupers, R., Ascheid, G., and Meyr, H. 2008. Multiproces-
sor performance estimation using hybrid simulation. In Proceedings of the Design Automation
Conference (DAC). Anaheim, CA.

Gerstlauer, A., Schirner, G., Shin, D., Peng, J., Dömer, R., and Gajski, D. D. 2006. System-

On-Chip Component Models. Tech. Rep. CECS-TR-06-10, Center for Embedded Computer
Systems, University of California, Irvine. May.

Gerstlauer, A., Shin, D., Peng, J., Dömer, R., and Gajski, D. D. 2007. Automatic, Layer-
based Generation of System-On-Chip Bus Communication Models. IEEE Transactions on
Computer-Aided Design of Intergrated Circuits and Systems (TCAD) 26, 9 (Sept.).

Gerstlauer, A., Yu, H., and Gajski, D. D. 2003. RTOS Modeling for System Level Design.
In Proceedings of the Design, Automation and Test in Europe (DATE) Conference. Munich,
Germany.

Ghenassia, F. 2005. Transaction-Level Modeling with SystemC: TLM Concepts and Applications

for Embedded Systems. Springer.

Giridhar, C. 2005. Trendy phones incorporate sophisticated engineering, EDN Asia. http:

//www.edn.com/article/CA6290467.html.

Grötker, T., Liao, S., Martin, G., and Swan, S. 2002. System Design with SystemC. Kluwer

Academic Publishers.

Kempf, T., Dörper, M., Leupers, R., Ascheid, G., Meyr, H., Kogel, T., and Vanthournout,

B. 2005. A Modular Simulation Framework for Spatial and Temporal Task Mapping onto
Multi-Processor SoC Platforms. In Proceedings of the Design, Automation and Test in Europe
(DATE) Conference. Munich, Germany.

Labrosse, J. J. 2002. MicroC/OS-II: The Real-Time Kernel. CMP Books.

Mong, W. S. and Zhu, J. 2004. DynamoSim: a trace-based dynamically compiled instruction
set simulator. In Proceedings of the International Conference on Computer Aided Design
(ICCAD). San Jose, CA.

Montoreano, M. 2007. Transaction Level Modeling using OSCI TLM 2.0. Open SystemC
Initiative (OSCI).

Motorola. 1996. DSP56600 16-bit Digital Signal Processor Family Manual, DSP56600FM/AD.

Motorola Inc., Semiconductor Products Sector, DSP Division.

Nohl, A., Braun, G., Schliebusch, O., Leupers, R., Meyr, H., and Hoffmann, A. 2002. A

universal technique for fast and flexible instructionset architecture simulation. In Proceedings
of the Design Automation Conference (DAC). New Orleans, LA.

Reshadi, M., Mishra, P., and Dutt, N. 2009. Hybrid-compiled simulation: An efficient tech-
nique for instruction-set architecture simulation. ACM Transactions on Embedded Computer
Systems.

Schirner, G. and Dömer, R. 2008. Abstract communication modeling and analysis. ACM
Transactions on Embedded Computer Systems 8, 1 (Aug.), 4:1–4:29.

Schirner, G., Dömer, R., and Gerstlauer, A. 2009. High-level development, modeling and
automatic generation of hardware-dependent software. In Hardware Dependent Software: Prin-

ciples and Practice, W. Ecker, W. Müller, and R. Dömer, Eds. Springer.

ACM Transactions on Design Automation of Electronic Systems, Vol. ?, No. ?, ?? 20??.

24 · Schirner, Gerstlauer and Dömer

Schirner, G., Gerstlauer, A., and Doemer, R. 2007. Abstract, Multifaceted Modeling of

Embedded Processors for System Level Design. In Proceedings of the Asia and South Pacific
Design Automation Conference (ASPDAC). Yokohama, Japan.

VaST. VaST Tools and Models for Embedded System Design. http://www.vastsystems.com.

Virtutech. Simics - embedded systems simulation platform. http://www.virtutech.com.

Yi, Y., Kim, D., and Ha, S. 2007. Fast and accurate cosimulation of mpsoc using trace-driven
virtual synchronization. IEEE Transactions on Computer-Aided Design of Intergrated Circuits
and Systems (TCAD) 26, 12, 2186–2200.

Zabel, H., Müller, W., and Gerstlauer, A. 2009. Accurate RTOS modeling and analysis with
SystemC. In Hardware Dependent Software: Principles and Practice, W. Ecker, W. Müller,

and R. Dömer, Eds. Springer.

Received: May 2009

ACM Transactions on Design Automation of Electronic Systems, Vol. ?, No. ?, ?? 20??.

