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Analyzing Variable Entanglement for Parallel Simulation

of SystemC TLM-2.0 Models

ZHONGQI CHENG and RAINER DÖMER, University of California, Irvine

The SystemC TLM-2.0 standard is widely used in modern electronic system level design for better interoper-

ability and higher simulation speed. However, TLM-2.0 has been identified as an obstacle for parallel SystemC

simulation due to the disappearance of channels. Without a containment construct, simulation threads are

permitted to directly access data of other modules and that makes it difficult to synchronize such accesses as

required by the SystemC execution semantics. In this paper, we propose a compile time approach to statically

analyze potential conflicts among threads in SystemC TLM-2.0 loosely- and approximately-timed models. We

introduce a new Socket Call Path technique which provides the compiler with socket binding information

for precise static analysis. We also propose an algorithm to analyze entangled variable pairs. Experimental

results show that our approach is able to support automatically safe parallel simulation of SystemC models

with TLM-2.0 Blocking Transport Interface, Direct Memory Interface and Non-blocking Transport Interface,

resulting in impressive simulation speeds.
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1 INTRODUCTION

The Open SystemC Initiative (OSCI) TLM-2.0 [1] is a transaction level modeling standard released
in 2008. The typical use of it is building virtual platforms to simulate today’s large system on chip
(SOC) models with processors, buss and other components. TLM-2.0 consists of a set of core inter-
faces, sockets, generic payload and so on. These facilities are used to increase (a) interoperability
between models, that is, the plug-and-play ability to take transaction level models from different
sources and connect them together and (b) simulation speed.

Out-of-Order Parallel Discrete Event Simulation (OoO PDES) [2] has been designed for highly
parallel SystemC simulation. Compared to traditional PDES, OoO PDES utilizes a finer grained
task scheduler to allow suitable threads running in parallel even when they are in different cycles.
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This significantly increases the execution speed. In order to preserve the simulation semantics and
timing accuracy, the input model is statically analyzed by a dedicated compiler to prevent potential
race conditions between threads [2].

Conceptually, TLM-2.0 and OoO PDES are both library-based approaches and can be applied
together. However, no analysis technique has been designed until today that is capable of deter-
mining safe parallelism between threads in SystemC TLM-2.0 models.

In this paper, we propose and implement a static analysis for TLM-2.0 loosely-timed (LT) and
approximately-timed (AT) SystemC models with multiple threads. Our approach is able to precisely
and automatically analyze potential conflicts between threads that are communicating using the
standard TLM-2.0 interfaces, and helps the model to achieve reasonable execution speedup given
its parallelism potential. In this paper, we describe in detail the analysis of the two mostly used
APIs, namely the Blocking Transport Interface (BTI) and Direct Memory Interface (DMI). These
two interfaces use the main TLM-2.0 features, such as generic payload, DMI objects and sockets.
We also outline the support of the Non-Blocking Transport Interface (NBTI) and Debug Transport
Interface (DTI) using the same techniques proposed in this paper. Note that Register-Transfer Level
(RTL) and TLM-1.0 models that do not use sockets are not targeted in this work. Given the results
of the novel static analysis, a SystemC TLM-2.0 model can then be simulated safely and fast with
OoO PDES, as demonstrated with extensive experiments and results in Section 8.

1.1 Motivation

OoO PDES has shown excellent results for faster simulation of SystemC TLM-1.0 based models.
However, as pointed out in [3], TLM-2.0 is an obstacle for parallel simulation. In contrast to TLM-
1.0, TLM-2.0 lacks the concept of channels. Instead, a module uses pointers to access memory loca-
tions in other modules. Since pointer analysis is difficult and communications are not encapsulated
in containment constructs, no multi-thread access synchronization can be offered and race condi-
tions are likely to occur, violating the execution semantics. [3] also proposed a conceptual solution
for this problem, namely the idea of reintroducing channels into TLM-2.0 and protect the commu-
nication with locks. However, this would reduce simulator speed and violate interoperability of
the TLM-2.0 IEEE standard [1].

In order to simulate TLM-2.0 models safely and correctly with OoO PDES, we propose a new
static analysis-based approach that protects communication without the need to modify the TLM-
2.0 standard nor the application model. Our technique builds on top of an analysis algorithm for
SystemC TLM-1.0 that is implemented in the Recoding Infrastructure for SystemC (RISC) [4]. It
is a compiler based approach that automatically analyzes data, timing and event hazards among
threads. However, the TLM-1.0 oriented static analysis is not able to analyze variable entanglement

and is thus insufficient for the TLM-2.0 standard.

Definition 1.1. Variable Entanglement: Variable Entanglement occurs when one variable points
to the memory location of another variable in other modules through the SystemC TLM-2.0 com-
munication interfaces. Because two entangled variables refer to the same memory location, access
(read/write) to one is also applied to the other.

As an example, Figure 1 shows a SystemC TLM-2.0 model of a DVD player which decodes
a stream of H.264 video and MP3 audio data using separate decoders. All communications are
modeled using TLM-2.0 sockets and APIs. Three parallel threads T_Video, T_Audio_Left and
T_Audio_Right in the initiator stimulus store data into corresponding target memories mem1,
mem2 and mem3. Decoders vDecoder, alDecoder and arDecoder fetch the data from the memories
and decode it. In this example, there are three parallel lanes. Take the stimulus-mem1-vDecoder
lane as an example. Through the TLM-2.0 interfaces, variable vFrame of stimulus and pointer ptr
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Fig. 1. SystemC TLM-2.0 model of a DVD player.

of mem1 are entangled (indicated by the dashed arrow in Figure 1), meaning that the two variables
are pointing to the same memory location. Similarly, inFrame of vDecoder and mem of mem1 are
entangled as well. Figure 2 lists partial code of this simple SystemC model and shows in detail how
the variables are entangled.

Analyzing the variable entanglement information is critical for an accurate static analysis. It
helps the SystemC compiler to handle the behavior of a pointer in a well-defined TLM-2.0 model.
In general, statically analyzing the entanglement of general pointers is very difficult. However,
we observe that the pointers for TLM-2.0 communication do not point to arbitrary memory lo-
cations. Through the well-defined TLM-2.0 interface methods, a pointer points to a determined
memory location and thus can be analyzed statically. In the above example, for instance, inFrame
of vDecoder points only to mem of mem1 through the TLM-2.0 DMI interface. The prior TLM-1.0
oriented static analysis does not take this variable entanglement information into account and
treats inFrame as a pointer potentially pointing to any memory location in the entire model.
Consequently, thread vDecoder::Main_Thread that accesses inFrame is not allowed to run in
parallel with any other threads to prevent race conditions. Such too-strict pointer-involved data
conflict analysis causes false conflicts and may reduce the simulator speed to sequential lev-
els. Now by analyzing variable entanglement, the compiler is able to identify that inFrame of
vDecoder and mem of mem1 are pointing to the same memory location, accessing inFrame only
causes data hazard with the concurrent access to mem. With the precise and correct data conflict
analysis, the three lanes in the example in Figure 1 are able to run in parallel with no race con-
ditions, rather than sequentially due to pointer conflicts imposed by the TLM-1.0 oriented static
analysis.

The proposed approach in this paper allows the SystemC compiler to analyze TLM-2.0 interfaces
and socket connections. Based on this information, our approach then precisely analyzes the en-
tangled variables. Note that our work does not support the analysis of general pointer operations,
which is known to be hard for static analysis.
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Fig. 2. Partial SystemC code for Figure 1.

1.2 Related Work

Parallel Discrete Event Simulation (PDES) was first studied in [5]. In [2], Out-of-Order Parallel
Discrete Event Simulation (OoO PDES) was proposed to further increase the simulation speed.
Static analysis is an integral part of OoO PDES. It is performed by a SystemC-aware compiler to
analyze the potential conflicts and race conditions within a system model. Here, a Segment Graph
(SG) data structure represents the concurrent behavior of simulation threads. Also, an instance ID
technique is introduced to augment the SG for more precise conflict analysis. Port call path [6]
is another advanced technique that helps the compiler to gain more specific context information
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about non-pointer variables in channels. This can reduce false positive conflicts in channels and
result in significantly increased simulation speed.

The work described in this paper is inspired by [6] but different from it in several aspects. First,
our Socket Call Path (SCP) technique is novel as it enables the compiler to analyze entangled
pointers through TLM-2.0 interface APIs, which is not done in [6] (nor has been done in any
other work to the best of our knowledge). Second, [6] focuses on the analysis of SystemC TLM-1.0
channels, whereas our work targets SystemC TLM-2.0. Note that TLM-1.0 and TLM-2.0 are entirely
different in their communication modeling, because the channel concept has disappeared [3].

In [7], the authors achieve a high simulation speed of SystemC models by exploiting data-level
parallelization together with thread-level parallelization. An algorithm was proposed to automat-
ically apply data-level parallelization to the source code. This is orthogonal to the focus of this
work and thus could be applied here as well.

TLM-2.0 was first identified as an obstacle for parallel SystemC simulation in [3]. Inter-thread
communication is considered unsafe in a multi-thread environment when not encapsulated in
a channel. To overcome the obstacle, the author proposed a conceptual solution that wraps the
TLM-2.0 communication methods into actual channels (similar to TLM-1.0), so that locks could
be implemented for protection. In contrast, our approach does not require extra communication
containment nor locks. We protect simulation semantics by precise static analysis only.

Parallel SystemC simulation is also studied in many other works. In [8] SystemC-clang is pro-
posed. It analyzes SystemC models with a mixture of transaction-level and register-transfer level
components. In [9] the authors studied the distributed parallel simulation, where SystemC mod-
els are organized into small executable units and distributed onto different host machines to run
in parallel. [10] provides a parallel SystemC simulation kernel which requires the user to manu-
ally translate the sequential design into a safe parallel design. [11] takes a survey about existing
SystemC simulation approaches and concludes that most of these works do not fully support the
parallel simulation of TLM-2.0 LT models due to shared variables. Our work addresses this iden-
tified problem. [12] proposes a tool that also addresses this problem with an alternative approach.
A set of primitives is provided to the user to manually express tasks with duration such that par-
allelism in the model can be exploited and LT models are executing in parallel. In [13], a parallel
SystemC simulation kernel is developed by reducing synchronization overheads of parallel threads.
None of these works supports the safe and automatic parallel simulation of TLM-2.0 LT and AT
models.

2 BACKGROUND

In this section, we first briefly review the TLM-2.0 interfaces [14, 15] and then describe the Segment
Graph (SG) data structure utilized by OoO PDES.

2.1 TLM-2.0 Background

This section briefly reviews the usage of TLM-2.0 BTI and DMI with a partial code that describes
the stimulus-mem1-vDecoder lane in Figure 1. The code snippet is shown in Figure 2. In the code,
Stimulus is the module type of stimulus, Memory is the module type of mem1 and VideoDecoder
is the module type of vDecoder. TLM-2.0 focuses mainly on the communication between processes
rather than computation, so the details of encoding and decoding algorithms are not shown in the
code.

2.1.1 BTI. We first examine the Blocking Transport Interface (BTI). It is used for the commu-
nication between stimulus and mem1 in Figure 1. Basically, it takes four steps to use BTI. On the
initiator’s side:
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(1) prepare a generic payload object and a timing annotation. In this example, rgp is defined
in line 3 and delay is defined in line 6. rgp stands for Referred Generic Payload and will
be described in Section 3.3.2. In line 4, the video frame vFrame is wrapped inside rgp by
set_data_ptr. Note that initializations of other rgp’s fields (such as data length, stream-
ing width and so on) are omitted in this demo code.

(2) call b_transport via the initiator socket, passing the prepared generic payload object and
timing annotation as the arguments. In this example, b_transport is called on socket
Stimulus::out1 with rgp and delay as arguments, in line 10.

On the target’s side:

(1) implement a callback for b_transport. In this example, we implement Memory::
custom_b_transport in line 19 as the callback method. The callback method takes a ref-
erence of generic payload pgp and the timing annotation delay as parameters. pgp stands
for Parametric Generic Payload and will be described in Section 3.3.2. In line 21, the pointer
wrapped inside pgp is extracted by get_data_ptr and assigned to ptr. The data length is
extracted in line 22. Other extractions of pgp’s fields are omitted in this demo code. Line
24 copies ptr’s value to Memory::mem at offset OFFSET.

(2) register the callback on the target socket. In the Memory’s constructor, Memory::
custom_b_transport is registered as the b_transport callback method on socket
Memory::in, in line 35.

A corresponding callback is executed on every b_transport call1. Consequently, the actual be-
havior of a b_transport is fully defined by its callback function. In the stimulus-mem1-vDecoder
lane, stimulus is connected to mem1 via socket binding stimulus.out1→mem1.in. When
stimulus.

T_Video executes out1->b_transport, it invokes mem1.custom_b_transport. In this case, the
behavior of this b_transport is represented by Memory::custom_b_transport.

2.1.2 DMI. The Direct Memory Interface (DMI) is used for the communication between
vDecoder and mem1 in Figure 1. Similar to BTI, it takes five steps to use DMI. On the initiator’s side,

(1) prepare a generic payload object and a dmi object. In this example, thread
VideoDecoder::
Main_Thread declares rgp at line 47 and rd at line 48. rd stands for Referred DMI object

and will be described in Section 4.
(2) call get_direct_mem_ptr via the initiator socket, passing the prepared generic payload

object and DMI object as the arguments. In this example, get_direct_mem_ptr is called
on socket
VideoDecoder::in with rgp and rd as arguments, in line 50. The Boolean flag
DMI_allowed indicates if the DMI access is permitted by the target.

(3) extract the pointer of the directly accessed memory location from the dmi object via
get_dmi_ptr. In line 51, inFrame is the extracted pointer from rd, through which
videoDecoder::Main_Thread is able to access the memory location in the connected
target module instance directly.

On the target’s side:

(1) implement a callback for get_direct_mem_ptr. In this example, we implement Memory::

1Section 3.1 explains how we match a b_transport call to the registered callback method(s).
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Fig. 3. Example SystemC code and corresponding SG.

custom_get_dmi in line 27. The callback method takes a reference of generic payload pgp
and a reference of dmi object pd as parameters. pd stands for Parametric DMI object and
will be described in Section 4. In line 30, the pointer to Memory::mem at offset OFFSET is
wrapped inside pd by set_dmi_ptr. Other initializations of pd’s fields are omitted in this
demo code.

(2) register the DMI callback on the target socket. In the Memory constructor, Memory::
custom_get_dmi is registered as the DMI callback method on socket Memory::out, in
line 36.

In the stimulus-mem1-vDecoder lane, mem1 and vdecoder are connected via socket binding
vDecoder.in→mem1.out. Through get_direct_mem_ptr, vDecoder gets the direct memory ac-
cess to mem1.mem.

2.2 Segment Graph and Function Call Analysis

The SG is a directed graph where each node is a set of code statements executed between two
scheduling steps [2]. A scheduling step is the entry to the scheduler domain from the application
domain during execution of the model, which includes wait statement, start of a thread and end
of a thread. An example of SystemC source code is shown in Figure 3(a). The corresponding SG is
shown in Figure 3(b).

A SG is automatically built by the SystemC-aware compiler as discussed in Algorithm 5 in [16].
The algorithm analyzes every source code statement and groups them into segments. For instance,
++x in line 4 and y=x+1 in line 5 are assigned both to segment 2 as they are executed after the same
scheduling step: wait(1,SC_NS) in line 3. Function call is a special case because it may contain
multiple statements and/or scheduling steps. When a function call is encountered, the algorithm
first finds the definition of the function and constructs a temporary SG sg_func for the function.
Then, sg_func is merged into the calling segment. In this example, bar() is first encountered while
building segment 2. The RISC compiler identifies the definition of bar() in the Abstract Syntax
Tree (AST) and builds a SG sg_func for bar(). Then, sg_func is merged into segment 2.

3 STATIC ANALYSIS FOR BLOCKING TRANSPORT INTERFACE

The BTI is appropriate when an initiator wants to complete a transaction with a target during the
course of a single function call, to be specific, b_transport. In this section, we first discuss the
approach to build the needed SG for b_transport call. Then, we introduce our new Socket Call
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Fig. 4. Example of merged SGs of multiple callbacks.

Path (SCP) technique that provides context information about socket bindings. Finally, we propose
an approach for analyzing variable entanglement.

3.1 Segment Graph for b_transport

The TLM-2.0 BTI is intended to support the loosely-timed coding style. The source code in Fig-
ure 2 demonstrates the use of BTI. As discussed in Section 2.1, the behavior of a b_transport
is represented by its registered callback method on the target’s side. Thus, to build the SG for a
b_transport call, the RISC compiler must be able to find the function definition of the corre-
sponding callback method. In our proposed approach, this is done in three steps:

(1) for each target socket, identify the registered b_transport callback method.
(2) use a recursive approach to obtain the socket binding information. The approach is recur-

sive because an initiator socket may bind to another intermediate initiator/target socket,
and we need to get an end-to-end binding information.

(3) when a b_transport call is encountered in a calling segment, the compiler first identifies
the bound target socket according to the socket binding information, then builds the SG
of the callback method registered on this target socket. Finally, the compiler merges the
SG into the calling segment.

Note that a single b_transport can potentially have multiple callback methods. An example is
shown in Figure 4(a). In this example, init1 and init2 are module instances of the same mod-
ule type Init, whereas tar1 and tar2 are of type Target1 and Target2 respectively. When
out->b_transport is executed in Init::thread, either Target1::callback or Target2::
callback may be called depending on which Init module instance the b_transport belongs to.
Note that an SG represents threads at module level but not instance level. This means that when
building the SG for Init::thread, the compiler cannot determine if the current Init::thread
is called from module instance init1 or init2. Thus, our proposed static analysis takes this flex-
ible binding behavior into account. We illustrate processing of callback methods in Figure 4(b)
and 4(c). Initially, Init::thread has two segments: segment 1 and 2. Segment 2 is being con-
structed (depicted as dashed border) and here out->b_transport is called. Then, the compiler
builds temporary SGs for Target1::callback and Target2::callback, where segments 3, 4 and
5 belong to Target1::callback and segments 6, 7, 8, and 9 belong to Target2::callback. Since
Target1::callback and Target2::callback are both potential callbacks of out->b_transport,
their temporary SGs are joined into the complete SG of Init::thread in Figure 4(c). Specifically,
segment 3 and segment 6 are both merged with segment 2, represented by 2+3+6 in Figure 4(c).
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Fig. 5. SCP-included SG of Stimulus::T_Video in Figure 2.

3.2 Socket Call Path

Socket Call Path (SCP) is a new advanced technique in our approach. It provides the SystemC com-
piler with the information regarding how a target is reached by the initiator through the TLM-2.0
interface. The idea is similar to the Port Call Path (PCP) analysis proposed in [6]. One main dif-
ference is that PCP is based on port-to-channel connections whereas SCP is for analyzing socket-
to-module connections. Also different from PCP, a SCP is represented by a list of sockets. When
used together with SG, SCP helps the SystemC compiler to perform instance-aware conflict anal-
ysis, which provides similar benefits as to the use of PCP in [6]. Figure 5 shows a SCP-included
SG of Stimulus::T_Video in Figure 2. Segment 1 contains code statements in lines 3–10 from
Stimulus::T_Video and lines 21–25 from the callback method Memory::custom_b_transport.
On one hand, lines 3–10 are local to Stimulus::T_Video and thus have an empty SCP. On the other
hand, lines 21–25 are accessed through socket Stimulus::out1 and their corresponding SCP is
[Stimulus::out1]. Given the SCP information, the SystemC compiler looks up the socket binding
information and identifies that when lines 21–25 are executed by thread T_Video of stimulus,
they belong to mem1. The SCP-included SG captures an instance-aware behavior of threads and
thus increases the precision of conflict analysis.

3.3 Variable Entanglement Analysis

Variable entanglement is defined in Definition 1.1. Figure 1 in Section 1.1 shows an example of
variable entanglement through TLM-2.0 interfaces. Without precise analysis, entangled variables
result in overwhelming false conflicts and thus compromise the simulation. In this section, we
propose a three-step approach to analyze variable entanglement and variable access for entangled
variables.

3.3.1 Identify Original and Alias Variable. In this step, the compiler identifies (a) the original
variable encapsulated in a generic payload by set_data_ptr, and (b) the alias variable extracted
from a generic payload by get_data_ptr. In Figure 1, vFrame in line 4 is an original variable and
ptr in line 21 is an alias variable. The original and alias variables are stored in a table data structure
for later use.

3.3.2 Reference Analysis for Generic Payload with SCP. In the second step, the compiler analyzes
the mapping between parametric generic payload (PGP) and referred generic payload (RGP). PGP is
a reference parameter of a b_transport callback method, for instance, pgp in line 19 of Figure 2.
RGP is the generic payload passed to a b_transport call, for instance, rgp in line 3 of Figure 2. A
PGP refers to RGP(s) through BTI.

Because a b_transport callback method may serve as the callback of multiple b_transport
calls from various initiators, its PGP can potentially refer to multiple RGPs. In the example in
Figure 6, Target::callback() is the callback method for both b_transport calls in
Init1::thread and Init2::thread. At runtime, pgp of Target::callback() refers at differ-
ent times to the two RGPs: Init1::rgp and Init2::rgp. However, the static compiler is not
able to further identify the exact RGP that a PGP refers to in a given context. For instance, the
compiler cannot figure out that pgp actually refers to Init1::rgp but not Init2::rgp when
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Fig. 6. SystemC model with two initiators and two targets.

Target::callback is invoked by the b_transport in Init1::thread. Such ambiguity causes
many false conflicts if a PGP refers to a large number of RGPs.

To solve this problem, we attach SCP as a context information to each RGP. As described in Sec-
tion 3.2, a SCP represents the path from a b_transport call to its callback method. Since RGP
is the argument of a b_transport call and PGP is the parameter of the callback method, the
SCP also represents the connection between RGP and PGP. For the example in Figure 6, when
Target::callback is invoked by the b_transport in Init1::thread, pgp refers to Init1::rgp
via SCP [Init1::out]. On the other hand, when Target::callback is invoked by the b_transport
in Init2::thread, pgp refers to Init2::rgp via SCP [Init2::out]. The SCP-included PGP-RGP
reference mappings are stored in a table data structure for later use.

3.3.3 Variable Access Analysis for Entangled Variables. Through the PGP-RGP reference map-
pings, the corresponding alias and original variables are entangled. Algorithm 1 shows the algo-
rithm to analyze variable accesses for entangled variables within a segment. It is divided into two
parts. First, two setsR andW are created in lines 3–5 to store read and written variables in the seg-
ment. In particular, we traverse each expression of the segment and identify the accessed variables
with AnalyzeExpression. Second, in lines 8–33, the algorithm checks for each accessed variable
if it has an entangled variable. If so, the entangled variable is also added to the corresponding
set.

Take segment 1 in Figure 5 and Figure 2 as an example. When expression memcpy(&mem
[OFFSET], ptr,len) in line 24 is encountered, Algorithm 1 first analyzes the variables accessed in
this expression and assigns them to corresponding variable access sets. In this example, mem with
SCP [Stimulus::out1] is assigned to W , ptr with SCP [Stimulus::out1] and len with SCP [Stimu-
lus::out1] are assigned to R. Next, Algorithm 1 identifies alias variables in the two sets according
to the information collected in the step in Section 3.3.1. The only alias variable is ptr in R. It is ex-
tracted from pgp in line 21 of Figure 2. A PGP can refer to multiple RGPs as described in the step in
Section 3.3.2. We collect them all in a set RGP . Since ptr is reached through SCP [Stimulus::out1],
given this context information, pgp should refer to an RGP that has the same SCP, [Stimulus::out1].
In line 27 of Algorithm 1, such RGP is identified, which is rgp in Stimulus::T_Video. It encapsu-
lates an original variable vFrame. Finally, vFrame is assigned to R.

While a detailed theoretical complexity analysis is beyond the scope of this paper, we note
that the size of the analysis tasks performed by the compiler is proportional to the model size.
Specifically for Algorithm 1, all function calls (e.g., IsAliasVar, IdentifyPGPs) performed in-
side have constant time complexity2. Thus, the overall time complexity of Algorithm 1 is O(N2)
due to the nested for loops, where N is the total number of read and written variables in the
segment.

2Technically, these functions are implemented to look up hash tables that are constructed in previous steps.
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ALGORITHM 1: Variable access analysis for entangled variables

1: function AnalyzeVariableAccess(seд)

2: //build the variable read and write sets

3: for all exprW ithScp ∈ seд do

4: AnalyzeExpression(exprW ithScp,R,W )
5: end for

6:

7: //add entangled variables to variable write set

8: for all varW ithScp ∈ W do

9: if IsAliasVar(varW ithScp) then

10: pдp ← IdentifyPGP(varW ithScp)
11: RGP ← IdentifyRGPs(pдp)
12: for all rдp ∈ RGP do

13: if GetSCP(rдp) == GetSCP(varW ithScp) then

14: oriдinalVar ← GetOriginalVar(rдp)
15: AddVariableAccess(oriдinalVar ,W )
16: end if

17: end for

18: end if

19: end for

20:

21: //add entangled variables to variable read set

22: for all varW ithScp ∈ R do

23: if IsAliasVar(varW ithScp) then

24: pдp ← IdentifyPGP(varW ithScp)
25: RGP ← IdentifyRGPs(pдp)
26: for all rдp ∈ RGP do

27: if GetSCP(rдp) == GetSCP(varW ithScp) then

28: oriдinalVar ← GetOriginalVar(rдp)
29: AddVariableAccess(oriдinalVar ,R)
30: end if

31: end for

32: end if

33: end for

34: end function

4 STATIC ANALYSIS FOR DIRECT MEMORY INTERFACE

In this section, we discuss the static analysis for TLM-2.0 DMI. It is consistent with the approach
for BTI with a few key differences.

The TLM-2.0 DMI is designed to speed up simulation by giving an initiator a direct pointer to
an area of memory in a target. It involves two directions of communication paths:

(1) Forward path lets the initiator request a direct memory pointer from a target with the
get_direct_mem_ptr method call. In the example in Figure 1, inFrame of vDecoder is
entangled with mem of mem1 through the forward DMI path.

(2) Backward path lets the target invalidate a DMI pointer previously given to an initiator
with the invalidate_direct_mem_ptr method call.

To support the DMI in the proposed approach, we only need to consider the forward path.
The backward path is not analyzed because a static analysis must be conservative and consider
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variable entanglement at all times, not only between get_direct_mem_ptr and invalidate_
direct_mem_ptr function calls. Besides, the backward path does not entangle variables.

We utilize a similar approach as for BTI to statically analyze DMI. The approach involves two
main steps:

(1) Construct SCP included SG for get_direct_mem_ptr call. The same approach as in
Section 3.1 and 3.2 is used. The compiler first identifies the callback method of a
get_direct_mem_ptr call using the socket binding information. Then, the SG of the call-
back is built and merged to the calling segment with a correct SCP.

(2) Analyze variable entanglement through DMI. A similar approach as the three steps in
Section 3.3 is used. The SystemC compiler first analyzes the original variable wrapped
inside a parametric DMI object (PD) and the alias variable extracted from a referred DMI

object (RD). In Figure 2, Memory::mem is the original variable wrapped inside pd in line 30.
inFrame of VideoDecoder:: Main_Thread is an alias variable extracted from rd in line
51. Next, the compiler analyzes the reference mapping between PD and RD. In Figure 1,
vDecoder is connected to mem1. With this module interconnect information, the SystemC
compiler identifies that in Figure 2, Memory::custom_get_dmi is the DMI callback method
of get_direct_mem_ptr in line 50, and thus pd refers to rd via SCP [VideoDecoder::in].
Finally, the variable accesses for entangled variables are analyzed. From the previous two
steps, the compiler obtains the information that pd wraps Memory::mem and rd releases
inFrame, and pd refers to rd via SCP [VideoDecoder::in]. Consequently, inFrame is en-
tangled with Memory::mem via SCP [VideoDecoder::in]. Since inFrame is read in line 54
in Figure 2, Memory::mem with SCP [VideoDecoder::in] is thus assigned to R of the cor-
responding segment.

5 STATIC ANALYSIS FOR NON-BLOCKING TRANSPORT INTERFACE

Non-blocking Transport Interface (NBTI) is intended to support the approximately-timed cod-
ing style. It breaks down a transaction into multiple timing points, and typically requires mul-
tiple function calls with phase information for a single transaction. Two interface methods
nb_transport_fw and nb_transport_bw are used for forward and backward communications
between initiators and targets. Similar to b_transport, the behaviors of nb_transport_fw and
nb_transport_bw are represented by their corresponding registered callback methods.

nb_transport_fw and nb_transport_bw take three parameters: a generic payload, a timing
annotation and a phase object. The generic payload and timing annotation are of the same use as
for b_transport. The phase object is used to indicate the current phase of a transaction. Since a
static analysis is conservative and considers variable entanglement at all times, not only between
certain phases, transaction phase updates need not to be treated specially in a static analysis. With
all the above observations, NBTI can be analyzed the same way as for BTI. The SystemC com-
piler first builds the SCP-included SG for nb_transport_fw and nb_transport_bw according to
the registered callback methods and socket binding information. Then, it analyzes the variable
entanglement through NBTI. BTI and NBTI both entangle variables through the PGP-RGP refer-
ence mappings, and thus variable entanglement by NBTI can be analyzed using the approach pro-
posed in Section 3.3. One main difference between NBTI and BTI is that NBTI contains backward
paths (form target sockets to initiator sockets) used by nb_transport_bw, whereas in BTI there
are only forward paths (from initiator sockets to target sockets). To support the nb_transport_
bw API, we augment our SystemC Internal Representation with backward socket mapping
information.
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Fig. 7. Example of indirect communications.

Fig. 8. Interconnected communication with multiple initiators and targets.

6 STATIC ANALYSIS FOR DEBUGGING TRANSPORT INTERFACE

Debugging Transport Interface (DTI) is used for debug access which gives an initiator the ability
to read or write memory in the target without delays or side-effects. transport_dbg is the corre-
sponding interface method and takes only a generic payload as parameter. Conceptually, DTI can
be statically analyzed the same way as for BTI. SCP-included SG for transport_dbg is firstly built
and variable entanglement through DTI is analyzed using the approach proposed in Section 3.3.

7 STATIC ANALYSIS FOR INDIRECT COMMUNICATION

In the previous sections, all examples involve only direct communication between initiators and
targets. Nevertheless, our proposed solution also works for indirect TLM-2.0 communication, for
instance, communication through hierarchical modules and interconnect components such as
routers and bridges. Two corresponding examples are shown in Figure 7(a) and 7(b).

7.1 Hierarchical Communication

In Figure 7(a), an initiator init is connected to a target target across wrappers init_wrapper
and target_wrapper. With wrappers around, a target is reached by an initiator through multiple
socket bindings. As described in Section 3.2, a SCP is a list of sockets from an initiator to a target.
In this example, init reaches target through two initiator socktets: out1 and out2. Thus the
SCP from init to target is [out1→out2]. With the correct SCP information, variable accesses for
entangled variables are analyzed the same way as for direct communication.

7.2 Interconnected Communication

Interconnections such as routers and buses are common in SystemC models. In the example in
Figure 7(b), interconnect forwards the communication from init to target. With an intercon-
necting module, a target is reached by an initiator through multiple initiator sockets, and thus the
SCP contains multiple sockets. In Figure 7(b), the SCP from init to target is [out1→out2]. With
the correct SCP information, variable accesses for entangled variables are analyzed the same way
as for direct communication.

It is common that an interconnect module connects to multiple initiators and targets. An
example is shown in Figure 8. Initiators init1 and init2 connect to targets target1 and target2
via interconnect. Because the compiler cannot statically identify which target a TLM-2.0
API call in the initiator init1 is routed to during run time, our approach has to analyze both
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Fig. 9. Block diagram for the demonstration example.

possibilities. Specifically, init1 reaches target1 via SCP [out1→out2] and reaches target2 via
SCP [out1→out4], init2 reaches target1 via SCP [out3→out2] and reaches target4 via SCP
[out3→out4]. Variable accesses for entangled variables are analyzed the same way as for direct
communication based on such SCP information.

8 EXPERIMENTS AND RESULTS

We have implemented the proposed static analysis approach as an extension of the SystemC com-
piler download from [4]. The project is written in C++ and uses the ROSE infrastructure [17] to
build an AST of the input SystemC model. Based on the AST and the RISC internal representa-
tions, we are able to analyze sockets mappings, TLM-2.0 APIs and variable entanglements. We have
evaluated our approach with demonstration and real-world examples. All the examples are Sys-
temC TLM-2.0 approximately- or loosly-timed models with multiple threads and some parallelism
potential. For evaluation, we measure the number of conflicts and the execution times under the
sequential Accellera simulator (Seq) and the parallel RISC simulator (Par). Note that with the pre-
vious RISC compiler and simulator, none of these examples would actually compile. The compiler
would output an error message about the use of TLM-2.0 constructs, such as unknown sockets and
interface methods. Even if the model would pass the compiler, all pointers would result in conflicts
with all other segments, leaving no threads available for parallel execution in the simulator. Thus,
the examples would run only sequentially, similar as in the Accellera simulator. Our experiments
execute on an Intel Xeon E3-1240 multi-core processor with 4 cores, 2-way hyperthreaded. The
CPU frequency-scaling was turned off so as to provide accurate and repeatable results.

8.1 Demonstration Examples

The examples in this experiment are derived from the loosely-timed LT models in the Accellera
SystemC library [18]. 36 examples are used with the following configurable variations:

(1) TLM-2.0 interface type: BTI, DMI or NBTI.
(2) communication type: Direct, Hierarchical (Hier) or Interconnected (Inter).
(3) varying number of lanes.

A generic block diagram is shown in Figure 9. The dotted lines indicate varied modules or socket
connections. Despite the configurable variations, the number of threads in each initiator and tar-
get remain fixed. An initiator has two SC_THREADs where th1 performs pure computation and
th2 performs communication, and a registered callback method for the backward NBTI path. A
target has one SC_THREAD th and three registered callback methods for BTI, DMI and the for-
ward NBTI path. The interconnect module has registered callbacks that route the communication.
During communication, Initiator::th2 accesses memory locations in both the initiator and the
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Table 1. Results of BTI Examples from Accellera : Run-time(secs) and Speedup(%)

Direct Hierarchical Interconnect
Lanes Seq Par Seq Par Seq Par
1 41.0 21.5 191% 41.2 21.5 192% 41.3 21.7 190%
2 80.8 22.5 359% 81.1 21.4 379% 81.7 22.5 363%
4 160.6 29.6 543% 162.0 29.9 542% 161.3 30.4 531%
8 320.8 59.2 542% 320.7 57.3 560% 320.7 58.0 553%

Table 2. Results of DMI Examples from Accellera: Run-time(secs) and Speedup(%)

Direct Hierarchical Interconnect
Lanes Seq Par Seq Par Seq Par
1 41.7 21.6 193% 41.3 21.8 190% 41.4 21.7 191%
2 81.3 23.0 353% 81.1 22.4 362% 81.3 22.7 358%
4 161.2 30.8 523% 161.1 29.8 541% 161.2 29.5 546%
8 320.0 57.6 556% 322.0 58.4 551% 319.5 57.3 558%

Table 3. Results of NBTI Examples from Accellera: Run-time(secs) and Speedup(%)

Direct Hierarchical Interconnect
Lanes Seq Par Seq Par Seq Par

1 40.2 20.1 200% 40.6 20.3 200% 40.5 20.3 200%
2 81.1 21.2 383% 80.7 20.8 388% 80.6 21.5 375%
4 159.2 28.7 554% 159.1 28.3 561% 161.2 28.9 558%
8 320.0 56.2 569% 320.1 57.2 559% 317.7 56.0 567%

Table 4. Percentage of Reduced False Variable Entanglements
in the Demonstration Examples

BTI DMI NBTI
Lanes Direct Hier Inter Direct Hier Inter Direct Hier Inter

1 33% 33% 33% 33% 33% 33% 33% 33% 33%
2 73% 73% 73% 73% 73% 73% 71% 71% 71%
4 88% 88% 88% 88% 88% 88% 87% 87% 87%
8 94% 94% 94% 94% 94% 94% 94% 94% 94%

target and thus has data conflicts with Initiator::th1 and Target::th. The initiators, targets,
wrappers and interconnects are respectively different instances of the same module types.

The sequential (Seq) and out-of-order parallel (Par) simulator run-times and speedups under
different model configurations are shown in Table 1, 2 and 3. Table 4 shows the percentage of
reduced false variable entanglements over all entanglements. Take the model with configura-
tion BTI+Inter+2-Lanes as an example. An Initiator uses one pointer (in local module scope),
Interconnect uses no pointer, and Target uses two pointers (one in local scope and the other
in module scope). Since there are two lanes, the total number of pointers is six, and therefore
there are 15 pairs of pointers in combination. Without the analysis for variable entanglement, all
15 pairs are considered as total conflicts. Now with our approach, the compiler is able to use context
information and identify that only variables that belong to the same lane are entangled. Specif-
ically, only four pairs of pointers are truly entangled. Thus 73% of entangled variable pairs are
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Fig. 10. Data conflict table for BTI+Inter+2-Lanes.

false entanglements and reduced by our approach. This results in much fewer conflicts in the data
conflict table. Note that the numbers of pointers and truly entangled pointer pairs do not change
with communication types. Therefore, the percentages of reduced false variable entanglements
are the same for different communication types. On the other hand, the numbers of pointers and
truly entangled pointer pairs are affected by interface types. Due to the backward path, the NBTI
models have one more pointer in the callback method in Initiator than the BTI or DMI models.
Therefore, the percentages of reduced false variable entanglements are the same for BTI and DMI,
but slightly different for NBTI.

The data conflict table is shown in Figure 10. The indexes of the table have the form (Segment
ID, module Instance ID). For instance, (2,0) represents a segment with ID 2 and belongs to
a thread of a module instance in the first lane, whereas (2,1) is the same segment with ID 2 but
belongs to a thread of a module instance in the second lane. A red entry represents data conflicts,
a green entry represents conflict free and a yellow entry represents the eliminated false conflicts
by applying our SCP technique and variable entanglement analysis. The data conflict table shows
that with our proposed static analysis, the number of data conflicts is reduced from 144 to 56. More
than 60% of data conflicts are pointer-related false conflicts and are eliminated. The experimental
results allow the following observations:

(1) Variable entanglement analysis largely reduces false conflicts due to pointers. Without
the variable entanglement analysis, the pointers impose data conflicts with other seg-
ments and thus cause overwhelming false conflicts, as indicated by the yellow entries in
Figure 10. Our approach is able to identify the exact memory location a pointer points to
through the TLM-2.0 interfaces and thus enables precise data conflict analysis.

(2) The SCP technique allows instance-aware conflict analysis. Our SCP technique provides
context information to the compiler to distinguish threads that belong to different module
instances. Without the SCP technique, thread th1 in the first Initiator module instance
cannot run in parallel with th2 in the second Initiator module instance due to false
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Fig. 11. Block diagram for the DVD player example.

Table 5. Results of DVD Player: Run-time(secs) and Speedup(%)

Interface Direct Hierarchical Interconnect
Seq Par Seq Par Seq Par

BTI 208.1 73.8 282% 208.1 75.7 274% 208.4 74.8 278%
DMI 208.2 73.7 282% 208.5 75.5 276% 208.4 7.47 279%
NBTI 209.3 74.9 279% 209.4 75.6 277% 209.5 7.57 277%

conflicts. In the data conflict table, this for instance results in a false conflict between (1,0)
and (3,1).

Given the novel analysis results, the OoO PDES simulator is able to execute all computation
threads in the Initiator and Target in parallel and achieve a speedup of about 360% compared
with the sequential execution. The ideal speedup of 400% is not achievable because of two main
reasons: (a) the communication thread Initiator::th2 cannot run in parallel with other threads
due to data conflicts and causes a sequential bottleneck. According to Amdahl’s law, this reduces
the overall parallelism of the model (b) the OoO PDES simulator has a run-time overhead of dy-
namic checking. Other examples with different model configurations also demonstrate impres-
sive speedups. A maximum speedup of over 550% is achieved for the 8-lane models. Overall, the
demonstration examples show the correctness and effectiveness of the proposed static analysis for
SystemC TLM-2.0 models.

8.2 DVD Player

Now we evaluate our approach using a real world DVD Player example which is similar to the one
in Figure 1. The block diagram of the model is shown in Figure 11. Stimulus has three parallel
threads that feed data into a memory Memory for the decoders to fetch. After decoding, the decoded
results are passed to monitors to verify the correctness. One main difference from the model in
Figure 1 is that there is only one memory module. This does not affect the parallelism of the model
because different data flow lanes have their own memory locations inside Memory. Similar to the
demonstration examples in Section 8.1, the DVD Player model is also configurable with the com-
bination of following options: BTI/DMI/NBTI and Direct/Hierarchical/Interconnect. Note that the
varied modules are represented by dashed lines. The two wrapper modules Decoder and Monitor
are enabled under the “Hierarchical” configuration. Router is enabled under the “Interconnect”
configuration. The results of run-time and speedup comparing to sequential simulation are shown
in Table 5.

The results demonstrate that the model gets a speedup of around 280% under OoO PDES and
is consistent over all model configurations. The consistency is reasonable because the TLM-2.0
communication and connection do not have impact on the threads’ behavior and thus will not
affect speed much. It is also notable that the theoretical maximum speedup of 300% is not achieved
for this three-lane model. This is explainable because the OoO PDES scheduler needs to perform
the scheduling and to decide thread dispatching order and thus incurs overhead. Nevertheless,
280% is an impressive value for a three-lane model. Note that this is also better than the 242%
speedup reported in [16] for a comparable TLM-1.0 DVD player model.
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Fig. 12. Block diagram for the MandelBrot renderer example.

Table 6. Results of Mandelbrot Renderer:
Run-time(secs) and Speedup(%)

Interface Seq Par Speedup
BTI 77.59 18.66 416%
DMI 77.64 18.45 421%
NBTI 77.60 18.50 419%

The results confirm the correctness and effectiveness of the proposed static analysis for SystemC
TLM-2.0 models.

8.3 Mandelbrot Renderer

The Mandelbrot renderer is a parallel image rendering application to compute the Mandelbrot
set. The platform architecture is shown in Figure 12. The DUT module hosts eight parallel renderer
threads. Each renderer thread computes a Mandelbrot image in a given area and sends the
result to the controller thread of DUT. The controller merges all the results and sends it out, then
starts to wait for new frames. Again, three experiments are performed on the the Mandelbrot
Renderer example with different communication types: BTI, DMI and NBTI. The results of
run-time and speedup comparing to sequential simulation are shown in Table 6.

As shown in the results, the speedup between OoO PDES and sequential simulation under both
communication types are around 420%. The naive maximum speedup of 800% is not achieved be-
cause there are only 4 floating point units (FPU) in the processor and thus the eight computation-
ally intensive renderer threads are not able to run totally in parallel3. Considering the restriction
of hyperthreading, the 420% speedup is impressive on a 4 core machine. The results of this exper-
iment demonstrate again that the proposed static analysis is effective and correct to support OoO
PDES of SystemC TLM-2.0 models using BTI, DMI and NBTI.

8.4 Bitcoin Miner

Our third real-world example is a SystemC TLM-2.0 model of a Bitcoin miner. Bitcoin miners
create Bitcoins by solving math problems using a computation-intensive cryptographic hashing

3In the BTI example, the user time of sequential simulation is 77.59 seconds which is smaller than 92.04 seconds for parallel

simulation. This shows that each hyperthread during parallel simulation is running longer due to the contention in the

FPU.
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Fig. 13. Block diagram for the Bitcoin miner example.

Table 7. Results of Bitcoin Miner: Run-time(secs) and Speedup(%)

BTI DMI NBTI

Scanners Seq Par Seq Par Seq Par

1 1903.02 1902.17 100% 1902.64 1908.29 100% 1889.93 1899.13 99%

2 1680.54 858.06 196% 1675.68 855.61 196% 1677.73 850.95 197%

4 1885.32 508.24 371% 1890.30 507.47 372% 1895.60 506.56 373%

8 1944.04 424.02 458% 1948.76 420.77 464% 1934.75 423.59 457%

16 2282.64 506.33 450% 2274.40 507.76 448% 2283.62 498.07 458%

64 3169.93 696.75 455% 3161.10 698.49 452% 3169.84 688.85 460%

256 6827.77 2315.08 295% 6824.44 2056.17 332% 6818.38 2236.09 305%

algorithm. Figure 13 shows the structure of the Bitcoin miner model. Stimulus prepares the math
problems and sends them to Dispatcher. Dispatcher divides the received problems into multiple
sub-problems and stores them into Memory. From there, a Scanner picks a corresponding sub-
problem and tries to solve it using a hashing algorithm. Once done, the Scanner stores the result
into Memory and waits for a new sub-problem. Dispatcher fetches the result from Memory and
sends it to Monitor. Note that in the Bitcoin miner model all Scanners are independent and their
threads are able to run in parallel with our approach.

We perform experiments with different number of Scanners: 1, 2, 4, 8, 16, 64, 256 and different
communication types: BTI, DMI, NBTI. The results are shown in Table 7. Similar to previous ex-
periments, the communication type does not significantly affect the simulation speeds. Because
of the high parallelism level of Bitcoin miner, the speedup between OoO PDES and sequential
simulation keeps increasing and reaches a maximum of around 460% when there are 8 Scanners.
Although the host processor has eight hyperthreads, a naive speedup of 800% cannot be achieved
due to the contention in the FPU. The speedup remains at the same level with more Scanners and
even drops when there are 256 Scanners. This is because of the dramatically increased context
switching between threads. The context switching is also a major factor that significantly affects
the sequential and parallel simulation time when there are more than 8 scanners. Considering all
the hardware restrictions, this experiment still demonstrates the effectiveness and correctness of
our proposed static analysis for supporting OoOPDES of SystemC TLM-2.0 models using BTI, DMI
and NBTI.
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9 CONCLUSION

In this paper, we propose a compiler-based approach to statically analyze SystemC TLM-2.0
loosely-timed (LT) and approximately-timed (AT) models. The analysis is essential to simulate
the model under OoO PDES. In the proposed approach, an accurate SG is first built with SCP in-
formation for TLM-2.0 interface function calls. Then, the compiler analyzes the variable accesses
for entangled variables, precisely identifying potential conflicts. Our experiments demonstrate the
correctness and effectiveness of the approach with demonstration examples from Accellera and
three real world examples: DVD Player, Mandelbrot Renderer and Bitcoin Miner.

In future work, we plan to apply also a hybrid approach to analyze dynamic socket bindings.
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