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In embedded system design, the quality of the input model has a direct bearing on the effectiveness

of the system exploration and synthesis tools. Given a well-written system model, tools today are

effective in generating working implementations. However, readily available C reference code is

not conducive for immediate system synthesis as it lacks needed features for automatic analysis

and synthesis. Among others, the lack of proper structure and the presence of intractable pointers

in the reference code are factors that seriously hamper the effectiveness of system design tools.

To overcome these deficiencies, we aim to automate the conversion of flat C code into a well-

structured system model by applying automated source code transformations. We present a
set of computer-aided recoding operations that enable the system designer to mitigate pointer

problems and quickly create the necessary structural hierarchy so that the design model becomes
easily analyzable and synthesizable. Utilizing the designer’s knowledge, our interactive recoding
transformations aid the designer in efficiently creating well-structured system models for rapid
design space exploration and successful synthesis. Our estimated and measured experimental
results show significant productivity gains through a substantial reduction of the model creation
time.

Categories and Subject Descriptors: C.3.3 [Special-Purpose and Application-based Sys-

tems]: Real-Time and Embedded Systems

General Terms: Design, Algorithms

Additional Key Words and Phrases: system level design, embedded systems, synthesis, method-
ology, recoding

1. INTRODUCTION

The initial design model required by system-level design flows is an executable
specification of the design, often called specification model [Gajski et al. 2000] or
Transaction Level Model (TLM) [Ghenassia 2006]. Typically captured in a System
Level Description Language (SLDL), this model directly determines the effective-
ness of the applied synthesis tools and the quality of the end implementation. How-
ever, clean, well-written models suitable for automatic system design flows are not
readily available. Instead, the Multi-Processor System-On-Chip (MPSoC) design
process often starts from unstructured C code of the embedded applications. Easily
obtained from open-source projects or standardizing committees, the application
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Fig. 1. Extent of automation in top-down system design flows.

code not only serves as reference for functional validation, but often is also used as
starting model for deriving the end implementation.

However, there are significant obstacles in directly using such code for the sys-
tem design process. First of all, these applications typically come from different
domains, such as the signal-processing or general-purpose programming community.
In particular, these sources are often designed and optimized as implementations to
run fast on a regular single-CPU PC environment. As such, this code is usually not
suited for embedded system design where a custom target architecture with multiple
processing elements is to be used, and where a complex chain of tools (rather than a
single compiler) generates the implementation. Second, the C language itself poses
numerous challenges for system design. For a range of programming constructs, the
freedom available makes the models ambiguous to system design tools. Commonly
used constructs, such as pointers, dynamic memory allocation, recursion, and oth-
ers, often result in ambiguities and negatively affect the analyzability, verifiability,
and synthesizability of the model.

System design tools require well-defined and well-structured input models. For
instance, architecture exploration, which partitions hardware and software blocks
and maps these onto the architecture platform, usually requires an explicitly spec-
ified block structure in the model. Moreover, many system tools require models
without pointers in order to enable static dependency analysis.

1.1 Scope of Work

In this work, we target the problem of preparing a well-written abstract system
model for subsequent automatic design space exploration and system design, as
illustrated in the top-down design flow shown in Figure 1. As is the case in many
system design flows established today, we assume that the Specification Model serves
as the reference for the hardware/software partitioning and the following refinement
steps. However, this specification model typically must be written manually, even
in the presence of available reference code.

Specifically, we address several issues that arise when the system designer creates
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the specification model in a SLDL, such as SystemC [Ghenassia 2006] or SpecC
[Gajski et al. 2000], and starts with regular C reference code. Despite the similarity
of C code and C-based SLDLs, manually re-coding the reference code into a suitable
system model faces many obstacles, some of which are listed in Figure 11.

In this paper, we specifically address the creation of a suitable structural hierarchy
(structure creation) and the elimination of unwanted pointers (pointer recoding).
These and other coding tasks make manual system specification time-consuming,
tedious, and error-prone.

The specification modeling phase is often a bottleneck in the overall system design
flow. For example, we have used the top-down design flow in Figure 1 in a study
on a MP3 decoder application [Chandraiah and Dömer 2005]. Since the refinement
steps from the specification model down to the implementation model were mostly
automated, we were able to implement our MP3 decoder in less than one week
(down to RTL). In contrast, manually converting the MP3 reference code into a
structured specification model took 12-14 weeks [Chandraiah and Dömer 2008b].
Thus, more than 90% of the overall design time was spent on writing and re-
writing the initial specification model. Clearly, the specification phase was the
main bottleneck in this design process.

1.2 Designer-controlled Approach

To tackle the specification bottleneck, our contribution in this work is an inter-
active, designer-controlled approach to create structured and analyzable system
models where the system designer makes the decisions and the code is transformed
automatically. Utilizing the designer’s experience and application knowledge, we
give her/him complete control over the specification process so that she/he can
create a system model that is most suitable to the specific needs at hand.

Note that creating a system model involves hard problems that make the com-
plete automation of this task infeasible. For example, to resolve statically unanalyz-
able code involving pointers, unstructured control flow (goto statements), recursive
functions, or other issues, the human designer’s intelligence is required. Also, the
designer’s application knowledge can help in reducing a problem to a solvable size.
For example, the designer may want to resolve a few pointers that interfere in a
specific portion of the code, while other pointers may remain unmodified in order
to not negatively affect the readability of the original program.

For our designer-controlled approach, we have developed a source recoder which
we describe in Section 5 in detail. Without disrupting the established system de-
sign flow, our source recoder introduces automation into the coding phase by inte-
grating automatic source code transformations into an extended text editor. The
recoder supports various transformations that let the designer quickly analyze the
program, encapsulate communication, expose parallelism, restructure control flow,
create structure, and eliminate pointers. As such, our interactive and extended
editor proves effective in utilizing the designer’s input to overcome the challenges
posed by real-life reference code.

1Generally, the necessary source code modifications can be classified into structural and func-

tional transformations, as well as analysis functions. An overview and brief discussion of such

transformations is available in [Chandraiah and Dömer 2007a].
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In essence, our interactive recoding process combines the intelligence of the de-
signer with fast transformations by the tool and we rely on the designer to concur,
augment, or overrule the automatic results to ensure the quality of the model.

Our work finds its application in preparing clean system models in C-based lan-
guages (i.e. plain ANSI-C as well as C-based SLDLs, such as SpecC and SystemC)
at any abstraction level (i.e. at the design entry as well as at intermediate mod-
els in the design flow). Specifically, our recoder can be used as frontend editor in
many system design flows (e.g. [Haubelt et al. 2008; Gerstlauer et al. 2008; Dömer
et al. 2008]) and is instrumental as well for preparing suitable models for backend
behavioral synthesis tools with no or limited support for pointer handling.

1.3 Related Work

The automated creation of structured system models from readily available refer-
ence applications is a problem that has not received much attention. This applies
to all three system design approaches, top-down, bottom-up, and platform-based.
For instance, the top-down design flows of SpecSyn [Gajski et al. 1994] and SpecC
[Gajski et al. 2000] both require a well-defined specification model that needs to
be written manually by the designer. Similarly, the component-based design flow
[Cesario et al. 2002] starts with a virtual architecture model provided by the de-
signer. As a commercial example, the platform-based VCC flow [Schirrmeister and
Sangiovanni-Vincentelli 2001] expects a designer-written functional description of
the application along with the platform architecture to generate performance mod-
els. The importance of a high-quality input model and the need for automation to
create it is also emphasized in [Jerraya et al. 2005].

1.3.1 Structure Creation. Creating a structured specification model is addressed
by several related works. For instance, [Marchioro et al. 1997] provide user-guided
transformations for functional partitioning and structural reorganization to trans-
form a system-level specification in SDL [International Telecommunication Union
(ITU) 1999] into a hardware/software architecture in VHDL and C, respectively.
In contrast, our work adds structure to flat C code and produces a hierarchical
SpecC model.

The Compaan tool set [Pimentel et al. 2001] transforms a sequential application
written in Matlab into a Kahn Process Network that acts as input model for ar-
chitecture exploration of multiprocessor architectures for multimedia applications.
Sprint [Cockx et al. 2007] transforms a sequential C program into a task-level
pipelined program in SystemC with user-defined task boundaries. Unlike these,
the key ingredient in our interactive approach is the control of the designer who
is not restricted to a single type of model or predefined order of transformations.
Instead, she/he has complete control to code/recode the model to arrive at the
most suitable specification.

1.3.2 Pointer Analysis. Needed as a prerequisite to our pointer recoding, the
topic of pointer analysis has been studied extensively over the last two decades.
Traditionally, it is used by compilers to address data analysis problems like con-
stant propagation and live variable minimization which are needed for program
optimizations and error detection. Nevertheless, pointers pose serious challenges
when programs meant for single-core single-memory architectures are used for cre-
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ating system models of multi-core multi-memory platforms.
In general, precise pointer analysis is undecidable [Landi 1992; Ramalingam 1994;

Hind 2001]. Existing algorithms trade-off between run-time efficiency and precision.
The general problem of pointer analysis can be divided into two parts, Points-To
and Alias analysis. Points-to analysis attempts to statically determine the memory
locations a pointer can point to. On the other hand, alias analysis attempts to
determine if two pointer expressions could point to the same memory location.

In the context of pointer recoding, we are primarily interested in points-to anal-
ysis. The research in this area is summarized very well in [Hind 2001]. Different
pointer analysis algorithms differ in the precision of the analysis, efficiency of the
algorithm, and scalability. Broadly, these algorithms can be classified based on
two independent aspects, flow sensitivity and context sensitivity. Flow-insensitive
algorithms [Steensgaard 1996; Zhang et al. 1996; Andersen 1994] do not consider
the control flow of the program and hence are faster than flow-sensitive algorithms
[Choi et al. 1993], that can potentially offer more precise results. Flow-insensitive
analysis can again be broadly differentiated as unification-based [Steensgaard 1996]
or inclusion-based [Andersen 1994], the former being faster but less precise.

The accuracy of such algorithms can be improved by adding context-sensitivity.
A context-sensitive algorithm [Wilson and Lam 1995; Fahndrich et al. 2000] con-
siders the effect of calling functions on the callee functions, and vice-versa. On the
contrary, a context-insensitive algorithm is conservative and assumes that a callee
affects all callers. Besides these two aspects, these algorithms differ depending on
whether composite data is considered as one object or multiple individual objects.
Further, high precision analysis of dynamically instantiated data structures requires
shape analysis techniques [Ghiya and Hendren 1995].

1.3.3 Pointer Recoding. Although the problem of pointer analysis has been
widely addressed by the compiler community, the problem of pointer recoding has
not been addressed as such. SpC [Séméria and Micheli 1998] proposes a technique
to synthesize pointers in hardware. Indirect reads and writes through pointers
are replaced with direct accesses to variables and new control structures (if-else,
switch-case). Pointer values are encoded and addresses are then removed. The
control structures introduced are synthesized into multiplexers during behavioral
synthesis. In contrast, our approach can be viewed as a pointer refactoring tech-
nique, rather than a synthesizing technique. Our pointer accesses are replaced with
direct variable accesses without changing the control structure of the program. We
keep the code close to its original form. Transformations at source level and keeping
the code readable are, in our work, as important as the pointer recoding itself.

In the compiler community, pointer conversion has been studied with the goal of
generating optimized code for processors. In particular, specialized techniques have
been developed in order to recover closed-form representations from pointer-based
array accesses. For example, [Franke and O’boyle 2003] present an approach that
uses high-level source-to-source transformations for an array recovery technique
that automatically converts certain pointer accesses in C code back to arrays. Built
into an optimizing compiler and aimed at DSP applications, their array recovery
shows significant execution speed improvements when combined with other code
transformations, such as loop unrolling. As is the case in our approach, their
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technique benefits from the fact that explicit array accesses are generally easier to
analyze and optimize than pointer operations. Their work also confirms that array
recovery alone only yields mixed results, but can be very effective when combined
with other transformations2. While [Franke and O’boyle 2003] aim at optimizing
DSP applications for execution on single digital signal processors and their array
recovery is built into an automatic compiler for optimized code generation, our
approach targets general embedded applications on heterogeneous multi-processor
architectures and is part of an interactive source code editor for efficient system
modeling. Also, in contrast to the focus on array recovery, our approach also
supports recoding of pointers to pointers.

Pointer recoding is critical for MPSoC modeling and design, where the sequential
specification has to be split and mapped onto multiple processors and multiple
memories. Eliminating pointers here simplifies the required dependency analysis
between different blocks in the application and thus enables efficient partitioning
and flexible mapping to the target architecture. Since in this process the decision
making by the system designer is key in our interactive approach, we need pointers
to be explicitly recoded and replaced with regular variables, so that the system
designer can easily see the existing data dependencies in the application code. This
is in contrast to optimizing compilers or synthesis tools, where data dependence
testing is integrated into a fully automatic process. Therefore, advanced dependence
analysis techniques, such as the chains-of-recurrences algebra [Engelen et al. 2004],
which are very effective in compilers [Birch et al. 2006], are not suitable for our
designer-controlled approach.

Often pointers also need to be removed from the system specification so that
individual tools, which otherwise are not capable of handling pointers, can easily
analyze, compile, synthesize, and refine the design model. Examples include aca-
demic High-Level Synthesis (HLS) tools, such as SPARK [Gupta et al. 2004], which
do not allow pointers in their input model.

On the other hand, several Electronic System Level (ESL) and behavioral syn-
thesis tools provide built-in support for handling pointers. Catapult C Synthesis
[Mentor Graphics Corp. 2008] and C-to-Silicon Compiler [Cadence Design Systems,
Inc. 2008], for example, support certain types of pointers (statically determinable
ones) in their synthesis flow for hardware modules. While these tools target sin-
gle (or few) rather small (up to hundreds of lines of code) hardware modules, our
approach in contrast aims at the true system-level where large designs (i.e. sev-
eral thousand lines of code) consisting of both hardware and software blocks are
modeled. Moreover, our approach is interactive and fully designer-controlled, as
opposed to these completely automatic synthesis tools. This allows the system
designer to apply necessary pointer recoding transformations at specific instances,
within limited regions of code, and at any time in any order (i.e. in between other
code changes). In particular, by applying the pointer analysis only to a limited
portion of the code, the system designer can even resolve and recode pointers for
which static analysis fails when applied to the entire application code.

2This supports our argument to make our approach interactive and leave the decision to the user

when and in which order to apply the recoding transformations.
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1.4 Previous Work

In earlier work, we have proposed the recoding technique for code and data parti-
tioning [Chandraiah and Dömer 2008c]. In this paper, we focus on creating com-
prehensible and analyzable models with proper structural hierarchy to facilitate
design and exploration at the system level. We have introduced pointer recoding in
[Chandraiah and Dömer 2007b] and structure creation in [Chandraiah and Dömer
2008b] in isolation and less detail. In this article, we not only address these topics
comprehensively, we also present new results obtained from an experiment con-
ducted with the help of a class of students. We further provide new architectural
exploration results in Section 6.3 which show that both transformations together
achieve more than each operation applied alone.

2. CREATING STRUCTURED AND ANALYZABLE MODELS

Before we discuss the proposed source code transformations in detail, we provide a
motivating example that shows the creation of structural hierarchy and the neces-
sary pointer recoding for creating a well-structured and analyzable system model.

As a common requirement, system-level design models clearly separate the com-
putation and communication aspects of the application by using explicit constructs
of the used SLDL. Computational blocks are encapsulated using modules (Sys-
temC) or behaviors (SpecC), and communication between these blocks is captured
using ports and channels. Unlike functions in a C program, computational blocks in
SLDLs explicitly specify their interfaces by use of ports with defined direction (i.e.
in, out, or inout). At the time of instantiation, the ports are statically mapped to
variables. Thus, the interfaces of computational blocks and interconnecting chan-
nels are explicitly and statically defined. Synthesis and refinement tools therefore
can easily determine the system connectivity and data flow.

int f1(int a, short*p)
{ *p = a & 0xffff;

p++;
*p = a >>16;
return *p;

}

behavior  B_f1(in int a, inout short 
vec[10], inout int ip, out int b)
{

void main(void) {  
vec[ip] = a & 0xffff;
ip++;
vec[ip] = a>>16;
b = vec[ip];

}
}; 

short vec [10]; 
int a, b;
short *pvec;

int main (void)
{

pvec = &vec[0];
for(i=0; i<5; i++) {

a = get32( );
b = f1(a, pvec);
pvec+=2;

}
}

short vec [10]; 
int a, b;
int ipvec;
B_f1 bf1(a, vec, ipvec, b);
int main (void)
{ 

ipvec = 0;
for(i=0; i<5; i++) {

a = get32( );
bf1.main();
ipvec+=2;

}
}

behavior  B_f1(in int a, inout
int*p, out int b)
{

void main(void) {  
*p = a & 0xffff;
p++;
*p = a>>16;
b = *p;

}
}; 

short vec [10]; 
int a, b;
short *pvec;
B_f1 bf1(a, pvec, b);
int main (void)
{ 

pvec = &vec[0];
for(i=0; i<5; i++) {

a = get32( );
bf1.main();
pvec+=2;

}
}

(a) Original C-code:
Function with pointers

(b) Model with pointers:
Behavior with pointer ports

(c) Recoded model:
Behavior with typed ports

int f1(int a, short*p)
{ *p = a & 0xffff;

p++;
*p = a >>16;
return *p;

}

behavior  B_f1(in int a, inout short 
vec[10], inout int ip, out int b)
{

void main(void) {  
vec[ip] = a & 0xffff;
ip++;
vec[ip] = a>>16;
b = vec[ip];

}
}; 

short vec [10]; 
int a, b;
short *pvec;

int main (void)
{

pvec = &vec[0];
for(i=0; i<5; i++) {

a = get32( );
b = f1(a, pvec);
pvec+=2;

}
}

short vec [10]; 
int a, b;
int ipvec;
B_f1 bf1(a, vec, ipvec, b);
int main (void)
{ 

ipvec = 0;
for(i=0; i<5; i++) {

a = get32( );
bf1.main();
ipvec+=2;

}
}

behavior  B_f1(in int a, inout
int*p, out int b)
{

void main(void) {  
*p = a & 0xffff;
p++;
*p = a>>16;
b = *p;

}
}; 

short vec [10]; 
int a, b;
short *pvec;
B_f1 bf1(a, pvec, b);
int main (void)
{ 

pvec = &vec[0];
for(i=0; i<5; i++) {

a = get32( );
bf1.main();
pvec+=2;

}
}

(a) Original C-code:
Function with pointers

(b) Model with pointers:
Behavior with pointer ports

(c) Recoded model:
Behavior with typed ports

Fig. 2. Example for encapsulation and pointer elimination.

To create a model with explicit structure from flat C code, designers typically
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convert given functions into behaviors3 and derive the ports by analyzing the pa-
rameters and variables accessed in the functions. While this alone is already a
tedious manual coding task, the presence of pointers in the C code aggravates the
problem. Often pointer ports are created as a temporary solution. However, allow-
ing pointer ports defeats the purpose of behaviors as it becomes possible to access
more than a single variable through such ports.

Figure 2(a) shows an example where a function f1 with a return parameter p
is converted to a behavior B f1 with corresponding pointer port p (Figure 2(b)).
Through this pointer the behavior accesses multiple variables which is confusing
(for both designer and tools). Figure 2(c) shows the corrected design model which
is obtained after replacing the pointer port p and array pointer pvec with an index
ip and the actual array vec, respectively. Unlike Figure 2(a) and (b), the model in
Figure 2(c) clearly reflects the actual interface of the behavior, easy to comprehend
by the designer and easy to analyze by tools.

3. CREATING STRUCTURAL HIERARCHY

The C programming language is insufficient when one needs to explicity model
structural hierarchy. C-based SLDLs, such as SystemC [Ghenassia 2006] and SpecC
[Gajski et al. 2000], explicitly provide the necessary language extensions to specify
the block-diagram structure and to separate computation from communication.

(a) Syntactical hierarchy in C code (b) Syntactical hierarchy in SLDL code

Global Variables
Global Functions

Parameters
Local variables

Global Variables
Global Functions

Parameters
Local variables

Classes
Ports
Member variables
Instances
Methods

Parameters
Local variables

Fig. 3. Hierarchy of scopes in C and SLDL.

Syntactically, the SLDLs provide an extra level of scope, the class level, as de-
picted in Figure 3. C programs only have two levels, global scope and local scope in-
side functions. SLDLs, in contrast, provide an additional level of hierarchy, namely
classes which represent modules, also known as behaviors, and channels. This class
scope contains the ports, member variables, instances of other classes, and meth-
ods. Methods, just like functions, again have their own local scope consisting of
local variables and parameters4. Explicit connectivity at the class level is available
through ports.

Introducing structural hierarchy in SLDL models is a necessary step to enable
architecture exploration and involves four tasks:

3For simplicity, we will use SpecC terminology (i.e. behavior) instead of SystemC (i.e. module)

from here on. The approach and concepts, however, are equally applicable to both SLDLs.
4Minor levels of scope are also available as compound statement blocks in both C and SLDLs.

These, however, are of very limited use and thus omitted in the figure for brevity.
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(1) Encapsulating global functions into classes (by following the function call tree)

(2) Determining the variables affected by introduction of the new class scopes

(3) Migration of variables into the appropriate local, class, or global scope

(4) Establishing connections through channels, ports, and parameters

In the following, we will focus on the first task. For details on tasks (2) to (4),
please refer to [Chandraiah et al. 2007].

3.1 Top-down Call-Tree Traversal

The function call tree in the C code can be used as a starting point to create an
initial structural hierarchy in the design model. This way, major functions are
encapsulated as separate behaviors. Using static analysis, we generate the function
call hierarchy of the program. Figure 4(a) shows an example of a simple function
call tree. Function f1() calls f2() which in turn calls f3() and f4().

f1

f2

f3 f4

B_f1 B_f2

B_f3 B_f4

i_b_f2 i_b_f3

i_b_f4

(a) Function call tree (b) Syntactical SLDL hierarchy

B_f1

B_f2

B_f3

B_f4

(c) Structural hierarchy

Fig. 4. Converting a function call tree to structural hierarchy.

We then traverse the call tree in hierarchical order and encapsulate the functions
one by one in behavior shells with definite interface. Figure 4(b) shows the result-
ing syntactical structure after the functions are encapsulated. Here, B f2 is the
declaration of a behavior containing f2 and i b f2 is an instance of that behavior.
Figure 4(c) shows the final structural hierarchy of the resulting model.

More specifically, the process of encapsulating C code blocks into behaviors in-
volves multiple steps:

(1) Determining the statically analyzable interface of the selected block of C code

(2) Encapsulating the block in a behavior/module

(3) Instantiating the new class and replacing the function call with a call to the
new instance

We will now discuss each of these steps in more detail.

3.2 Statically analyzable interface

The interface of an encapsulating class is the list of data items the class accesses.
An unambiguous interface contains access type information (direction), does not
include pointers, and does not depend on run-time values. When all the classes in
the model have a well-defined interface, the design tools can fully rely on this inter-
face without having to analyze the body of the block. Figure 5 shows a fragment
of C code and the corresponding interface of function f.
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outWintr

inoutRWchars

inRinti1

inRint [10]b

inRinta

Port DirectionAccessTypeVar.

/* … */
pa = &s;
result = f (a, b[i1], pa);
/*…*/

(a) Function call to f (b) Interface of f

Fig. 5. Determining the statically analyzable interface of code blocks.

The complete interface includes the access type information, e.g. read, write, or
read-write. This interface of a block is determined by analyzing the accesses of all
variables in the block of statements. The overall access of a variable in a block is the
accumulation of all local accesses in the individual expressions. Since we want the
interface to be statically analyzable, for any vector accessed using a non-constant
index variable, we make the safe assumption that the whole array is accessed5. If
the access to the specific array elements cannot be determined statically, as for b[i1]
in Figure 5, the complete interface will be defined to include the whole array b and
the index i1. If there is a pointer in the interface, then the block can access more
than one variable at run-time. This ambiguity is overcome using pointer recoding,
which we will discuss later in Section 4. In Figure 5, the pointer pa is replaced with
the actual variable s. Note that the return value of the function (variable r) must
also be considered as part of the interface, but with write access type.

3.3 Encapsulating functions

The recoding involved in converting a function into a behavior is shown in Fig-
ure 6. The interface generated in the previous step is used to create the port list
of the new behavior. Each port contains the direction information (in, out, inout)
and corresponds to the access type information determined in the previous step.
Figure 6(a) shows an example model with behavior B calling function f1(). This
function is encapsulated into a new behavior B f1, as shown in Figure 6(b). The
function call is re-scoped into the new scope of behavior B f1. The new behavior
is created with the body containing a call to the function (line 3 in Figure 6(b)).

After creation, the new behavior needs to be instantiated (I B f1 ) in its parent
behavior (line 13). The port map needed for the instantiation is generated by
analyzing the function arguments and using the port list of the newly created
behavior as reference. The port map for instance I B f1 is (a, b, i1, s, result).
Note that the variables a, b, i1, and s, which were originally located in the local
scope of function B::main(), are now re-scoped into B. This is necessary as these
variables are needed for the port mapping. After creating the instance, the original
function call in parent behavior B is replaced with the call to the newly created
instance (line 20).

5This conservative assumption could be replaced in the future by using advanced techniques for

subarray access analysis.
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1. behavior B (in int p1, in int p2, out int result)
2. {
3. void main( )
4. {
5. int i1, a, b[10], s, *pa;
6. a = p1+p2;
7. s = p1-p2;
8. pa = &s;
9. result = f1(a, b[i1], pa);
10. }
11. int f1(int w, int x, int *p)
12. {   *p  = w+x+*p;
13. return *p;
14. }
15.};

(a) Original model (Model 1) (b) Function encapsulated in behavior (Model 2)

1. behavior B_f1( in int w, in  int x[10],
2. in int i, inout int s, out int c) {
3. void main()
4. {  c= f1(w, x[i], &s);
5. }
6. int f1( int w, int x, int *p)
7. {  *p  = w+x+*p;
8. return *p;
9. }
10. };
11. behavior B (in int p1, in int p2, out int result) {
12. int a, b[10], i1, s;
13. B_f1 I_B_f1(a, b, i1, s, result); // instance
14. void main( )
15. {
16. int *pa;
17. a = p1+p2;
18. s = p1-p2; 
19. pa = &s;
20. I_ B_f1.main();
21. }
22. } ;

Fig. 6. Encapsulating a function into a behavior.

3.4 Encapsulating statements

Similar to encapsulating functions, regular C statements can also be encapsulated.
This transformation is necessary to encapsulate statement blocks that exist between
instances of behaviors in order to obtain a clean composition of behaviors at each
hierarchical level. This transformation involves the following steps:

—Creating a port list from the variable accesses

—Creating the behavior with the statement block as body

—Re-scoping variables that need to be port mapped

—Creating the instance of the behavior using the port map

—Replacing the statements with the call to the instance

3.5 Establishing connectivity

Encapsulating functions and statements is just one aspect of creating structural
hierarchy. After encapsulating the global functions, variables in the global scope
must be migrated to the class scope where they are used. After that, since those
variables are no longer global, explicit connections need to be established by recur-
sively inserting ports in all affected behaviors across the hierarchy. The details of
this transformation are beyond the scope of this article and are discussed in detail
in [Chandraiah et al. 2007].

3.6 Recoding complications

Our source transformations must generate a model that is syntactically correct and
semantically equivalent to the input C program. Though the program transforma-
tions described in the previous section seem straightforward, there are complications
which, if not addressed, would result in incorrect code. Additional problems arise
because of the differences in the execution semantics of functions and behaviors.

For example, the semantics of function parameters are different from the seman-
tics of ports. When function parameters are replaced with ports, it is necessary to
maintain the pass-by-value and pass-by-reference semantics. This is ensured by ad-
hering to strict recoding rules. For example, a function parameter passed as value
can only be replaced with an in port irrespective of how the variable is accessed

ACM Transactions on Computational Logic, Vol. V, No. N, M 20YY.
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1. int func(int, int, int);
2. /*…*/
3. if (func(w+x, y, z))
4. { /* do */
5. }

1. behavior B_func (in int, in int, in int, out int);
2. /*…*/
3. int wx, retval;
4. B_func I_B_func (wx, y, z, retval); //Instance
5. /*…*/
6. wx=w+x;
7. I_B_func.main(); 
8. if (retval)
9. { /* do */
10.}

(a) Initial code with function func() (b) Code after replacing func() with behavior

Fig. 7. Recoding complications when converting functions to behaviors.

within the function body. Function parameters passed as reference can be replaced
with any of the port directions as determined by the analysis described above.

Other complications arise because of programming style. Since expressions can-
not appear in the portmap of an instance6, expressions in function arguments, such
as w+x in line 3 of Figure 7(a), must be first evaluated and stored in a temporary
variable wx (line 6 in Figure 7(b)) which is then used in the port mapping (line
4). Similarly, if the return value of a function is ignored or read implicitly (line 3
Figure 7(a)), an explicit result variable (retval) is created to hold the return value.
All implicit accesses to the return value can then be replaced with an explicit read
access to this variable, as shown by the modified if statement in line 8.

Finally, when a variable in the local scope of a function is migrated into a class, it
becomes a static variable visible in a larger scope. In case of naming conflicts, our
transformations have to automatically rename such variables and adjust all their
accesses.

3.7 Limitations

Although our structure transformations handle most embedded C code, some pro-
gramming constructs are not supported by our transformations. First, encapsulat-
ing functions applies only to function definitions (that have a body), as opposed
to external library functions (functions declared extern without a body)7. Also,
encapsulating recursive functions is not supported. Further, we do not support the
encapsulation of statements in the presence of conditional goto statements which
could transfer the control flow into the statement block under consideration.

Note that these limitations are not serious as such situations are rarely found in
embedded applications.

4. POINTER RECODING

We will now address the elimination of unwanted pointers in the source code.
Pointer elimination or replacement, which we will refer to as pointer recoding from
here on, requires as a prerequisite the well-known task of pointer analysis8 which
we reviewed earlier in Section 1.3.2.

6An expression in a portmap results in ambiguity regarding the time of the expression evaluation.
7Note that the use of library functions, for example I/O functions, does not pose any problem.

These functions only cannot be encapsulated as behaviors by themselves.
8Note that we are not proposing a new pointer analysis algorithm here. Pointer analysis is just a

prerequisite to our pointer recoding.
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In its concluding note [Hind 2001] correctly remarks that pointer analysis must
be tailored to meet the accuracy, efficiency and scalability requirements of the
client applications. Since our pointer recoding is interactive (for reasons stated in
Section 1.2), run-time efficiency and scalability are an important concern9. Conse-
quently, we selected flow-insensitive and context-insensitive points-to analysis for
our recoder. Specifically, we chose an inclusion-based algorithm [Andersen 1994]
over a unification-based algorithm [Steensgaard 1996], as the former provides more
precision than the later. Andersen’s algorithm offers reasonable precision and per-
formance suitable for our pointer recoding. Unlike Andersen’s approach, however,
we have implemented our algorithm on an Abstract Syntax Tree (AST) represen-
tation of the design model (similar to the approach taken by [Buss et al. 2005]).
The AST is generated from the description of the design model and captures the
complete syntactical structure of the model. That is, it preserves all design infor-
mation including blocks, functions, channels, ports, statements, expressions, and
so on. It also includes code formatting details, such as line and column numbers of
all objects, so that the code generator can reproduce the source description back
in its original format.

p1 → x

p2 → v1, v2

p3 → ab

p4 → a

p5 → ab

p6 → a

(b) Points-to list

1. int a[50], ab[50][16];
2. int v1, v2, x, y;
3. int *p1,*p2, *p3, *p4, 

(*p5)[16], *p6;
4. p1 = &x;
5. *p1 = y + 1;
6. if (condition)
7. p2 = &v1; 
8. else
9. p2 = &v2;
10. *p2 = 5;
11. p3 = &ab[40][10];
12. *p3 = 100;
13. p4 = a;
14. p4++;
15. *p4++ = 1;
16. p5 = &ab[5];
17. p6 = p4 + v1;

1. int a[50], ab[50][16];
2. int v1, v2, x, y;
3. int ip3, ip4,

ip5, ip6;
4. // nothing here 
5. x = y + 1;
6. if (condition)
7. p2 = &v1; 
8. else
9. p2 = &v2;
10. *p2 = 5;
11. ip3 = 10;
12. ab[40][ip3] = 100;
13. ip4 = 0;
14. ip4++;
15. a[ip4++] = 1; 
16. ip5 = 5;
17. ip6 = ip4 + v1;

(a) Code with pointers (c) Pointers  recoded

Fig. 8. Pointer recoding example.

An example points-to list generated by our analysis is shown in Figure 8. Our
algorithm assumes that after incrementing a pointer to an array, the pointer still
points to the same array. For instance, pointer p4 points only to a despite being
incremented10. Depending on the program, the points-to list of a pointer can
contain one or more variables. In Figure 8, all pointers except p2 bind to a single
variable.

Our recoding is performed after all pointers are analyzed and bound to their
variables. We perform recoding only on the pointers which bind to exactly one
variable. If there is a possibility that a pointer could point to more than one

9A discussion of the responsiveness of our interactive source recoder and detailed execution times

of recoding transformations are available in [Chandraiah and Dömer 2007a].
10Only in erroneous or non-portable programs will arithmetic on a pointer make it point to

different variables.
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variable (for example p2 ), then pointer recoding is not performed. Such pointers
are brought to the designer’s attention and the decision is left to the designer to
resolve this issue. As described in Section 4.6, the designer can use his application
knowledge and provide accurate binding information to facilitate recoding. Besides
regular assignment expressions, our pointer analysis also takes into account pointer
binding through port-mapping and function parameters.

4.1 Pointer Recoding: Background

Generally, pointers are problematic because they implement multiple concepts. A
programmer can use a pointer as a value, alias, address, or an offset. It is a value
when the absolute value of the pointer is used, it is an alias when it points to more
than one variable in its life time, an address when it is simply dereferenced, and
an offset when the pointer points into an array and is manipulated using pointer
arithmetic. Pointer recoding can be performed automatically in the latter two cases,
that is when the pointer is not aliased or used as an absolute value.

Recoding generally means to replace any indirect access to a variable through a
pointer by a direct access to the variable. We distinguish scalar and array pointers,
as follows:

—A pointer access to a scalar variable is replaced with the actual scalar. In Figure 8,
this recoding applies to variable x accessed through pointer p1. Recoding mainly
affects the dereferencing operation of p1, as shown in lines 4-5. The pointer
initialization in line 4 is deleted as it is no longer necessary.

—For every pointer to an array, an integer is created which acts as index into the
array. Then, the pointer access to vector variables is replaced with the array
access operator ’[ ]’ using the actual vector variable and the newly created index
variable. In Figure 8, this recoding applies to array variables a and ab. The
newly created integers, ip3, ip4, ip5 and ip6, are used as indices. Arithmetic
operations on pointers are replaced with arithmetic on the index variables, as
shown in lines 14, 15 and 17 in Figure 8(c). Pointer initialization is replaced with
an initialization of the associated index variable with an offset expression (lines
11, 13, and 16).

While pointer recoding in Figure 8 may appear simple, it requires careful handling
of all affected C operators and full support of complex expression trees.

4.2 Recoding Pointer Expressions

Given a pointer and its type, our algorithm recursively traverses the AST of an
expression in a depth-first manner, searching for the specified pointer. Since each
node in the AST has only local information, upon traversal, each node returns
all information of interest to the node above. The parent node, using the results
provided by each of its children, can then determine the proper course of action to
take.

Upon traversing a node, our recursive recoding function returns a tuple of 4
elements {e1, e2, e3, e4}. e1 contains the unmodified original expression. e2
contains the expression of the index variable if the expression processed was a
pointer, or an offset expression if the expression processed was a regular variable.
If the expression processed is a pointer, e3 contains the target symbol to which the

ACM Transactions on Computational Logic, Vol. V, No. N, M 20YY.



Computer-Aided Recoding to Create Structured and Analyzable System Models · 15

pointer is bound to. e4 is a Boolean flag indicating whether or not there was a
positive pointer match.

P = b

=

P b
{b, 0, --, F}{P, iP, b, T}

iP = 0

(a) To Array (P→b)

P = &a
=

P &

a
{a, 0, --, F}

{P,--, a, T}

(b) To Scalar (P→a)

{&a, 0, --, F}

P = b

=

P b
{b, 0, --, F}{P, iP, b, T}

iP = 0

(a) To Array (P→b)

P = b

=

P b
{b, 0, --, F}{P, iP, b, T}

iP = 0

(a) To Array (P→b)

P = &a
=

P &

a
{a, 0, --, F}

{P,--, a, T}

(b) To Scalar (P→a)

{&a, 0, --, F}

P = &a
=

P &

a
{a, 0, --, F}

{P,--, a, T}

(b) To Scalar (P→a)

{&a, 0, --, F}

Fig. 9. Recoding pointer initializations.

To illustrate the algorithm in detail, we will now walk through the procedure
to recode several pointer expressions. Pointer initialization to an array is shown
in Figure 9(a). The figure shows how the algorithm operates on the AST when it
is invoked to recode the pointer P, where P in this case points to vector b. Our
recursive recoder starts from the assignment node (’=’) and reaches the identifier P.
The 4-element tuple returned by the node traversal is shown in the curly brackets.
Since P is the pointer to be recoded, the original identifier (P), the index variable
associated with the pointer (iP), the target variable the pointer binds to (b), and
a Boolean asserting the pointer match (true) are returned as a tuple. Next, the
other child node b is reached. Three elements, the original identifier expression
b, an integer offset 0 (instead of an index variable, since b is not a pointer), and
the Boolean flag false are returned. After returning to the assignment node, the
pointer assignment is replaced with a new assignment expression formed using the
index variable iP and the offset expression 0.

In general, an assignment node (=) can receive 3 results (e1, e2, e3 ). The
appropriate choice is selected depending on the node type and e4. If e4 is false, e1
is chosen. If e4 is true, then the node type decides between e2 and e3. If the node
type is a pointer, e2 is chosen, otherwise e3.

Recoding pointer initialization to a scalar variable is shown in Figure 9(b). Here,
the pointer assignment expression is completely removed as the index assignment
makes sense only for arrays. The necessary binding information (P→a) is main-
tained by the recoder.

P += 4

+=

P 4

{4, --, --, F}{P, iP, b, T}

iP += 4 P ++

++

P {P, iP, b, T}

iP ++

{P++, iP++, b, T}

P += 4

+=

P 4

{4, --, --, F}{P, iP, b, T}

iP += 4P += 4

+=

P 4

{4, --, --, F}{P, iP, b, T}

iP += 4 P ++

++

P {P, iP, b, T}

iP ++

{P++, iP++, b, T}

P ++

++

P {P, iP, b, T}

iP ++

{P++, iP++, b, T}

Fig. 10. Recoding pointer arithmetic expressions (P → b).

Pointer arithmetic, as shown in Figure 10, is replaced with arithmetic on pointer
indices. Of course, this applies only to pointers to arrays. Pointer assignment in
Figure 11 is similarily replaced with an assignment expression of the indices of the
two pointers (iP, iQ).

While recoding pointer dereferencing expressions, three main scenarios need to
be addressed (Figure 12), depending on the type of the target variable. If the
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P = Q

=

P Q

{Q, iQ, b, F}{P, iP, Q, T}

iP = iQP = Q

=

P Q

{Q, iQ, b, F}{P, iP, Q, T}

iP = iQ

Fig. 11. Recoding pointer assignment (P → Q → b).

target is a scalar, the dereferencing node will return just the target scalar ({–, –, a,
T}), as shown in Figure 12(a). If the target is an array, an array access expression
(b[ip]), formed using the target array and the index variable of the pointer, is
used as the replacement expression, as shown in Figure 12(b). Figure 12(c), a
variant of Figure 12(b), shows recoding of the pointer expression that combines
both dereferencing and pointer arithmetic.

x=*P

=

x *

P
{P, --, a, T}

{--, --, a, T}{x, 0, --, F}

x = a

(a) Pointer to  Scalar (P→a)

a=*P

=

a *

P
{P, iP, b, T}

{--, --,b[iP], T}{a, 0, --, F}

a = b[iP]

(b) Pointer to Vector (P→b)

(d) Pointer to Pointer (P →Q →a)

x=**P

=

x *

P
{P, --, Q, T}

x = a

{x, 0, --, F}

*
{Q, --, a, T}

{--, --, a, T}

x=*P++

=

x *

P
{P, iP, b, T}

x = b[iP++]

{x, 0, --, F}

++
{P++, iP++, b, T}

(c) Pointer to Vector (P →b)

{--, --, b[iP++], T}

x=*P

=

x *

P
{P, --, a, T}

{--, --, a, T}{x, 0, --, F}

x = a

(a) Pointer to  Scalar (P→a)

x=*P

=

x *

P
{P, --, a, T}

{--, --, a, T}{x, 0, --, F}

x = a

(a) Pointer to  Scalar (P→a)

a=*P

=

a *

P
{P, iP, b, T}

{--, --,b[iP], T}{a, 0, --, F}

a = b[iP]

(b) Pointer to Vector (P→b)

a=*P

=

a *

P
{P, iP, b, T}

{--, --,b[iP], T}{a, 0, --, F}

a = b[iP]

(b) Pointer to Vector (P→b)

(d) Pointer to Pointer (P →Q →a)

x=**P

=

x *

P
{P, --, Q, T}

x = a

{x, 0, --, F}

*
{Q, --, a, T}

{--, --, a, T}

(d) Pointer to Pointer (P →Q →a)

x=**P

=

x *

P
{P, --, Q, T}

x = a

{x, 0, --, F}

*
{Q, --, a, T}

{--, --, a, T}

x=*P++

=

x *

P
{P, iP, b, T}

x = b[iP++]

{x, 0, --, F}

++
{P++, iP++, b, T}

(c) Pointer to Vector (P →b)

{--, --, b[iP++], T}

x=*P++

=

x *

P
{P, iP, b, T}

x = b[iP++]

{x, 0, --, F}

++
{P++, iP++, b, T}

(c) Pointer to Vector (P →b)

{--, --, b[iP++], T}

Fig. 12. Recoding pointer dereferencing expressions.

If the target variable is another pointer, all 4 elements, the target pointer, the
index variable of the target pointer, the variable pointed to by the target pointer and
the matching flag ({Q,–,a,T}), are returned. The next dereferencing node chooses a
as the target, as shown in Figure 12(d). Note that whenever the information at the
node is limited, as in case of expressions ++,+,−, /, ∗,&, ‖ . . . , no decision is made
about choosing the correct result. Instead, all four results returned by individual
child nodes are combined using the operator type of the current expression, as
shown for P++ in Figure 12(c), and passed to the parent node.
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4.3 Recoding Pointers to Multi-dimensional Arrays

The offset expression generated while initializing the pointer to the beginning of
an array is simply 0. However, initializing a one-dimensional pointer to a multi-
dimensional array requires more attention. When a one-dimensional pointer is used
to access a multi-dimensional array, properly replacing the pointers with the actual
array variable requires separate index variables for each dimension. However, this
would result in additional overhead because initialization and arithmetic on pointers
will be translated into multiple initializations and arithmetic operations involving
each index variable. To avoid this, we associate only one index variable with the
pointer, based on the assumption that the pointer is used to point to only the
elements across one dimension11.

P = &c[3][15]

=

P &

c

{c[3], 3, --, F}

{&c[3][15], 15, --, F}{P, iP, c, T}

iP = 15

15

{15, --, --, --}

{c[3][15], 15, --, F}

[ ]

3
{c, 0, --, F} {3, --, --, --}

Pointer Initialization to 2-d Array (P→c)

[ ]

P = &c[3][15]

=

P &

c

{c[3], 3, --, F}

{&c[3][15], 15, --, F}{P, iP, c, T}

iP = 15

15

{15, --, --, --}

{c[3][15], 15, --, F}

[ ]

3
{c, 0, --, F} {3, --, --, --}

Pointer Initialization to 2-d Array (P→c)

[ ]

Fig. 13. Recoding pointers to multi-dimensional arrays.

For example, pointer P in Figure 13 is assumed to point only to 20 elements in
row 3 of the array c. Thus, the index variable iP can only range from 0-19. More
specifically, P is bound to sub-array c[3] and is used to replace any dereferencing
expression of P. The offset derived is propagated upwards through the AST, as
shown by the dotted arrows in Figure 13.

Figure 8 also shows multi-dimensional recoding for pointer p3.

4.4 Recoding Pointer Dependents

If it is determined that two pointers are dependent on each other, then recoding one
of them requires recoding the other. For instance, if we are recoding pointer P and
P depends on Q (as in expression P = Q + 4), then this requires recoding Q along
with P . In our approach, the preparation stage identifies such dependent pointers
and creates a list. The original and the dependent pointer are then iteratively
recoded.

11Note that this is a safe assumption for proper ANSI-C code, even if pointer arithmetic is used

that crosses from one dimension to the next.
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4.5 Recoding Pointers in Function Arguments

Pointers that appear as function arguments also need recoding. A pointer argument
is replaced with the target variable and, if applicable, the index variable of the
pointer. A dereferencing pointer argument is replaced with just the variable it
points to. Besides recoding the arguments, the corresponding function parameter
must also be recoded to change the function signature. This recoding is scheduled
and is recoded later along with the other dependent pointers (Section 4.4).

Note that by replacing pointer arguments with actual variables, a call-by-reference
is changed to a call-by value if the pointer points to a scalar. Hence, immediately
after this recoding, the program, though syntactically correct, is semantically not
the same anymore. However, as soon as that function is encapsulated in a behavior
(see Section 3.3), its parameters are converted to ports with direction information
(in, out, inout) and proper semantics will be restored12.

4.6 Interactive Designer Input for Robust Pointer Recoding

Making pointer recoding available to the designer as an interactive operation proves
an efficient approach to extend the automatic analysis with the designer’s intelli-
gence and application knowledge. This way, our recoder can also resolve pointers
that cannot be statically analyzed.

First, the designer can specify a limited context (a portion of code) where the
pointer analysis and recoding are applied. A pointer, that is statically unanalyzable
within the entire program context, often can be easily analyzed within a specific
function, behavior, or segment of code. Thus, by allowing the designer to specify
the recoding context it becomes possible to recode pointers that otherwise cannot
be handled.

Second, if a pointer is determined to point to more than a single target variable,
the application-aware designer can override the analysis and simply select the actual
target variable to be used for recoding.

It is this type of interactivity that makes our proposed pointer recoding robust
and effective for real-life embedded application code. Finally, involving the designer
actively in the recoding process helps to ensure the quality of the design model13.

4.7 Limitations

Though most practical pointer usages can be recoded by our approach, there are
some limitations. We cannot recode pointers in the situations shown in Figure 14.

—Our recoder is meant only for pointers to static or stack variables, not for dy-
namically allocated memory.

—It is not possible to recode pointers whose values are being used as absolute value,
for example, P in Figure 14 is read in line 5.

—We do not support pointer recoding to scalars if an arithmetic operation on the

12Another recoding solution to preserve the semantics would be to convert the target scalar into

a vector of size one. However, the details of this alternative are outside the scope of this paper.
13At this point, our work enables automation in the design specification phase. Taking quality

considerations and tradeoffs into account, for example different versions of transformations to

satisfy different goals, is a next step that we leave for future work.
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1. int A, B, *P, *Q;
2. char* R;
3. void* S;
4. P = (int*) malloc(10*sizeof(int));
5. if (P == 0) // P is read by value, cannot be recoded
6. { // code … }
7. Q = &A;
8. *Q = 1;
9. Q++; // Q points beyond a scalar, cannot be recoded
10. R = (char*) (&B); // char pointer R points to an integer, cannot be recoded
11. *R = 0; R++; *R = 0;
12. S = (void*) (&B); // void pointer S points to an integer, cannot be recoded

Fig. 14. Pointer recoding limitations.

pointer is performed. Pointer Q in Figure 14 shows this case. Note that such
operations are not ANSI-C compliant.

—Operations involving different pointer types are not recoded. For example, pointer
R, a character pointer, and S, a void pointer, are used to point to an integer.

Despite these restrictions, we find it possible to recode a large majority of pointers
in practical sources. In our experience, most embedded applications obey proper
ANSI-C coding guidelines for pointers and as such can be successfully recoded.

5. SOURCE RECODER

To aid the designer in coding and recoding, we have integrated our transformations
into a source recoder [Chandraiah et al. 2007]. Our source recoder is a controlled,
interactive approach to implement analysis and recoding tasks. In other words, it
is an intelligent union of editor, compiler, and powerful transformation and analysis
tools. The recoder supports re-modeling of SLDL models at all levels of abstraction.
It consists of 5 main components:

—Textual editor maintaining the textual document object

—Abstract Syntax Tree (AST) capturing the syntactical structure of the model

—Preprocessor and parser to convert the document object into AST

—Transformation and analysis tool set

—Code generator to apply changes

The designer can invoke the automatic source code transformations on selected
objects simply by a click of a button. For example, to encapsulate a set of state-
ments in a behavior, the designer highlights the statements in the editor window
and invokes the transformation. Similarily, the designer can recode pointers with
a click of a button, invoking the pointer recoder on individual pointers of her/his
choice. All source code transformations are performed and presented to the designer
instantly in the editor window.

Our AST data structure is designed specifically to capture the complete syntac-
tical structure of the model so that the code generator can update the source code
after transformations in near original form. Vice versa, the designer can also make
changes to the code by typing and these changes are applied to the AST on-the-fly,
keeping it synchronized at any time.

The interative mix of the designers’ intelligence and application knowledge with
the automated recoding transformations makes the design model creation and main-
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tenance very efficient. Using the source recoder, tedious and time-consuming man-
ual coding is replaced by automatic programming.

6. EXPERIMENTS AND RESULTS

To demonstrate the effectiveness of the recoding approach, we present the following
experiments and results:

(1) We show the effectiveness of the pointer recoder.

(2) We describe a case study that creates a model of a MP3 audio decoder.

(3) To demonstrate the benefits of a structured and analyzable model, we present
results of architecture exploration. In particular, we show how the creation of
such models enables design tools in exploring additional architectures.

(4) We present a classroom case study to measure the productivity gains achieved
by using our interactive recoder.

6.1 Effectiveness of pointer recoding

The main advantage of recoding pointers is to enhance program comprehension
for the designer and to make the model conducive for tools with limited or no
capability to handle pointers. Our interactive source recoder makes automatic
pointer recoding feasible in many real-life embedded source codes. To show this,
we have applied our pointer recoder to the embedded benchmarks listed in Table I
[Chandraiah and Dömer 2007b]. Since operations, such as file I/O, typically become
part of the testbench, we examined the above examples only in the context of the
kernel functions listed.

Table I. Pointer recoding on different benchmarks.
Example Applicable functions Recoded pointers

adpcm [MiBench ] adpcm coder(), adpcm decoder() 6/6

FFT [MiBench ] fft float() 0/4

sha [MiBench ] sha transform() 1/1

blowfish [MiBench ] BF encrypt(), BF cfb64 encrypt()
BF cbc encrypt() 10/10

susan [MiBench ] susan corners(), susan principle()

susan edge() 13/17

Float-MP3 decoder [MPG123 ] decodeMP3() 14/16

Fix-MP3 decoder [MAD MP3 Decoder ] III decode(), synth full() 22/23

GSM Across the program 17/17

For each example, Table I lists the number of pointers that our tool automatically
recoded. The remaining pointers required user intervention. For example, in case
of the FFT benchmark, all 4 pointers were being used as a value in a condition
test and therefore could not be recoded. The majority of the other cases were
pointers used for dynamic memory management (compare Section 4.7). Overall,
however, our pointer recoder was effective and automatically recoded 83 percent of
the pointers in the listed examples.

6.2 Creation of Structural hierarchy

We have applied our source recoder to different real-life embedded C codes to
create models with proper structural hierarchy. The transformations were used to
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create a well-structured model in SpecC. Here, we will demonstrate the use of our
source recoder on a MP3 decoder. The original MP3 example had 30 functions and
spanned around 3000 lines of code. Using the source recoder, 43 behaviors were
introduced to create a structured model. First the major functions were converted
into behaviors, after which the C statements between them were encapsulated. Note
that not all the functions were encapsulated into behaviors as some of them were
too small and were called too often to be regarded as separate computation blocks.

decodeMP3

do_layer3

III_antialiasIII_dequant III_hybrid

III_i_stereoIII_synth_1to1

B_decodeMP3

B_do_layer3

B_III_dequant

B_III_antialias

(a) Partial function hierarchy in MP3 code

B_III_hybrid

B_III_i_stereo

B_synth_1to1

(b) Structural hierarchy in the MP3 code

B_dct64

dct64

Fig. 15. MP3 structural hierarchy.

An example code structure and the corresponding structural hierarchy created
are illustrated in Figure 15 [Chandraiah and Dömer 2008b].

6.3 Architectural Exploration

The main advantage of creating structural hierarchy and making the model stati-
cally analyzable is to enable automatic design space exploration. To conduct au-
tomatic exploration, we have used the SCE tool suite [Dömer et al. 2008]. The
SCE refinement tools expect a model with a clean structural hierarchy where all
computation blocks are properly encapsulated. At every hierarchy level, the tools
expect the behaviors to contain either only C code (such behaviors are known as
leaf behaviors) or be cleanly composed of behavior instances.

Using our source recoder, we have created two such clean system models by ap-
plying the two sets of recoding transformations discussed in this article. Specifically,
we have created a model of a floating-point MP3 decoder, as shown in Figure 15,
and a fix-point MP3 decoder. Using these two models, we were able to explore a
total of 20 different HW/SW architectures with the SCE architecture refinement
tool.

Even a sequential model with sufficient number of behaviors can result in several
HW/SW architectures with varying performance. If the initial model is sequential
(i.e. no explicit parallelism is specified), the performance benefits with different
architectures come only through hardware acceleration14.

14We have explored several parallel architectures in [Chandraiah and Dömer 2008c]. In this article,

we present new sequential architectures that were made possible only because of the two recoding
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Table II. Fixed-point MP3 decoder exploration.
Architecture Components Modules in HW TLM BFM < 26.12 ms

Arch-1 ARM7TDMI (50 MHz), none 48.62 ms 48.90 ms —

Arch-2 ARM7TDMI (50 MHz), Stereo 47.08 ms 49.47 ms —
HW (100 MHz)

Arch-3 ARM7TDMI (50 MHz), Alias 46.72 ms 49.99 ms —
HW (100 MHz)

Arch-4 ARM7TDMI (50 MHz), IMDCT 41.07 ms 48.28 ms —
HW (100 MHz)

Arch-5 ARM7TDMI (50 MHz), Stereo,Alias, 37.64 ms 48.03 ms —
HW (100 MHz) IMDCT

Arch-6 ARM7TDMI (50 MHz), Synthesis Filter 15.93 ms 19.05 ms OK
HW (100 MHz)

Arch-7 ARM7TDMI (50 MHz), Synthesis Filter, 14.39 ms 19.62 ms OK
HW (100 MHz) Stereo

Arch-8 ARM7TDMI (50 MHz), Synthesis Filter, 14.03 ms 19.81 ms OK

HW (100 MHz) Alias

Arch-9 ARM7TDMI (50 MHz), Synthesis Filter, 8.39 ms 18.59 ms OK
HW (100 MHz) IMDCT

Arch-10 ARM7TDMI (50 MHz), Synthesis Filter, 12.49 ms 20.73 ms OK

HW (100 MHz) Stereo, Alias

Table III. Floating-point MP3 decoder exploration.
Architecture Components Modules in HW TLM BFM < 26.12 ms

Arch-1 Coldfire (66 MHz), none 35.61 ms 35.61 ms —

Arch-2 Coldfire (66 MHz), Stereo 34.84 ms 35.44 ms —
HW (66 MHz)

Arch-3 Coldfire (66 MHz), Alias 34.87 ms 35.19 ms —

HW (66 MHz)

Arch-4 Coldfire (66 MHz), IMDCT 31.65 ms 32.12 ms —

HW (66 MHz)

Arch-5 Coldfire (66 MHz), Stereo,Alias, 30.18 ms 31.50 ms —
HW (66 MHz) IMDCT

Arch-6 Coldfire (66 MHz), Synthesis Filter 22.73 ms 23.04 ms OK

HW (66 MHz)

Arch-7 Coldfire (66 MHz), Synthesis Filter, 21.98 ms 22.85 ms OK

HW (66 MHz) Stereo

Arch-8 Coldfire (66 MHz), Synthesis Filter, 21.84 ms 22.43 ms OK
HW (66 MHz) Alias

Arch-9 Coldfire (66 MHz), Synthesis Filter, 18.79 ms 19.25 ms OK

HW (66 MHz) IMDCT

Arch-10 Coldfire (66 MHz), Synthesis Filter, 21.09 ms 22.24 ms OK
HW (66 MHz) Stereo, Alias

Table II and Table III list the different architectures that we explored for the
fix-point and floating-point MP3 models, respectively. In both cases, Arch-1 is the
baseline architecture, namely a software-only implementation on a single processor.
Specifically, we have used two embedded processor cores, an ARM7TDMI core for
the fix-point, and a Coldfire processor for the floating-point version.

In order to increase the performance, we have added dedicated hardware accel-
erators in architectures Arch-2 through Arch-10. Here, we explored the different
design alternatives by mapping a different combination of modules (IMDCT, Stereo,

transformations combined in this paper

ACM Transactions on Computational Logic, Vol. V, No. N, M 20YY.



Computer-Aided Recoding to Create Structured and Analyzable System Models · 23

Aliasing, and Synthesis filter) to the hardware block.
We successfully refined each design alternative down to a Transaction Level Model

(TLM) and a Bus-Functional Model (BFM) using SCE [Dömer et al. 2008]. Ta-
ble II and Table III list the main components and their clock frequencies for each
architecture. Except for the modules listed in the third column, which are mapped
to hardware, the remaining parts of the decoder are mapped to the main processor.

Using the profiling capabilities in SCE, we have estimated the performance of
each design alternative. The estimated time to decode one frame of MP3 data is
given in the fourth and fifth column for the TLM and BFM, respectively15. Note
that for a bitrate of 96000 bits/sec and a sampling frequency of 44.1 KHz, each
audio frame must be decoded in less than 26.12 ms. For both the fixed-point and
floating-point implementations, this timing constraint is met only by 5 out of the
10 possible architectures, as indicated in the last column of Tables II and III.

Note that the automatic exploration of these 10 successful architectures was made
possible only due to the combination of pointer elimination and proper structure
creation using our source recoder.

6.4 Productivity Gains

Our source recoder achieves a significant reduction in design time of the MP-
SoC model. To demonstrate this, we have applied our source recoder to different
industrial-strength examples, three of which are listed in Table IV. Each exam-
ple spans a few thousand lines of code. The table lists the number of functions
in the input C code and the number of behaviors that we introduced to create
a well-structured specification model. We created the behaviors by encapsulating
functions and statement sequences that we chose based on our knowledge of the
application.

Table IV. Transformations applied to different examples.
Properties Floating-point MP3 Fix-point MP3 GSM

Lines of C code 3K 10K 10K

Lines of SpecC code 7K 13K 7K

C Functions 30 67 163

Behaviors created 43 54 70

Interfering pointers 16 23 17

Pointers recoded 14 22 17

Next, we recoded the pointer ports that otherwise would negatively affect the
partitioning task. As shown in Table IV, 16 pointers interfered in creating a well-
defined model of the floating-point MP3 code. Out of these 16, we eliminated 14
automatically by using our pointer recoder. Only 2 pointers could not be recoded
automatically because (a) the absolute value of a pointer was read, and (b) a pointer
pointed to more than one variable at run-time (see Section 4.7). We have recoded
these two remaining pointers manually.

Each example was modeled by a different experienced designer. We collected
the time taken to manually create behaviors from the reports of these designers, as
listed in Table V. To obtain the time needed for manual pointer recoding, we first

15The BFM times are significantly higher as they contain communication delays which are ignored

in the TLM.
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Table V. Productivity gains for experienced designers.
Transformations Time/Gain Float-point MP3 Fix-point MP3 GSM

Automatic recoding time ≈ 35 mins ≈ 40 mins ≈ 50 mins

Behavior creation Manual time 3 weeks 2 weeks 4 weeks

Automatic recoding time ≈ 1 min ≈ 1.5 min ≈ 1.5 min

Pointer recoding Estimated Manual time 140 mins 220 mins 170 mins

Total gain Productivity gain 203 120 189

recoded interfering pointers in different examples using Vim [Vim ], an advanced
text editor with block editing capability, and arrived at an average of about 10
minutes per pointer. The estimated manual time shown in Table V is obtained
using this assumption16. In contrast, using the automatic transformations in the
source recoder, these operations can be applied by the user in a matter of minutes17.
This results in the high productivity gains listed in Table V.

6.5 Classroom Case Study

To obtain additional and more realistic productivity gains, we have conducted an
experiment with a class of graduate students. The students were first given in-
structions to manually implement specific recoding tasks on a given MP3 decoder
model. Next, we introduced the students to our source recoder and asked them
to implement the same transformations using the automatic tool. For both tasks,
the students were asked to measure the time taken for the various steps performed.
Thus, in this classroom case study the same students have provided us with both
manual and automatic times needed to implement the transformations.

6.5.1 Setup. A class of 15 students enrolled in a graduate course on SoC design
[Dömer 2007] were instructed in general SoC description and modeling and, in par-
ticular, taught the SpecC SLDL. We then provided them with a MP3 audio decoder
application modeled in SpecC. In a series of three assignments over a period of four
weeks, we asked the students to implement specified recoding transformations for
creating hierarchy and recoding pointers. In the first two assignments, the trans-
formations were conducted manually, whereas in the third assignment we let the
students apply the same transformations automatically using the source recoder.

In the first assignment, we asked the students to convert two function calls into
behaviors. For the first behavior, the students were given detailed instructions to
implement this transformation. For the second behavior, only brief instructions
were provided. In order to measure the time needed to implement the transforma-
tion manually, the students were asked to report their time needed to successfully
implement the transformations.

In the second assignment, we again provided the students with the source code
of the MP3 decoder and asked them (1) to wrap two sets of C statements into
behaviors, and (2) to perform pointer recoding on four specified pointers. For task
(1), we provided detailed instructions for creating the first behavior and only brief
instructions to encapsulate the statements for the second behavior. Similarly for
task (2), we explained in detail the procedure to recode the first pointer and gave
only brief instructions to recode the other three pointers. Again, we asked the stu-

16Table V covers only the pointers that our source recoder can automatically handle.
17The pure execution time of a pointer recoding transformation is below 1 second on a regular

Linux PC (3 GHz Pentium-4) for all three applications.
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dents to measure and report the times needed to implement these transformations
successfully.

After completion of the two manual assignments, we introduced our source re-
coder to the students. In the third assignment, we then asked the students to
implement the same transformations, that they manually implemented in the pre-
vious two assignments, using the automatic source recoder. The students again
measured and reported the time taken to implement these transformations, how-
ever, this time using the tool.

For further details on this classroom case study, please refer to our extensive
technical report [Chandraiah and Dömer 2008a] which documents the actual as-
signments and provides the obtained results in detail.

Note that in contrast to an ideal real-life design experiment, our classroom case
study is admittedly limited to (a) a special group of test persons with mixed skills
and experience (i.e. graduate students vs. actual system designers), (b) a short
section of the overall system design process (we cover only part of the specification
phase, not the entire design flow), and (c) a simple setup (for example, there is
no control group). Despite these weaknesses, the measured results obtained here
are complementary to estimated times (e.g. line 5 in Table V and results reported
in [Chandraiah et al. 2007]) and therefore add significant value that supports the
benefits of our computer-aided recoding approach.
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Fig. 16. Productivity gains reported by different students in a classroom case study.

Table VI. Productivity factors determined in a classroom case study.
Recoding Transformations Minimum Average Maximum

Function to Behavior 3.7 18.9 57.0

Statement to Behavior 1.4 8.1 60.0

Pointer Recoding 3.4 9.8 16.4

6.5.2 Results. Based on the times measured and reported by the students, we
have analyzed and assessed the productivity factors that were achieved. Figure 16
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plots the gains measured by different students for each of the three transforma-
tions, and the corresponding Table VI lists the average, minimum, and maximum
productivity factors. Clearly, the gains achieved vary depending on the student18,
the type of transformation, and also due to our still imperfect source recoder19.
Despite their variability, these factors show that our automatic transformations in-
deed result in significant productivity gains and are effective in reducing the time of
system specification. Moreover, taking into account that the system specification
time is a serious bottleneck in the design flow (recall the MP3 case study where
over 90% of the time was spent in the specification phase [Chandraiah and Dömer
2005]), we can conclude that our approach significantly reduces the overall system
design time.

Finally, we note that these measured productivity gains are lower than the esti-
mated gains reported by the experienced designers in Table V. We attribute this to
two reasons. First, this experiment accounted for the pure recoding time of these
specific transformations. Second, the student designers were given line-by-line in-
structions for manual recoding which eliminates the otherwise necessary program
comprehension and minimizes the typical coding errors and resulting debugging
time. In the absence of such errors, the designers can direct all efforts and atten-
tion towards the actual modeling instead of textual recoding. This explains the
higher gains reported by experienced designers.

7. CONCLUSIONS

In this work, we have introduced automatic source code transformations into the
specification phase at the beginning of the MPSoC design flow. The needed input
model is often created from available reference code of the embedded application
at hand, which usually is not ready for immediate system synthesis. To create
well-structured and analyzable input models, required code modifications include
the addition of structure and the removal of pointers.

The contribution of this work is that we replace these lengthy manual code modi-
fications by computer-aided recoding using automated source-to-source transforma-
tions. In [Chandraiah and Dömer 2008b], we have shown that manual code writing
and re-writing is a bottleneck in the design process and can require over 90 percent
of the overall design time. Using the automatic transformations presented in this
work, this model specification time is effectively reduced.

In particular, we have presented two sets of automatic source code transforma-
tions in order to overcome (1) the lack of proper structure and (2) the presence of
problematic pointers in existing application code. Aiming at the system level with
large designs consisting of many hardware and software components, our computer-
aided recoding approach enables the system designer to mitigate pointer problems
and quickly create the needed block-based structure in the model.

(1) Creating a proper structural hierarchy and connectivity in the design model is
critical in order to separate computation and communication and enable automatic
design space exploration. We have presented several source code transformations
that automatically encapsulate functions and statement sequences into instantiated

18Student 15 did not complete the assignments successfully.
19In a few cases, students reported bugs in the tool which we later fixed.
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computation blocks with proper ports and connectivity.

(2) Our presented pointer recoding can in many cases eliminate unwanted point-
ers in the application code so that indirect variable accesses through pointers are
automatically replaced by direct accesses to the actual target variables. This sig-
nificantly improves the analyzability of the model by automatic tools and also aids
the system designer in program comprehension. Being interactive, our pointer re-
coder can, with help of the intelligent designer, also resolve pointers that cannot be
statically analyzed.

Our interactive source recoder augments complex automatic analysis and trans-
formation tools by the designer’s intelligence and application knowledge. In contrast
to completely automatic synthesis tools, our fully designer-controlled approach al-
lows the system designer to apply necessary pointer recoding and structure creation
transformations at specific portions of the code, at any time, and in any order. The
designer can invoke the automatic source code transformations on selected objects
simply by a click of a button and the results are presented to the designer instantly
in the editor window.

Our work finds its application in preparing suitable system models in C-based
languages, i.e. regular ANSI-C as well as C-based SLDLs SpecC and SystemC.
Design models can be recoded at any abstraction level, at the design entry as
well as at intermediate stages in the design flow. Our source recoder can be used
as a frontend editor for many system design flows and is instrumental also for
preparing pointer-free models for backend synthesis tools with no or limited support
for pointer handling.

We have shown that the proposed source code transformations are effective on
real-life embedded application examples, some of which are of industrial size with
several thousand lines of code. Our extensive experimental results show significant
productivity gains, both in estimated improvements with the help of experienced
designers, as well as in actually measured factors using a class of graduate students.
In all cases, the results show significant productivity gains through a substantial
reduction of the model creation time.

In future work, we plan to work on additional source code transformations. We
also intend to apply our designer-controlled recoding approach to graphical repre-
sentations of the design model. Finally, we plan to conduct a larger experiment
with experienced designers and more transformations in order to overcome the lim-
itations of our classroom case study.
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Gajski, D. D., Zhu, J., Dömer, R., Gerstlauer, A., and Zhao, S. 2000. SpecC: Specification

Language and Design Methodology. Kluwer Academic Publishers.

Gerstlauer, A., Peng, J., Shin, D., Gajski, D., Nakamura, A., Araki, D., and Nishihara,

Y. 2008. Specify-explore-refine (SER): From specification to implementation. In DAC ’08:

Proceedings of the 45th annual conference on Design automation. 586–591.

Ghenassia, F. 2006. Transaction-Level Modeling with SystemC : TLM Concepts and Applications

for Embedded Systems. Springer-Verlag.

Ghiya, R. and Hendren, L. J. 1995. Connection analysis: A practical interprocedural heap

analysis for c. In Languages and Compilers for Parallel Computing.

Gupta, S., Gupta, R. K., Dutt, N. D., and Nicolau, A. 2004. Coordinated parallelizing

compiler optimizations and high-level synthesis. ACM Trans. Des. Autom. Electron. Syst. 9, 4,

441–470.

Haubelt, C., Meredith, M., Schlichter, T., and Keinert, J. 2008. Systemcodesigner: Auto-
matic design space exploration and rapid prototyping from behavioral models. In DAC ’08:
Proceedings of the 45th annual conference on Design automation. 580–585.

Hind, M. 2001. Pointer analysis: Haven’t we solved this problem yet? In PASTE ’01: Proceedings
of the 2001 ACM SIGPLAN-SIGSOFT workshop on Program analysis for software tools and
engineering.

International Telecommunication Union (ITU) 1999. Specification and Description Language
(SDL). International Telecommunication Union (ITU). ITU-T Recommendation Z.100.

Jerraya, A., Tenhunen, H., and Wolf, W. 2005. Guest editors’ introduction: Multiprocessor
systems-on-chips. Computer 38, 7, 36–40.

Landi, W. 1992. Undecidability of static analysis. ACM Lett. Program. Lang. Syst. 1, 4.

MAD MP3 Decoder. MAD (MPEG Audio Decoder) fix point mp3 algorithm implementation.
http://sourceforge.net/projects/mad/.

Marchioro, G. F., Daveau, J.-M., and Jerraya, A. A. 1997. Transformational partitioning for
co-design of multiprocessor systems. In ICCAD.

Mentor Graphics Corp. 2008. Catapult C synthesis.

MiBench. MiBench, A free, commercially representative embedded benchmark suite.

http://www.eecs.umich.edu/mibench/.

MPG123. MPG123. http://www.mpg123.de/mpg123/mpg123-0.59r.tar.gz.

Pimentel, A., L.O.Hertzberger, Lieverse, P., and Wolf, P. 2001. Exploring embedded-

systems architectures with artemis. IEEE Transactions on Computers 34, 1 (November).

Ramalingam, G. 1994. The undecidability of aliasing. ACM Trans. Program. Lang. Syst. 16, 5.

Schirrmeister, F. and Sangiovanni-Vincentelli, A. 2001. Virtual component co-design-
applying function architecture co-design to automotive applications. Vehicle Electronics Con-

ference, 2001. IVEC 2001. Proceedings of the IEEE International .
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