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Abstract—Efficient communication modeling is a critical task
in system-on-chip design and exploration. In particular, fast and
accurate communication is needed to predict the performance of
a system. Recently, transaction level modeling is used to speed
up communication simulation at the cost of accuracy. This pa-
per proposes a novel modeling technique, called result-oriented
modeling (ROM), which removes the inaccuracy drawback of
transaction level models (TLMs) in many cases. Using ROM,
simulation models yield nearly the same speed as their traditional
TLM counterparts, yet are still 100% accurate in timing. ROM
utilizes the fact that internal states in the communication channel
are not observable by the caller. Hence, ROM omits the internal
states entirely and optimistically predicts the end result. Retroac-
tively, the outcome of the prediction is checked, and if necessary,
corrective measures are taken to maintain the accuracy of the
model. We have applied the ROM concept to two examples: the
industry standard AMBA AHB and the controller area network.
To validate the proposed ROM approach, we have analyzed the
models in detail for performance and accuracy. Our experimental
results show the clear advantages of the ROM concept. For both
bus systems, ROM achieves 100% accuracy and highest speeds.
In essence, ROM eliminates the TLM tradeoff for a wide range
of platforms. It frees the system designer from having multiple
models for different purposes and extends the TLM idea to appli-
cations that require timing accurate simulation, such as real-time
communication.

Index Terms—Communication modeling, performance
prediction/estimation, system level design, transaction level
modeling.

I. INTRODUCTION

SYSTEM-ON-CHIP (SoC) design faces a gap between the
production capabilities and time-to-market pressures. The

design space to be explored during SoC design grows with pro-
duction improvements, while at the same time, shorter product
life cycles force an aggressive reduction of the time-to-market.
Addressing this gap has been the aim of recent research work.
As one main approach, abstract models have been introduced to
tackle the design complexity. For one, abstract models exhibit
tremendous gains in simulation speed, allowing fast validation
and extensive design space exploration.

For communication in particular, transaction level modeling
has been proposed [1]. Transaction level modeling abstracts the
communication in a system to whole transactions, abstracting
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Fig. 1. TLM tradeoff.

away low-level details about pins, wires, and waveforms [2].1

It uses timing annotations in simulating the time progress.
This results in models that execute dramatically faster than
bit-accurate models. This benefit, however, usually comes at
the price of low accuracy. In previous work [3], [4], we have
measured up to 47% average error in transaction duration for
different standard bus protocols.

A. TLM Tradeoff

In general, transaction level models (TLMs)2 pose a tradeoff
between an improvement in simulation speed and a loss in
accuracy, as illustrated in Fig. 1. The tradeoff essentially allows
models at different degrees of accuracy and speed. However,
having both high speed and high accuracy at the same time
is typically not possible. High simulation speed is traded in
for low accuracy, and a high degree of accuracy comes at the
price of low speed. For previously analyzed bus systems [3], [4]
accurate models achieved less than 0.2 MB/s simulation band-
width, while the TLMs exhibited up to 100 MB/s, however, at
up to 47% error. Models with this tradeoff fall into the gray area
of the diagram. Models in the dark area are obviously existent,
but practically unusable, whereas models in the white area are
highly desirable but typically not achievable.

1General modeling of SoCs consists of two parts, computation and commu-
nication. In this paper, we focus only on modeling of the communication.

2Note that TLM is not clearly defined in the literature. In this paper, we
will use TLM as the name of the model at the granularity of an entire user
transaction. A user transaction is an arbitrary sized block of data, potentially
spanning multiple bus transactions.

0278-0070/$25.00 © 2007 IEEE



SCHIRNER AND DÖMER: RESULT-ORIENTED MODELING—NOVEL TECHNIQUE FOR FAST AND ACCURATE TLM 1689

B. Scope of This Work

In this paper, we introduce a novel modeling technique for
TLM, called result-oriented modeling (ROM), which elimi-
nates this TLM tradeoff for a wide range of platforms. In this
paper, we consider designs for which the response time of a
node is statically known or computable. Examples of such plat-
forms include cell phones, multimedia SoCs, and automotive
control systems [5]. Platforms for which a node’s response time
within a bus transaction cannot be predicted (e.g., random slave
controlled wait cycles) are outside the scope of this paper.

ROM delivers simulation speeds similar to a TLM. At the
same time, ROM retains 100% accuracy in timing for the
considered range of platforms.3 As a result, the system designer
is relieved from the traditional speed/accuracy tradeoff and can
focus on the design space exploration instead of model selec-
tion. Moreover, having a 100% accurate bus model at such a
high simulation performance opens new applications of abstract
communication modeling. For example, it allows for the first
time that a real-time system simulation can profit from the
speed advantage of abstract communication modeling.

We will apply the ROM concept to the modeling of two
buses from opposite ends of the spectrum with different char-
acteristics. We have chosen the advanced high-performance bus
(AHB) of advanced microprocessor bus architecture (AMBA)
[6], which is a parallel on-chip bus system with a centralized
arbitration scheme, and the controller area network (CAN) [7],
which is an off-chip serial bus with distributed arbitration. The
analysis of these buses is based on our previous work [8], [9],
where we have focused on each bus individually. In this paper,
we will combine the results and provide additional details. We
will also describe an algorithm for the optimistic prediction
scheme used in ROM. Most importantly, we will generalize
from our experience with ROM and derive general conclusions.

C. Outline

After a brief overview of relevant related work in Section II,
we describe in Section III the general concepts of our novel
ROM approach. Then, in Section IV, we explain in detail
the application of ROM to communication modeling based on
the two examples: AMBA AHB and CAN. We validate our
approach and show the experimental results in Section VI. We
then generalize the results in Section VII and conclude this
paper in Section VIII.

II. RELATED WORK

System level modeling has become an important research
area that aims to improve the SoC design process. Languages
for capturing SoC models have been developed, e.g., SystemC
[1] and SpecC [10]. Capturing and designing communication
architectures using TLM [1] have received much attention.

Sgroi et al. [11] address the SoC communication with a
network-on-chip approach. Here, communication is partitioned
into layers following the OSI structure. Software reuse is

3ROM cannot guarantee timing accurate results for platforms outside of our
scope, in which the node response time cannot be calculated.

promoted with an increase of abstraction from the underlying
communication. While this paper guides on the organization of
communication, it does not directly address the TLM.

Siegmund and Müller [12] describe with SystemCSV an ex-
tension to SystemC and propose SoC modeling at three differ-
ent levels of abstraction: physical description at register transfer
level (RTL), a more abstract model for individual messages, and
a most abstract model utilizing transactions. The paper focuses
on the interface description allowing a multilevel simulation.
However, it does not address abstract modeling of multimaster
buses. Brem and Müller [13] describe how the CAN bus is
modeled using the aforementioned extension SystemCSV. The
work also shows the three abstraction levels but does not give
any experimental results on performance or accuracy.

In [14], Caldari et al. describe the results of capturing the
AMBA rev. 2.0 bus standard in SystemC. The bus system
has been modeled at two levels of abstraction: first, a bus-
functional model at RTL, and second, a model at transaction
level simulating individual bus transactions. The described state
machine-based TLM reaches a speedup of 100 over the RTL
model. Our approach proposed in this paper, however, reaches
a higher speedup [three orders of magnitude over the bus func-
tional model (BFM) for the AMBA AHB] by avoiding explicit
internal states.

Coppola et al. [15] also propose abstract communication
modeling. They present the IPSIM framework and show its effi-
cient simulation. While the paper delivers a general overview of
the SoC refinement and introduces their intramodule interface,
it does not supply details of the bus modeling itself as we focus
on in this paper.

Gerstlauer et al. describe in [16] a layered approach and
propose models that implement an increasing number of Inter-
national Organization for Standardization (ISO) Open System
Interconnection (OSI) layers [17]. They present how to arrange
communication and the granularity levels of simulation. How-
ever, they do not provide insight on the bus specific modeling.

Abstract communication is also used in Ptolemy as presented
in [18] and [19], with an extension of dynamic switching
between abstraction levels. A common point is the loss in
accuracy with abstraction, which this paper eliminates.

Real-time communication has been analyzed in previous
work. Tindell et al. [21], for example, analyze different CAN
controllers. System level modeling of real-time communication
is not explored as much. Van der Putten et al. [22] describe
abstract real-time communication for a class of LAN protocols
by modeling LAN characteristics. In contrast, we present
in this paper an accurate CAN model that produces such
characteristics.

Pasricha et al. [23] describe an approach using transaction-
based abstraction. The paper introduces the concept of a model
that is cycle count accurate at transaction boundaries (CCATB).
This also takes advantage of the limited observability of a
transaction to increase simulation performance. However, only
a very limited speedup of 55% over the BFM is achieved.
Their approach models individual bus transactions and uses
an active thread for the bus simulation. Our ROM approach is
conceptually different. We raise the abstraction to user trans-
actions (potentially spanning multiple bus transactions) and
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avoid a dedicated thread. Consequently, ROM achieves a higher
speedup of up to four orders of magnitude. In other words,
while Pasricha et al. use an extra thread, in our approach, mas-
ter and slave communicate directly through a shared channel
without the need of a separate thread.

Timed abstract simulation has also been incorporated into
commercial products. For example, the discrete event simu-
lation engine in the virtual component co-design (VCC) en-
vironment [24] supports several delay models (e.g., explicitly
distributed by the designer or by an automatic back annotation
approach). VCC models preemption for software tasks and bus
accesses by the use of suspend() and resume() messages to the
simulation task, which are taken into account when a task exe-
cutes a delay() function. With that, VCC uses explicit test points
[i.e., the delay() call] to account for preemptions as a traditional
TLM. While LaRue et al. [24] mostly focus on the simulation
framework, this paper introduces a modeling technique (that
actually can be implemented using the VCC framework). Our
modeling technique ROM minimizes the interactions with the
simulation engine to handle preemptive bus modeling.4

Real-time analysis, e.g., Audsley et al. [25], often captures a
task’s execution time as the task’s computation delay (could be
referred to as base time) and the sum of all external influences,
such as preemptions, shared resource accesses, or communi-
cation. We use a similar terminology to describe the ROM
approach. However, while the real-time analysis relies on an
off-line static calculation, our approach computes the effects of
any disturbances dynamically at runtime.

Ghenassia describes in [26] a TLM from an industry perspec-
tive, stating what is current and practical for industry appli-
cations. The paper also supports the general tradeoff between
abstraction and accuracy.

In previous work [3], [4], we have analyzed TLM in detail,
showing the tradeoff in traditional TLM for two different bus
systems. In this paper, we propose a ROM that eliminates the
TLM tradeoff for a wide range of systems delivering both speed
and accuracy at the same time.

III. RESULT-ORIENTED MODELING (ROM)

ROM is a general concept for abstract and yet accurate mod-
eling of a process. As such, ROM is similar to the “black box”
concept.

A. Black Box Concept

The underlying assumption of ROM is the limited observ-
ability of internal state changes of the modeled process. As
in a “black box” approach, it is not necessary to propagate
intermediate results of the process to the user. The aggressive
goal of ROM is to produce only the end result of the process,
not any intermediate states.

Hiding of intermediate states gives ROM the opportunity
for optimization. Often, intermediate states can be entirely

4Note that our approach does not require any change to existing discrete even
simulation engines, such as SystemC [1] and SpecC [10]. ROM only uses the
standard wait-for-time interface.

Fig. 2. Generic ROM concept.

eliminated. Instead, ROM can utilize an optimistic approach
that predicts the outcome (e.g., termination time and final state)
of the process already at the time the process is started. We
characterize the prediction as optimistic, as it estimates the
earliest possible termination time.

B. Corrective Measures

Throughout the runtime of the process, a disturbing influence
may change the system state, so that the initially predicted re-
sults are no longer accurate. Therefore, ROM checks at the end
of the predicted time whether such a disturbing influence has
occurred. If so, ROM retroactively adjusts to the new conditions
and takes corrective measures. In other words, a mistake of an
overly optimistic initial prediction is fixed at the end.

Optimistic prediction of the end result reduces the amount of
computation and, thus, increases the execution performance, if
internal states can be skipped and the cost for any corrective
measures is low. This approach is in contrast to the traditional
abstract modeling approach of reaching the end result through a
set of incremental state changes. The traditional approach takes
the disturbing influence incrementally into account and adjusts
the intermediate states accordingly. ROM, on the other hand,
records any disturbing influence over the predicted running time
and makes any necessary adjustment at the end.

Generally speaking, the ROM approach can be characterized,
as shown in Fig. 2, by the following items.

1) The process user does not need to observe internal states.
2) ROM does not model internal state changes. Instead,

it optimistically predicts the end result using available
system information at the beginning.

3) During the predicted runtime of the process, a disturbing
influence may change the system state.

4) At the end, ROM checks if the optimistic assumptions
still hold true, and takes corrective measures otherwise.

Repeating the “black box” comparison, ROM is a “black
box” approach that additionally takes into account the interac-
tion with the environment (as disturbing influence) and takes
corrective measures in case the interaction is not as predicted.

C. Example

Fig. 3 illustrates the ROM approach using an example of
predicting the arrival time of an airplane. The real process,
Fig. 3(a), exhibits continuous changes to the ground speed
dependent on the disturbing influence wind. The traditional ab-
stract modeling approach transaction level modeling, Fig. 3(b),
approximates the result by incrementally calculating the ground
speed in dependence of the wind in (coarse-grain) discrete time
steps. The ROM approach shown in Fig. 3(c), on the other hand,
does not model the intermediate speed. Instead, it makes one



SCHIRNER AND DÖMER: RESULT-ORIENTED MODELING—NOVEL TECHNIQUE FOR FAST AND ACCURATE TLM 1691

Fig. 3. ROM predicting an airplane arrival time.

initial optimistic prediction about the arrival time, and finally,
it corrects its prediction retroactively for the average wind
condition.

D. Analogy

As an analogy, our ROM approach can also be compared in
a broader sense to optimistic timed cosimulation [27], which
is a synchronization technique between two concurrent discrete
event simulators. It allows each simulator to “run ahead” using
internal events, before synchronizing with the other simulator.
This minimizes the synchronization effort in contrast to a lock-
step synchronization approach. However, it has to “roll back” in
case of early external events, which our ROM does not require.

IV. COMMUNICATION MODELING USING ROM

We will now describe how the general ROM concept can
be applied to modeling of communication systems. We will
use two different bus systems. The first is an example for an
on-chip multiplexed bus system with a centralized arbitration
scheme, the AMBA. Second, we model an off-chip serial bus
with decentralized arbitration, the CAN.

After introducing each bus system, we will outline the tradi-
tional TLM style, and then, in contrast, apply the ROM concept.

A. AMBA AHB—Traditional Modeling

The AMBA defined by Advanced RISC Machines Ltd.
(ARM) [6] is a widely used and industry-accepted standard for
an on-chip bus system. We focus on the AHB, which is a system
bus designed for connecting high-speed components, including
ARM processors.

The AHB is a multimaster bus that operates on a single clock
edge. High performance is achieved by a pipelined operation
that includes address and data phases, and by the usage of burst
transfers. Split and retry transfers allow the slave to free the
bus if the requested data are temporary unavailable. The AHB
also employs a multiplexed interconnection scheme to avoid
tristate drivers.

1) Layer-Based Modeling: Following the ISO OSI refer-
ence model [17], we can model the AHB using a layered
architecture [3]. The AHB specification then falls into the
second layer, the data link layer. For modeling, we consider the

Fig. 4. Layer-based bus modeling.

media access control (MAC) and the protocol sublayer, as well
as the physical layer.

Important for this discussion is the granularity of data han-
dling in each of the layers. The media access layer provides
a transmission service for a contiguous block of bytes, called
a user transaction. This layer divides the arbitrarily sized user
transaction into smaller bus transactions observing the bus
addressing rules, and transfers these byte blocks using the pro-
tocol layer. The protocol layer transfers data as bus transactions,
which are bus primitives (e.g., bytes, words, or four word
bursts). It uses the services of the physical layer which provides
a bus cycle access to sample and drive individual bus wires.

Fig. 4 shows the data granularity at each layer with respect to
time. A user transaction is successively split into smaller units:
bus transactions and bus cycles.

Following this layering, we define three models which we
will refer to as TLM, ATLM, and BFM.

1) TLM. The TLM is the most abstract model, implementing
only the media access layer. Data are handled at the user
transaction granularity and are transferred regardless of
their size in one chunk using a single memcpy. Timing
is simulated as a single wait-for-time statement covering
the entire user transaction. Arbitration is abstracted to a
semaphore used once per user transaction.

2) Arbitrated TLM (ATLM). The ATLM models a bus ac-
cess with AHB bus primitives at the protocol level. It uses
the MAC layer implementation of the BFM to split user
transactions into bus transactions. The ATLM accurately
models priority-based arbitration, however, only once for
each bus transaction. This model is not pin-accurate and
not in all cases cycle-accurate.

3) BFM. The BFM is a cycle- and pin-accurate bus model.
It implements all layers down to the physical layer and
covers all timing and functional properties of the bus
definition. The BFM handles arbitration per bus transac-
tion and verifies the bus grant on each cycle of a burst.
Additional active components, such as multiplexers, an
arbiter, and an address generator are needed to accurately
model the bus architecture.

2) Limitations of Layer-Based Models: To illustrate the lim-
itations of the layer-based approach, let us consider an unlocked
burst transfer. In a burst transfer, multiple data words are
transferred over the bus as one block of data. An unlocked
burst transfer may be preempted by a higher priority master.
Hence, the active master has to check arbitration for every bus
cycle (beat). In case of a preemption, the preempted master
has to arbitrate again for the bus and, subsequently, resume the
preempted transfer.
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Fig. 5. Arbitration checkpoints when transferring two eight-beat bursts.

TLM in Fig. 5 shows the arbitration checkpoints as check
marks for the models. A user transaction of 16 words is trans-
ferred in two eight-beat bursts. The BFM performs full arbi-
tration at the beginning of each bus transaction and also verifies
the arbitration at each cycle. The ATLM checks arbitration only
at the bus transaction boundaries. The TLM performs the least
amount of checking. It arbitrates only at the beginning of a user
transaction.

Intuitively, we expect that the number of arbitration checks
strongly correlates with the performance of the model. In order
to reach an arbitration checkpoint, the model executes a wait-
for-time statement (increasing the simulated time), which may
result in a costly context switch in the simulator. Thus, imple-
menting all the required arbitration checks is the slowest, but
delivers accurate time modeling. The other extreme, the TLM,
implements the fewest arbitration checks yielding the highest
performance, but results in the worst accuracy.

3) Static Versus Dynamic Delay Model: One aspect that is
common to all our traditional layer-based models is the static
choice of the delay model. During the implementation, the
model designer selects the granularity (or resolution) at which
data and arbitration are handled. This determines the accuracy
and speed achievable by the model. Our choices shown above
range from modeling the individual bus cycles in the cycle-
accurate BFM to the TLM that operates at a user transaction
granularity. Each model executes a fixed number of wait-for-
time statements for a particular transaction.

ROM, on the other hand, as we will describe in the follow-
ing sections, models the timing with a dynamic delay model.
Instead of distributing individual wait-for-time statements to
different phases of the transaction (e.g., arbitration, address and
data phase), it dynamically calculates the total transaction time
and then performs a single wait-for-time statement to advance
the simulation time.

The dynamic delay model becomes apparent for a preemp-
tion of the transfer, as shown in Fig. 6. Despite the fact that
the model initially represented a transaction using a single
wait-for-time statement, it can accommodate preemption on a
cycle-by-cycle basis. For that, it records any disturbing influ-
ence during the delay time, recalculates later the transaction
time using the updated system knowledge, and executes an
additional wait-for-time statement. The process repeats, in case
another preemption occurs in the updated time period, until
no further preemptions are detected. As a consequence, the
number of wait-for-time statements may vary when reexecuting
the same transaction. In the optimal case without preemption,
ROM will execute a single wait-for-time statement, same as
the TLM.

Fig. 6. Arbitration check points in ROM.

B. AMBA AHB—ROM

We will now apply the ROM approach to the AMBA AHB
[8]. Unlike the traditional models, ROM does not exhibit the
correlation between granularity and abstraction. It avoids un-
necessary arbitration checkpoints. As a result, it reaches the
BFM accuracy of 100% and near TLM performance.

1) Assumptions as With TLM: As discussed earlier, ROM is
based on hiding of communication internals from the user. It
avoids using signals and individual wires and implements data
transfers by the use of a single memcpy operation. As such,
ROM uses the same principles as TLM.

In ROM, the application is only aware of the timing at the
boundaries of a user transaction. All activities of the bus model
within the user transaction are hidden from the communicating
parties. Those are not aware that the transaction is split into
multiple bus transactions and cycles, neither that there is arbi-
tration involved.

Only the timing at the boundaries of the user transaction is
important for the application. For accurate timing, the start and
the end times of each transaction must match the times reported
by a BFM.

Between the start and end times, ROM can freely rearrange
and/or omit internal events and state changes in order to elimi-
nate costly context switches in the simulator.

As in TLM, the main idea in speeding up the simulation is to
replace the sequence of wait operations and arbitration checks
with one single wait-for-time statement. Reducing the number
of wait operations is the biggest contributor to the increased
execution performance. This avoids running the scheduling
algorithm in the simulation engine and, thus, also reduces the
number of possible context switches.

2) Optimistic Modeling: The ROM implements an opti-
mistic approach. When a master requests a user transaction, the
earliest finish time for this transfer is calculated, and the master
waits until that time. The time prediction takes the current state
of the bus into account. In case a higher priority transaction is
already active, the wait time is increased for its duration. After
the calculated time has passed, the master verifies whether the
predicted time is still accurate. If so, the transaction is complete.
Note that, in this best case scenario, ROM uses only a single
wait statement (same as the TLM).

With a disturbing influence of a higher priority master ac-
cessing the bus during a transaction, the predicted time will be
too short. Then, ROM recalculates the predicted time and waits
for it. This process is repeated until the prediction is verified to
be correct.

Note that an optimistic (short) prediction is highly desired to
allow for corrections. With a pessimistic (too long) prediction,
a correction would need to go back in time. This, in turn, would
require a simulation checkpoint and rollback mechanism, which
introduces an undesired performance penalty.
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Fig. 7. Preemption in BFM, TLM, and ROM.

TABLE I
PREEMPTION COMPLEXITY COMPARISON

3) Preemption: To compare the ROM against the layered
models, we will analyze the case of a bus preemption in more
detail, as shown in Fig. 7.

In Fig. 7(a) (BFM), a burst transaction starting at t0 is
preempted at t1. The higher priority transfer completes at t3.
At that time, the preempted transfer resumes and terminates
finally at t4. Both masters perform arbitration checks for every
bus cycle, a total of 32 in this example.

In Fig. 7(b) (TLM),5 the low priority transaction is not
properly preempted and still ends at t2 (not at t4). Instead,
the high priority transaction is delayed until t2 and ends at t4
(not at t3). Clearly, the abstract TLM is highly inaccurate in
the finish times of both transfers but executes fast. Only three
arbitration checks are performed.

In Fig. 7(c) (ROM), the inaccuracies of the TLM are cor-
rected by three additional arbitration checks. The low priority
transfer is initially predicted to finish at t2. Then, it detects that
it has been preempted at t1 and recalculates its finish time for
t3 − t1 time units later at t4. The high priority master wakes up
at t3 and terminates its transaction since it was not preempted.
At t4, the low priority master wakes up, verifies that no other
preemption has occurred, and thus, completes its transfer.

Note that the final two arbitration checks performed by the
ROM are inexpensive because no further waiting is necessary
and no context switch can occur.

Table I compares the arbitration checks performed by the
models. The number of checks in ROM is close to the TLM
case and an order of magnitude lower than in the BFM.

4) Pipelining: So far, we have simplified our description of
the ROM for AMBA AHB. In the real implementation, the

5For brevity, we will omit the similar ATLM case here.

pipelining effects, as defined by the standard [6], are taken into
account. Therefore, bus transactions of multiple masters may
execute at the same time in different stages of the pipeline.
Furthermore, if two masters transfer a set of nonsequential bus
transactions, even an interleaved parallel transfer is possible.

The concept described above is still valid. However, the im-
plementation has to deal with more details. For example, in an
update of a preempted transaction, it is not sufficient to simply
include the duration of the preemption. Instead, ROM considers
a global bus scheduling each time a transaction is requested. It
calculates for each known transaction the stage(s) it occupies
for every bus cycle. Here, ROM uses static knowledge about
the slaves to determine the slaves’ response pattern (e.g., delay
cycles). Based on this global schedule, the ROM determines the
transaction duration (or the update) of a user transaction.

C. CAN—Traditional Modeling

The second bus example, CAN, is an off-chip serial bus
with decentralized arbitration [9], which is very different from
the earlier described AMBA AHB. In the following sections,
we will introduce the CAN bus, touch briefly on the layer-
based models, and describe the ROM for the CAN wherever
it is different from the AMBA AHB implementation. The main
focus will then rest on the analysis of the ROM benefits.

The CAN is a real-time serial communications protocol,
introduced by the Robert Bosch GmbH [7], with a focus on au-
tomotive applications. Since it is often used in real-time safety
critical systems, the timing accuracy of a bus model is crucial.

CAN is a serial multinode broadcast bus. Frames, with up to
8 B user data, are received by all bus nodes and distinguished
by the frame identifier. Each bus node decides using local rules
whether to process the frame or not. The frame identifier also
defines the priority. If multiple senders attempt a transmission,
the non-destructive bitwise arbitration guarantees that the high-
est priority frame will succeed undisturbed.

In order to ensure correctness of the received data, each CAN
message includes a 15-bit cyclic redundancy check (CRC). In
case of a CRC mismatch, a retransmission of the frame is trig-
gered. The protocol also defines elaborate error detection and
error confinement rules for protection against faulty bus nodes.

The serial CAN protocol operates without a centralized
clock. Each node synchronizes on the bit stream of the sender. A
bit stuffing rule guarantees sufficient edges for this synchroniza-
tion. After transmitting 5 bits of equal polarity, a bit of opposite
polarity is introduced. With the bit stuffing, the physical frame
length depends on the frame content.

We have applied the same layer-based approach, as in
Section IV-A, for modeling the CAN using the same three
abstraction levels: the BFM, ATLM, and the TLM. The most
abstract model, the TLM, is identical to the AHB implementa-
tion and simulates on a user transaction granularity. The ATLM,
simulating individual CAN frames, already achieves accurate
arbitration based on the CAN frame identifier. It also performs
a bitwise inspection of each frame for CRC calculation and stuff
bit handling. The BFM is our most detailed model implement-
ing all features of the specification. It serially sends and receives
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Fig. 8. Contention in ATLM, TLM, and ROM.

the data and synchronizes each node’s clock to the bit stream
according to the definitions in [7] and [28].

D. CAN—ROM

The basic concepts of ROM for the CAN are identical to
ROM of the AMBA bus. ROM abstracts to the level of a user
transaction, combining multiple CAN frames using a single
memcpy and minimizing the number of potentially costly wait-
for-time statements. As described for the general case, the
CAN ROM relies on the limited observability in rearranging
internal events. The application is unaware of splitting the user
transaction into individual CAN frames and arbitration details.

The ROM optimistically predicts the duration of the whole
user transaction, taking into account the split into CAN frames
and the current status of the bus with all pending CAN frames.

Note that, due to the bit stuffing rule, the number of physical
bits needed for the transmission of a CAN frame also depends
on the content of the message, not only the user data length.
The bit stuffing rule also extends to the CRC field of a CAN
frame. Therefore, ROM calculates the CRC for each CAN
frame and takes into account the number of stuff bits that would
be inserted. As we will see later, the additional effort for the bit
inspection prevents the ROM from outperforming the TLM.

In order to guarantee accurate timing, the ROM verifies the
initial optimistic prediction at the end of the predicted time.
In case a higher priority message starts during a multiframe
low priority message, the ROM detects the recorded disturbing
influence. It then recalculates the predicted time and waits
for it. This process repeats until the prediction is correct. To
minimize the computation effort for an update, the ROM stores
the physical length of each frame during the initial prediction
and, thus, avoids the costly bit inspection during an update.

To illustrate the ROM in contrast to the layered models,
we analyze an example with disturbing influence, as shown in
Fig. 8. A low priority msg2 with four frames starts at t0. During
its second frame at t1 a high priority msg1 is released, which
delays the completion of msg2. In the example, we depict the
wait-for-time statements to estimate the model’s performance.

In ATLM,6 the delay is correctly modeled. Since a CAN
frame is not preemptable, modeling at the CAN frame granu-
larity is sufficient. Msg1 waits until the start of the next frame
at t2 when it wins the arbitration. Msg2 looses the arbitration
for its third frame at t2 and retries twice until t3, when msg1

6For brevity, we omit the BFM case here.

TABLE II
WAIT COMPLEXITY WITH DISTURBANCE

terminates. Then, the last two frames of msg2 are transmitted
until t4. In total, the sending nodes execute nine wait-for-time
statements.

In TLM, the example is not accurately simulated due to the
coarse granularity. The ongoing msg2 cannot be delayed and
ends at t3 (not at t4). Only after that msg1 starts and finishes
too late at t4. Clearly, the abstract TLM is highly inaccurate in
the finish times of both transfers, but executes fast with only
three wait-for-time statements.

In ROM, the low priority msg2 is initially predicted to finish
at t3. At t1, msg1 is predicted to start after the current frame
of msg2 at t2 and finish at t3. At t3, the node sending msg1
wakes up and terminates since no disturbing influence has
occurred. At the same time, the node sending msg2 wakes up
and detects the disturbing influence of msg1. It then updates
its finish time for t3 − t2 time units later at t4 and waits
until then. When it wakes up again at t4, it detects no other
disturbing influence and completes its transfer. ROM is able
to correctly simulate the example with only three wait-for-time
statements.

Table II compares the wait-for-time statements performed by
the CAN models. ROM waits as often as the TLM, four orders
of magnitude less frequently than the BFM.

V. ROM ALGORITHM

To give an additional level of understanding in ROM, we
present now a generic algorithm that implements ROM for
basic bus-based communication. For ease of understanding, we
omit extra complexities, such as pipelining, in this description.
Algorithm 1 outlines how ROM implements a user transaction.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Algorithm 1 ExecuteTransaction(prio, address, length,
mode)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
1: waitTime = PredictWaitTime(List, prio, address, length,

mode);
2: InsertTransaction(List, prio, address, length, mode);
3: repeat
4: waitfortime(waitTime);
5: waitTime = GetDelayDueToPreemptions(List);
6: until waitTime == 0
7: TransferData(address, length);
8: RemoveTransaction(List, prio);
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Algorithm 1 shows the characteristic elements of ROM: the
initial prediction of the transaction time (waitTime, line 1),
waiting for the predicted time (line 4), and updating the pre-
diction for any disturbing influence (line 5). GetDelayDueTo-
Preemptions() examines past disturbing influence and returns
the accumulated delay of preempting transactions. The loop



SCHIRNER AND DÖMER: RESULT-ORIENTED MODELING—NOVEL TECHNIQUE FOR FAST AND ACCURATE TLM 1695

repeats the waiting until no further preemptions have occurred.
A global List, sorted by priority and transaction start time,
keeps track of the scheduled transactions. Each transaction
is added to that List (line 2) and removed upon completion
(line 8).

PredictWaitTime() calculates the initial prediction;
Algorithm 2 outlines its implementation.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Algorithm 2 PredictWaitTime(List, prio, address, length,
mode)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
1: active = GetCurrentOngoingTransaction(List);
2: if BusIsUnused(List) then
3: timeToStart = TimeToBusClockCycle();
4: else if prio < Priority(active) then
5: timeToStart = TimeToNextPreemption(active);
6: else
7: pred = FindLeastHigherPrioTransaction(List, prio);
8: timeToStart = TimeToFinish(pred);
9: end if
10: duration = TransactionDuration(address, length,

mode);
11: return timeToStart + duration;
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

PredictWaitTime() first determines the delay until the trans-
action can be scheduled (timeToStart) for three cases. If the
bus is unused (line 2), the requested transaction starts im-
mediately, only aligned to the next bus clock cycle. Line 4
tests if the requested transaction is of higher priority than the
currently active transaction, which GetCurrentOngoingTrans-
action() retrieves from the global List. In this case, the requested
transaction is delayed until the next preemption point of the
active transaction. In the remaining clause starting at line 7,
FindLeastHigherPrioTransaction() searches the global List for
the predecessor transaction with the lowest priority higher than
the requested priority. The requested transaction will be sched-
uled after the found transaction pred finishes, as calculated by
TimeToFinish().

After determining timeToStart, the minimal transfer duration
is calculated by TransactionDuration(). This takes into account
the user transaction length, its base address (for alignment), and
mode (e.g., burst enabled). It also relies on static knowledge
about response time of the selected slave. As a result of the
scheduling decisions, line 11 finally returns the sum of the wait
times for requested transaction, which is its earliest finish time
given the current bus conditions.

VI. EXPERIMENTAL RESULTS

To validate the benefits of our proposed ROM approach, we
have implemented for both buses all four models using the
SpecC [10] system level design language (SLDL). Please note
that we implemented the ROM without any modification to the
simulation engine, using only regular wait-for-time statements
and events.

We analyzed all models in detail and examined three aspects:
1) the accuracy, since our main premise is to reach 100%

Fig. 9. Multinode setup.

Fig. 10. Accuracy of the AMBA AHB models.

accuracy; 2) the simulation performance to validate that ROM
actually reaches TLM speeds; and 3) the number of prediction
updates that are needed by ROM.

A. Accuracy

In analyzing the accuracy of our models, we use the metrics
and setup described in [3]. In a multinode setup such as depicted
in Fig. 9, each node sends a set of 5000 predefined user
transactions that vary in user transaction id (each from its own
range), size, content, and delay between two transfers. The
same set of transactions is transferred by each model. We repeat
each test for different amounts of bus contention. During the
test, we record the duration for each individual transfer and
compare that later against the cycle-accurate BFM.

1) AMBA AHB: We have measured the accuracy of the
AMBA AHB models in a two master setup. Fig. 10 shows the
average error in transaction duration for the high priority master
over a varying degree of bus contention.7

As targeted, the ROM shows 0% error for all measurements,
lying right on top of the x-axis (same as the BFM). In contrast,
the TLM and ATLM show significant error rates, linearly
increasing with growing bus contention. At 45% contention,
the TLM reaches 45% error, making any system timing analysis
based on TLM questionable.

2) CAN: We use a test setup with eight nodes8 connected
to the CAN bus. Four nodes act as senders and four nodes as
receivers. Each sender uses an exclusive range of message iden-
tifiers (in effect, a different priority). Fig. 11 shows the average
error in transaction duration for the node sending the lowest
priority messages over a varying degree of bus contention.

7A more detailed error analysis can be found in [3].
8Other tests, omitted for space reasons, show similar results.
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Fig. 11. Accuracy of the CAN models.

For the CAN as well, ROM shows 0% error for all measure-
ments. Its graph lies right on top of the x-axis (same as the
BFM and the ATLM). Note that, in the CAN protocol, a CAN
frame cannot be preempted; therefore, the ATLM is already
accurate in this case, since arbitrating once per frame matches
the protocol definition. In contrast, the TLM shows significant
error rates, linearly increasing with growing bus contention,
passing 60% error at 50% contention.9

In summary, for both the AMBA AHB and the CAN, we
have reached our goal of 100% accuracy in timing. Next, we
analyze the simulation performance of ROM in comparison to
the traditional models.

B. Performance

We have measured the simulation performance also in a
multinode setup. One group of nodes, with higher priority,
accesses the bus in a regular interval, producing a base utiliza-
tion of the bus system. At the same time, the lowest priority
node issues transactions of increasing size without a delay in
between. Hence, low priority transactions are preempted or
interspersed by higher priority ones. We have measured the
simulation time of the whole system during the lowest priority
transactions (including the higher priority transactions that are
transmitted in between).10 We executed the test on a Pentium 4
PC at 2.8 GHz.

1) AMBA AHB: We use an architecture with two masters
and two slaves in analyzing the AMBA AHB. The high priority
master generates an equally distributed base load of 33% on
the bus by sending eight-beat burst transactions. Fig. 12 shows
the time to simulate the low priority master’s transactions over
an increasing message size, while the high priority master is
running at the same time.

Fig. 12 reveals the tremendous performance benefit of ROM.
Both ROM and TLM are equally fast, three orders of magnitude
faster than the BFM and one order of magnitude faster than
the ATLM. Both the BFM and the ATLM show a characteristic

9A more detailed error analysis can be found in [4].
10For a fair comparison, we also ensure that all models transfer the same

amount of user transactions regardless of the model accuracy.

Fig. 12. Transfer time using AMBA models.

Fig. 13. Transfer time using CAN models.

saw tooth shape, due to the nonlinear split into bus transactions,
equivalent to what we observed in [3].

2) CAN: In our measurement scenario for the CAN, three
high priority senders produce a constant bus load totaling 50%
base utilization by transferring 16-byte messages of 16 byte
size. Again, we measure the lowest priority sender. Fig. 13
shows the simulation time in transmitting a low priority transac-
tion over an increasing size, running concurrently with the high
priority senders.

All models exhibit a characteristic increase in simulation
time when exceeding a size divisible by eight. Then, another
CAN frame is needed, which increases simulation effort and
the probability of additional higher priority messages.

ROM and TLM execute five orders of magnitude faster than
the BFM. The TLM reaches this speed (0.006 ms for 16 bytes)
with the coarse grain operation on user transactions. Although
ROM optimizes the wait-for-time statements, it does not out-
perform the TLM. With the costly bit inspection necessary for
accurate timing, it is only two times slower than the TLM:
0.012 ms for a transaction with 16 byte size. The ATLM is
about 24 times slower than the ROM, since it incrementally
simulates each CAN frame. The cycle-accurate BFM with its
serial simulation executes the slowest. Transferring 16 bytes
takes 155 ms. For the CAN, ROM is the fastest to accurately
model the communication, 12 700× faster than the BFM.
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Fig. 14. Exponentially decreasing number of prediction updates.

Fig. 15. Histogram of number of prediction updates. (a) AMBA AHB.
(b) CAN.

C. Prediction Updates

As we have seen for both bus systems, our proposed ROM
performs excellent despite the presence of frequent disturbing
influences. In particular, with long bus transactions, higher
priority bus activities preempt frequently the measured lower
priority transaction. This excellent performance indicates that
only few prediction updates are necessary, even in a high
contention situation. In the next paragraphs, we will first reason
about this phenomenon and then show empirical results.

Fig. 14 shows an example where a long transaction is
frequently preempted. Although this transfer is preempted
15 times, only four prediction updates are needed by the ROM.
A closer look shows eight preemptions during the initially
predicted period, four in the next, then two, and finally only
one. This exponential drop indicates that, for most transfers,
only very few prediction updates are expected, even under high
bus load.

In order to validate this expectation, we have measured the
actual number of prediction updates when performing linear
random transfers.

1) AMBA AHB: In the setup with the AMBA AHB, two
masters transfer transactions of random size (1–200 bytes) with
a random delay in between. By controlling the maximum delay
between transfers, we adjust the system to 50% bus contention.

Fig. 15(a) shows the number of prediction updates per low
priority transaction in a histogram over 100 000 transfers. Most
transactions require only a single prediction update, despite
the high amount of contention. As expected, the number of
transactions with more than one prediction update reduces
exponentially. Only 1.1% require four prediction updates. Note
that 27.5% of the transactions complete without a single update.
In other words, the initial prediction is actually correct for about
a third of all cases. These are mainly small transactions (58% of
the transactions without updates are 50 byte or smaller in size).

2) CAN: We have validated the same fact using the CAN
with eight nodes (four senders, four receivers). The histogram
in Fig. 15(b) shows the results for the condition in which we
expect the most updates: the node with the lowest priority
messages at a high bus contention of 51%.

Fig. 16. ROM beats the TLM tradeoff.

The percentage of transactions requiring prediction updates
reduces exponentially with the number of updates. Two third
of the transactions require no prediction update at all, with
the majority being single frame messages. Only 23% of the
transactions require one prediction update, and only 0.5% need
four updates.

In both cases, the AMBA AHB and the CAN, the probability
of updates drops exponentially with the number of updates.
From this fact, we conclude that the excellent performance of
ROM can be more generally expected.

VII. GENERALIZATION

Combining the results of the two bus systems with com-
plementary characteristics, we now derive more general con-
clusions. While, for the existing multitude of embedded bus
architectures, an extrapolation based on two individual models
is difficult in general, our data are a strong indication of
generality. The modeled bus systems are on opposite ends of
the spectrum. While the AMBA AHB is an on-chip parallel bus
system with a centralized arbitration scheme, the CAN is an off-
chip serial bus with distributed arbitration. We estimate that the
results of the AHB modeling are a good indicator in abstracting
the IBM CoreConnect Processor Local Bus [29]. Furthermore,
we believe that the CAN modeling experience can be used
as an indicator for other serial bus systems such as I2C [30]
and Ethernet.

A. Escaping the TLM Tradeoff

Fig. 16 shows the combined results for the AMBA AHB
and the CAN in a graph with actual measurements. Note that
Fig. 16 resembles the generally expected tradeoff depicted in
Fig. 1 in the beginning of this paper. Again, the graph illustrates
the tradeoff between accuracy and speed. The x-axis denotes
the bandwidth of the lowest priority node when using 100-byte
transactions in a multinode setup with two senders. The y-axis
denotes the average error in transfer duration for the lowest
priority node when the bus shows 40% contention.

Our experimental results show that the traditional models
(TLM, ATLM, and BFM) follow the TLM tradeoff. They are
either accurate (i.e., the BFMs and the ATLM for the CAN) but
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slow with less than 0.4 MB/s, or they are fast (i.e., the TLMs)
but exhibit an error of more than 35%.

Our ROM, on the other hand, escapes the TLM tradeoff for
both bus systems. At the same time, it is fast and 100% accurate.
It accurately simulates the AHB with a bandwidth of 6.6 MB/s,
and the CAN with 1.6 MB/s.

B. Complexity Considerations

It should be noted that the advantages of ROM come at the
price of a more complex model implementation. The BFM and
TLM implementations, on one hand, incrementally advance
time and can therefore use step-by-step decisions. ROM, on
the other hand, implements all bus scheduling decisions explic-
itly at the boundaries of a user transaction. This requires the
model to keep track of outstanding transactions and reevaluate
decisions if they were overly optimistic, requiring a significant
higher effort from the model developer. For our implementa-
tion, we experienced about double the time to model the ROM
designs.

VIII. CONCLUSION

In this paper, we have introduced a novel modeling concept,
result oriented modeling (ROM), and its application to the
abstract modeling of communication in SoC design. ROM is a
modeling approach similar to TLM that hides internal states and
minimizes them in order to gain execution speed. Moreover,
ROM is based on an optimistic paradigm. It predicts the end
result at the beginning. Under a disturbing influence, corrective
measures are taken at the end in order to adjust the prediction
so that 100% accuracy is achieved.

We have applied the ROM concept to two complementary
buses: the industry standard on-chip parallel bus system AMBA
AHB with a centralized arbitration scheme and the off-chip
CAN bus system with its decentralized arbitration. We have
compared the proposed ROM implementations against tradi-
tional layer-based models. Our detailed analysis shows that
the cost of corrective measures is low due to an exponential
decreasing number of necessary prediction updates. As a result,
the ROM reaches near the TLM performance.

Our experimental results demonstrate the benefits of ROM.
While the traditional models suffer from a significant speed/
accuracy tradeoff, ROM eliminates this tradeoff for a wide
range of platforms, delivering highest speed and 100% accuracy
at the same time. This allows rapid design space exploration
with high fidelity at the abstract system level. ROM also opens
the opportunity to utilize the TLM benefits for real-time sensi-
tive applications, where 100% timing accuracy is required.
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