
Recoding Embedded Applications

into Flexible System-Level Models

Rainer Dömer

Center for Embedded Computer Systems

University of California, Irvine, USA

doemer@uci.edu

Abstract—Before we can ask ”Quo Vadis, Virtual Platforms?”,
we should ask ourselves ”Unde venis, Virtual Platforms?” and
discuss their origin. In this paper, we argue that virtual platforms
originate from embedded applications and form an executable
system model that in more or less abstract form specifies an
implementation of the original application in target hardware
and software.

Specifically, we discuss the key concepts in system modeling
which are needed explicitly in a virtual platform, such as the clear
separation of computation and communication. We also describe
a method, called computer-aided recoding, that allows to derive
a virtual platform model directly from original reference code
of the application. In the recoding process, flat and sequential C
code is converted into a flexible and parallel system model that
exhibits the required features of structural hierarchy, explicit
concurrency, and exposed communication, and thus can serve as
an effective virtual platform for further design space exploration,
functional validation, and system synthesis.

I. INTRODUCTION

Virtual platforms are seen as an important technology to

cope with the design challenges created by the constantly

growing complexity of embedded systems. A virtual platform

can serve as a stable intermediate milestone on the long way of

designing a suitable implementation in hardware and software

for a given application. While the design path from a virtual

platform down to its target implementation is challenging

(it includes the complex tasks of design space exploration,

functional validation, and system synthesis) and the definition

and specification of the virtual platform itself is still evolving

(Quo Vadis, Virtual Platforms?1), this paper focuses on the

origin of virtual platforms. Unde venis, Virtual Platforms?2

A. Virtual Platforms

Virtual platforms are usually built as an abstract software

model of a target hardware platform for a set of embedded

applications. Given the virtual platform, an application can be

developed, executed, and evaluated before the actual hardware

platform becomes available, saving precious design and de-

velopment time. At the same time, virtual platforms typically

offer advanced simulation and debugging features that are not

available in the real target hardware.

1Where are you going, Virtual Platforms?
2Where do you come from, Virtual Platforms?

While virtual platforms can be manually built from scratch

(or refined from a previous version of a similar model), we

describe in this paper a system design flow that includes the

automatic generation of a virtual platform. Starting from refer-

ence code of the application, we propose a recoding technique

that allows to generate an executable system model that can

serve as a flexible virtual platform for further implementation.

II. COMPUTER-AIDED RECODING

In contrast to the application reference code, which typically

is given in the form of flat and sequential C code, System-level

Description Languages (SLDLs), such as SystemC [9] and

SpecC [8], allow designers to describe hardware and software

components together. These SLDSs support specific constructs

for the clear separation of computation and communication.

Specifically, the C-based SLDLs support the following key

system modeling concepts:

• Explicit structure: block diagram structure and connec-

tivity through ports

• Explicit hierarchy: system composed of components

• Explicit concurrency: potential for parallel or pipelined

execution

• Explicit communication and computation: channels and

interfaces, vs. modules/behaviors

• Explicit timing: simulation time and timing constraints

Having these intrinsic features of an application explicitly

described in its design model enables efficient design space

exploration and automatic refinement by computer-aided de-

sign (CAD) tools.

Now, computer-aided recoding allows to derive a virtual

platform model with these explicit system concepts directly

from the original reference code of the application. In the

recoding process, the flat and sequential C code is converted

into a flexible and parallel system model that exhibits the

required system features and thus can serve as an effective

virtual platform.

Computer-aided recoding automates various steps in the

process of writing system models. We use a designer-

controlled approach that relies on automated source code

transformations available to the system designer in form of

an integrated development environment [1]. Here, the designer

makes the decisions, whereas the tool automatically transforms

the source code.QVVP’12, ”Quo Vadis, Virtual Platforms?”, Workshop at DATE’12



Reference C 

Code

V

1

func1 (…) {…}

V

2

V

3

func2 (…) {…}

func3 (…) {…}

func4 (…) {…}

func5 (…) {…}

Flexible

System Model

B0 B1

B2 B3

C

1

C

2

C

3

C
5

C
6

Expose

Communication

Generate

Virtual Platform

Partitioned

Model

B0 B1

B2 B3

V

1

V

2

V

3

Partition

Code and Data

B0

B1

B2

Hierarchical

Model

Create

Hierarchy

Virtual Platform

M

M

P1 P2

IPIP

M

Fig. 1. Recoding application reference code into a flexible system model for automatic generation of virtual platform models.

As illustrated in Fig. 1, the recoding process consists

of several types of source code transformations, including

(1) creation of structural hierarchy [4] to properly organize

the initially unstructured (flat) application code, (2) code and

data partitioning [2], [5] to create a parallel and flexible

system model, (3) creation of explicit communication and

synchronization [6] to enable plug-and-play in the system

model, and (4) pointer recoding [3] to eliminate unwanted

pointers in the given reference code. The result of this recoding

process is a flexible system model that can be fed into a regular

system design flow, such as the System-on-Chip Environment

(SCE) [7]. From here, several virtual platform models at

different levels of abstraction, e.g. a Transaction Level Model

(TLM) or Bus-Functional Model (BFM), can automatically be

generated.

In summary, computer-aided recoding can derive an exe-

cutable parallel system model directly from available sequen-

tial reference code. Automatic source code transformations

relieve the system designer from complex code analysis and

tedious coding tasks, allowing uninterrupted focus on sys-

tem modeling and design space exploration. As a result, an

application-specific virtual platform can be quickly generated,

enabling a shorter design time and higher productivity.

III. CONCLUSION

Given the constantly growing complexity of the digital

systems around us, virtual platforms are essential in the de-

sign and development of today’s embedded systems. Without

virtual platforms, efficient design space exploration, effective

functional validation, and cost-effective system implementa-

tion would not be possible.

In this paper, we outlined a method to automatically gener-

ate virtual platforms via a flexible system model which can

be built from the original application source code by use

of computer-aided recoding. Thus, using recoding and model

generation a virtual platform matching the application’s needs

can be derived directly from the original reference code of the

application.

ACKNOWLEDGMENT

This work has been supported in part by funding from

the National Science Foundation (NSF) under research grant

NSF Award #0747523. The authors thank the NSF for the

valuable support. Any opinions, findings, and conclusions or

recommendations expressed in this material are those of the

authors and do not necessarily reflect the views of the National

Science Foundation.

REFERENCES

[1] P. Chandraiah and R. Dömer. An Interactive Model Re-Coder for
Efficient SoC Specification. In A. Rettberg, M. C. Zanella, R. Dömer,
A. Gerstlauer, and F. J. Rammig, editors, Embedded System Design:

Topics, Techniques and Trends, Boston, MA, 2007. Springer.
[2] P. Chandraiah and R. Dömer. Designer-Controlled Generation of Parallel

and Flexible Heterogeneous MPSoC Specification. In Proceedings of the

Design Automation Conference (DAC), June 2007.
[3] P. Chandraiah and R. Dömer. Pointer re-coding for creating definitive

MPSoC models. In Proceedings of the International Conference on

Hardware/Software Codesign and System Synthesis, Salzburg, Austria,
September 2007.

[4] P. Chandraiah and R. Dömer. Automatic re-coding of reference code into
structured and analyzable SoC models. In Proceedings of the Asia and

South Pacific Design Automation Conference (ASPDAC), Seoul, Korea,
Jan. 2008.

[5] P. Chandraiah and R. Dömer. Code and Data Structure Partitioning for
Parallel and Flexible MPSoC Specification Using Designer-Controlled
Recoding. IEEE Transactions on Computer-Aided Design of Intergrated

Circuits and Systems (TCAD), 27(6):1078–1090, June 2008.
[6] P. Chandraiah, J. Peng, and R. Dömer. Creating Explicit Communication

in SoC Models Using Interactive Re-Coding. In Proceedings of the Asia

and South Pacific Design Automation Conference (ASPDAC), Yokohama,
Japan, Jan. 2007.

[7] R. Dömer, A. Gerstlauer, J. Peng, D. Shin, L. Cai, H. Yu, S. Abdi, and
D. Gajski. System-on-Chip Environment: A SpecC-based Framework for
Heterogeneous MPSoC Design. EURASIP Journal on Embedded Systems,
2008(647953):13 pages, 2008.

[8] D. D. Gajski, J. Zhu, R. Dömer, A. Gerstlauer, and S. Zhao. SpecC:

Specification Language and Design Methodology. Kluwer, 2000.
[9] T. Grötker, S. Liao, G. Martin, and S. Swan. System Design with SystemC.

Kluwer, 2002.


