
IP-CENTRIC METHODOLOGY AND DESIGN
WITH THE SpecC LANGUAGE

System Level Design of Embedded Systems

DANIEL D. GAJSKI, RAINER DOEMER AND JIANWEN ZHU

Department of Information and Computer Science
University of California, Irvine
Irvine, California, USA

Abstract.
In this paper, we demonstrate the application of thespecify-explore-refine

(SER) paradigm for an IP-centric codesign of embedded systems. We describe the
necessary design tasks required to map an abstract executable specification of the
system to the architectural implementation model. We also describe the final and
intermediate models generated as a result of these design tasks. The executable
specification and its refinements should support easy insertion and reuse of IPs.

Although several languages are currently used for system design, none of them
completely meets the unique requirements of system modelling with support for
IP reuse. This paper discusses the requirements and objectives for system lan-
guages and describes a C-based language called SpecC, which precisely covers
these requirements in an orthogonal manner.

Finally, we describe the design environment which is based on our codesign
methodology.

1. Introduction

New technologies allow designers to generate chips with more than 10 million
transistors on a single chip. The main problem at this complexity is designer pro-
ductivity. Although the chip complexity measured in number of transistors per
chip has increased at the rate of 60 percent per year in the past, the productivity
measured in number of transistors designed per day by a single designer has in-
creased only at the rate of 20 percent. This growing gap between the complexity
and productivity rates may have the catastrophic effect of slowing down semicon-
ductor industry.

2

One of the main solutions for solving this problem is increasing the level of
abstraction in design of complex chips. The abstraction level increase should be
reflected in descriptions, components, tools, and design methodology.

First, modelling or describing designs on the gate or RT level is not suffi-
cient. Moving to executable specifications (behavior) and architectural descrip-
tions (structure) is necessary to improve design productivity.

In order to explore different architectural solutions, we must use higher-level
components beyond RTL components, such as registers, counters, ALUs, multi-
pliers, etc. These higher-level components, frequently called IPs, are changing the
business and design models. In order to use IPs, we need a methodology that will
allow easy insertion of IPs in designs. This new methodology must have well-
defined models of design representation, so that IP can be easily inserted or re-
placed when supplies disappear or IPs get discontinued. In order to achieve easy
insertion and replacement, the design models must separate computation from
communication, in addition to abstracting those two functions. This way, IP can
be inserted by changing only the communication interface to the rest of the design.

Finally, the above IP-centric design methodology must be supported by CAD
tools that will allow easy capture of executable specification, architecture explo-
ration with IPs, and RTL hand-off to semiconductor fabs.

In this paper, we present such an IP-centric methodology, starting with an
executable specification, define the abstract models used for architectural explo-
ration, synthesis, and hand-off, and describe the necessary tools to support this
methodology.

We also describe a C based language, called SpecC, for describing all the
models in the methodology, and the SpecC Design Environment which supports
all the transformations and explorations indicated in the methodology.

2. Related Work

For system-level synthesis, in particular codesign and coverification, academia, as
well as industry, has developed a set of promising approaches and methodologies.
Several systems already exist that assist designers with the design of embedded
systems. However, none of todays systems covers the whole spectrum of codesign
tasks. Instead, most systems focus on a subset of these problems.

2.1. UNIVERSITY PROJECTS

Table 1 lists some system-level projects developed by universities. Although all
systems try to cover all aspects of system-level design, each of them really focuses
on a subset of the tasks. Also, the target architectures addressed by the tools in
many cases are quite specific and do not cover the whole design space.

For the specification of embedded systems, standard programming languages
are being used, as well as special languages developed to support important con-

3

TABLE 1. System-level Design Projects in Academia.

Project University Main Focus

Chinook U Washington Simulation, Synthesis
Cosmos TIMA Simulation, Synthesis
Cosyma TU Braunschweig Exploration, Synthesis
CoWare IMEC Interface Synthesis
Lycos TU Denmark Synthesis
Polis UC Berkeley Modelling, Synthesis
Ptolemy UC Berkeley Simulation
Scenic UC Irvine Simulation
SpecSyn UC Irvine Exploration
Weld UC Berkeley Framework

cepts in codesign directly. For the latter, two early approaches must be mentioned.
Statecharts [7, 15] and SpecCharts [29, 10] use an extended finite state machine
model in order to support hierarchy, concurrency and other common concepts.
Both have a textual and a graphical representation. SpecCharts is the underlying
language being used in the SpecSyn system [11], which is targeted at design space
exploration and estimation.

In the Scenic environment [23, 14], the design is modeled with the standard
programming language C++. Features not present in the language, like for ex-
ample concurrency, can be specified by use of classes provided with the Scenic
libraries. The SpecC system, as introduced in [39, 6] and described later in Sec-
tion 4.3, goes one step further. The standard language C is extended with spe-
cial constructs that support concurrency, hierarchy, exceptions, and timing issues,
among others. For simulation, the SpecC language is automatically translated into
a C++ program, which can be compiled and executed. This approach makes it
possible for the SpecC system to focus on codesign modelling and synthesis while
providing simulation, whereas Scenic mainly targets only simulation.

Similar to the specification language, the design representation being used
internally in a codesign system is important. Usually every system has its own
representation. The Polis system [2], targeted at small reactive embedded systems,
uses the codesign finite state machine (CFSM) model [4] to represent the designs.
Since this model is formally defined, it is also a suitable starting point for formal
verification.

Most codesign systems can be classified as either simulation oriented, or syn-
thesis oriented. A typical representative for simulation oriented systems is the
Ptolemy frame work [22, 19]. Ptolemy models a design as a hierarchical network
of heterogeneous subsystems and supports simultaneous simulation of multiple

4

models of computation, such as for example synchronous data flow (SDF).
On the other hand, several systems are mainly synthesis oriented. In this cat-

egory, Cosmos [35, 18] targets at the development of multiprocessor architec-
tures using a set of user-guided transformations on the design. For the Cosyma
[9, 16, 30] and the Lycos [26] system, the target architecture is an embedded mi-
cro architecture consisting of one processor with a coprocessor, e.g. an ASIC.

Interface and communication synthesis are addressed in particular by the Chi-
nook [5] and CoWare [31] systems. Chinook is targeted at the design of control-
dominated, reactive systems, whereas CoWare addresses the design of heteroge-
neous DSP systems.

As a special framework, the Weld project [3] addresses the use of networking
in electronic design. It defines a design environment which enables web-based
computer aided design (CAD) and supports interoperability via the internet.

2.2. COMMERCIAL SYSTEMS

A growing number of commercial tools are being offered by the EDA companies.
However, they tend to either solve a particular problem as a point tool in the code-
sign process, e.g. cosimulation, or focus on one particular application domain, e.g.
telecommunications.

For modeling and analysis at the specification level, Cadence and Synopsys of-
fers tools (SPW and COSSAP, respectively) to support easy entry and simulation
of block diagrams, a popular paradigm used in the communication community.

Another category of simulation tools is targeted at verification for design af-
ter backend synthesis. A representative is Seamless CVE from Mentor Graphics,
which speeds up cosimulation of hardware and software by suppressing the simu-
lation of information unrelevant to the hardware software interaction. Such infor-
mation may include instruction fetch, memory access, etc. A similar tool is Eaglei
from ViewLogic.

A variety of backend tools exists. The most widely used retargetable compiler
is the GNU C compiler. However, since it is designed to be a compiler for general
purpose processors, upgrading it into an aggressive, optimizing compiler for an
embedded processor with possibly a VLIW datapath and multiple memory banks
can be a tremendous effort. Although assembly programming prevails in current
practice, new tools are expected to emerge as research in this area matures. The
Behavioral Compiler from Synopsys, Monet from Mentor Graphics, and XE of
Y-Explorations, are examples of high-level synthesis tools starting from a hard-
ware description language. The Protocol Compiler of Synopsys exploits the reg-
ular expression paradigm for the specification of communication protocols and
synthesizes interface circuitries between hardware modules.

There is a limited number of commercial tools offered for system-level synthe-
sis. Among the few is the CoWare system, which targets at the hardware software

5

interfacing problem. VHDL+ of ICL, also provides an extension of VHDL, which
helps to solve the same problem.

There are a rapidly growing number of vendors for reusable components, or IP
products for embedded systems. A traditional software component is the embed-
ded operating system, which usually requires a small memory, and sometimes real
time constraints have to be respected. Examples are VxWorks from Wind River,
Windows CE from Microsoft, JavaOS from Sun Microsystems, to name just a few.
The Inferno operating system from Lucent is especially designed for networking
applications. The hardware IP vendors offer cores ranging from the gate and func-
tional unit level, for example Synopsys Designware, to block level, for example
Viterbi decoders and processors. They are often provided with a simulation model
or a synthesizable model in VHDL or Verilog. While integrating these cores into
a system-on-a-chip is not as easy as it appears, new methodologies, such as those
proposed in the academia, and new standards, such as those prepared in the VSI
alliance, are expected to make the plug-and-play capability possible.

3. System Design Methodology

A methodology is a set of models and transformations, possibly implemented
by CAD tools, that refines the abstract, functional or behavioral specification
into a detailed implementation description ready for manufacturing. The system
methodology [12] starts with anexecutable specificationas shown in Figure 1.
This specification describes the functionality as well as the performance, power,
cost and other constraints of the intended design. It does not make any premature
allusions to implementation details. The specification is captured directly in a for-
mal specification language such as SpecC (see Section 4.3), that supports different
models in the methodology.

Since designers do not like to learn the syntax and semantics of a new lan-
guage, the executable specification can be captured with a graphical editor that
generates the specification from well-known graphical forms, such as block di-
agrams, connectivity tables, communication channels, timing diagrams, bubble
charts, hierarchical trees, scheduling charts, and others. Such a graphical editor
must also provide support for manual transformations of one model to another in
the methodology.

As shown in Figure 1, the synthesis flow of the codesign process consists of a
series of well-defined design steps which will eventually map the executable spec-
ification to the target architecture. In this methodology, we distinguish two major
system level tasks, namely architecture exploration and communication synthesis.

Architecture explorationincludes the design steps of allocation and partition-
ing of behaviors, channels and variables.Allocation determines the number and
the types of the system components, such as processors, ASICs and busses, which
will be used to implement the system behavior. Allocation includes the reuse of

6

Compilation Interface
synthesis

Backend

Simulation
 model

Simulation
 model

Manufacturing

Communication
 model

Simulation
 model

Simulation
 model

Implementation
 model

Validation of
algorithm and
functionality

Validation of
functionality and
synchronization

Validation of
functionality and

performance

Validation of

performance
timing and

High level
synthesis

Protocol selection

Protocol inlining

Communication synthesis

Behavior partitioning

Synthesis flow Analysis and validation flow

IP

IP

Estimation

Estimation

Estimation

Estimation

Architecture exploration

Architecture
 model

Channel partitioning

Variable partitioning

Specification
model

Transducer synthesis

Figure 1. The codesign methodology in the SpecC Design Environment

intellectual property (IP), when IP components are selected from the component
library.

Then,behavior partitioningdistributes the behaviors (or processes) that com-
prise the system functionality amongst the allocated processing elements, whereas
variable partitioningassigns variables to memories andchannel partitioningas-

7

signs communication channels to busses.Schedulingis used to determine the or-
der of execution of the behaviors assigned to the processors.

Architecture exploration is an iterative process whose final result is the defi-
nition of the system architecture. In each iteration, estimators are used to evaluate
the satisfaction of the design constraints. As long as any constraints are not met,
component and connectivity reallocation is performed and a new architecture with
different components, connectivity, partitions, schedules or protocols is evaluated.

After the architecture model is defined,communication synthesisis performed
in order to obtain a design model with refined communication. The task of com-
munication synthesis includes the selection of communication protocols, synthe-
sis of interfaces and transducers, and inlining of protocols into synthesizable com-
ponents. Thus, communication synthesis refines the abstract communications be-
tween behaviors into an implementation.

It should be noted that the design decisions in each of the tasks can be made
manually by the designer, e. g. by using an interactive graphical user interface, as
well as by automatic synthesis tools.

The result of the synthesis flow is handed-off to the backend tools, shown
in the lower part of Figure 1. The software part of the hand-off model consists
of C code and the hardware part consists of behavioral VHDL or C code. The
backend tools include compilers, a high-level synthesis tool and an interface syn-
thesizer. The compilers are used to compile the software C code for the processor
on which the code is mapped. The high-level synthesis tool is used to synthesize
the functionality mapped to custom hardware. The interface synthesizer is used to
implement the functionality of interfaces needed to connect different processors,
memories and IPs.

During each design step, the design model is statically analyzed to estimate
certain quality metrics such as performance, cost and power consumption. This
design model is also used in simulation to verify the correctness of the design
at the corresponding step. For example, at the specification stage, the simulation
model is used to verify the functional correctness of the intended design. After
architecture exploration, the simulation model will verify the synchronization be-
tween behaviors on different processing elements (PEs). After communication
synthesis, the simulation model is used to verify the performance of the system
including computation and communication.

At any stage, if the verification fails, a debugger can be used to locate and fix
the errors. Usually, standard software debuggers can be used which provide the
ability to set break points anywhere in the source code and allow detailed state
inspection at any time.

8

3.1. IP REQUIREMENTS

The use of Intellectual Property introduces additional requirements on the system
design methodology. In order to identify the specification segments that can be
implemented by an IP, or to replace one IP by another one, the system specifi-
cation and its refined models must clearly identify the specific IP segment or the
IP functionality must be deduced from the description. On the other hand, if the
meaning of a model or one of its parts is difficult to discover, it is also difficult to
see whether an IP can be used for its implementation.

This situation is well demonstrated in a much broader problem of design
methodologies: simulatable vs. synthesizable languages. We know that almost any
language (C, C++, Java, VHDL, Verilog, etc.) can be used for writing simulatable
models. However, each design can be described in many different ways, all of
them producing correct simulation results. Therefore, an IP function can be de-
scribed in many different ways inside the system specification without being rec-
ognized as an IP description. In such a case, IP insertion is not possible. Similarly,
replacing one IP with another with slightly different functionality or descriptions
is not possible.

For example, a controller, whose computational model is a finite state ma-
chine, can be easily described by acase statement in which the cases represent
the states. Similarly, an array of coefficients can be described with acase state-
ment in which the cases represent the coefficient indices. In order to synthesize the
description with these two case statements, we have to realize that the first state-
ment should be implemented as a controller and the second as a look-up ROM. If
the designer or a synthesis tool cannot distinguish between these two meanings,
there is no possibility that a correct implementation can be obtained from that
description although it will produce correct simulation results.

Therefore, in order to synthesize a proper architecture, we need a specifica-
tion or a model that clearly identifies synthesizable functions including IP func-
tions. In order to allow easy insertion and replacement of IPs, a model must also
separate computation from communication, because different IPs have different
communication protocols and busses connecting IPs may not match either of the
IP protocols. The solution is to encapsulate different IPs and busses within vir-
tual components and channels by introducing wrappers to hide detailed protocols
and allow virtual objects to communicate via shared variables and complex data
structures. In the methodology presented in Figure 1, the executable specifica-
tion is written using shared variables for communication between behaviors or
processes, while models used for architecture exploration use virtual components
and channels for easy insertion and replacement of IPs. The final communication
model exposes the protocols and uses again shared variables to describe individ-
ual wires and busses used in communication. Thus, the architecture exploration
is performed on the model that clearly separates computations (behaviors) from

9

communication (channels) and allows aplug-and-playapproach for IPs.

(a)

(b)

(c)

A B
C

A B

W
A

A

TA

A T

WC

IP

IP

IP

IP

Figure 2. Channel inlining: (a) two synthesizable behaviors connected by a channel, (b) synthe-
sizable behavior connected to an IP, (c) a synthesizable behavior connected to an IP through an
incompatible channel.

However, there is a difference between functions defined in a channel and
functions in a behavior. While the functions of a behavior specify its own func-
tionality, the functions of a channel specify the functionality of the caller, in other
words, when the system is implemented, they will getinlined into the connected
behaviors or into transducers between the behaviors. When a channel is inlined,
the encapsulated variables are exposed serving as communication media, and the
functions become part of the caller. This is shown in Figure 2(a) where the chan-
nel C connecting behaviorsA and B is inlined, assuming thatA and B will be
implemented as custom hardware parts. In such custom parts, the computation

10

and communication will be realized by the same datapath and controlled by one
controller.

The situation is different when a behavior is not synthesizable, such as in a
processor core with a fixed protocol. This can be modelled using awrapperwhich
is a channel encapsulating a fixed behavior while providing higher-level commu-
nication functions that deal with the specific protocol of the internal component.
For example, a MPEG decoder component with a wrapper can be used by other
behaviors simply by calling the decode function provided by the wrapper. Fig-
ure 2(b) shows the inlining of the wrapper in componentA allowing the commu-
nication betweenA and IP to use the IP protocol. On the other hand, whenever
two channels (or wrappers) encapsulating incompatible protocols need to be con-
nected, as shown in Figure 2(c), an interface component or transducer has to be
inserted into which the channel functions will be inlined during communication
refinement.

Next, we give a detailed description of each refinement task in the synthesis
flow of the codesign process.

3.2. SPECIFICATION

The synthesis flow begins with a specification of the system being designed. An
executable specificationin a formal description language describes the function-
ality of the system along with performance, cost and other constraints but with-
out premature allusions to implementation details. The specification should be as
close to the computational model of the system as possible.

The source code can be executed with the help of a simulator and a set of
test vectors, and errors can be located with debugger tools. This step verifies the
algorithms and the functionality of the system. Obviously, it is easier and more
efficient to verify the correctness of the algorithms at a higher abstraction level
than at a lower level which includes the implementation details as well.

In our system, we use the SpecC language, described in detail in Section 4.3,
to capture the high-level specification of the system under design. SpecC [39] is
a superset of C [37] and provides special language constructs for modellingcon-
currency, state transitions, structural and behavioral hierarchy, exception han-
dling, timing, communicationandsynchronization. This is in contrast to popular
hardware description languages, like VHDL [17] and Verilog [34], which do not
include explicit constructs for state transitions, communication, etc., and standard
programming languages, like C/C++ [33] and Java [1], that cannot directly model
timing, concurrency, structural hierarchy, and state transitions. Thus, SpecC is
easily used for specifying FSMD or PSM computational models [11].

In addition, SpecC is synthesizable and aids the designer in developing
“good” designs by providing the above listed features as language constructs
rather than just supporting them in some contrived way. Another important fea-

11

ture of SpecC is its emphasis onseparationof communication and computation at
higher levels of abstraction. This dichotomy is essential to supportplug-and-play
of IPs. SpecC achieves this by using abstract function calls in the port interfaces
of behaviors. The function calls are themselves implemented bycommunication
channels[39]. The system behavior includes only the computation portion and
uses a model similar to remote procedure calls (RPC) for communication. For im-
plementation, the actual communication methods are resolved and inlined during
the refinement process.

In the SpecC Design Environment, the SpecC Editor is used to capture the
specification model of the system under design. The editor helps in capturing and
visualizing the behavioral and structural hierarchy in the specification. It also sup-
ports the specification of the state transition tables, component connectivity and
scope of variables and channels with a graphical user interface. Only the behavior
of leaf nodes is programmed by use of a standard text editor.

B0

B1

B2

B3

B4

B5

B6

B7

syncdata

data, sync

Figure 3. Specification model

We illustrate our codesign methodology with a simple example. The specifica-
tion model is shown in Figure 3 using the PSM notation. The top level behaviorB0
consists of three sequential behaviors:B1, B2 andB3. The system starts execu-
tion with behaviorB1. WhenB1 completes, the system transitions toB2. Finally,
the system transitions toB3 on behavioral completion ofB2. BehaviorB2 again
is a compound behavior, composed of two concurrent behaviors:B4 andB5. Be-
haviorB4 is a leaf behavior likeB1 andB3. On the other hand,B5 is hierarchical
and consists of two sequential behaviors:B6 andB7.

The leaf behaviorsB6 andB4 communicate using global variables. First,B6
synchronizes its execution withB4 by using thesync event, as shown with the
dashed arrow in Figure 3. Then, data is exchanged via the (possibly complex)
variabledata .

12

It should be emphasized that in the specification, the communication over
shared global variables does not imply anything about the way it will be imple-
mented later. For the implementation, this communication scheme could be trans-
formed into a remote procedure call mechanism, or actually a shared memory
model. Also, please note that we use the global variable communication to make
the example simple. For a larger system, the designer is free to use, for exam-
ple, communication via channels (as described in Section 4.3) in the specification
model as well.

3.3. ARCHITECTURE EXPLORATION

The first major refinement step in the synthesis flow is the task of architecture
exploration which includes allocation, partitioning and scheduling.

Allocation is usually done manually by the designer and basically means the
selection of components from a library. In general, three types of components have
to be selected from the component library: processing elements, called PEs (where
a PE can be a standard processor or custom hardware), memories and busses. Of
course, the component library can include IP components and already designed
parts which can be reused.

The set of selected and interconnected components is called the system target
architecture. The task ofpartitioning, then, is to map the system specification
onto this architecture. In particular, behaviors are mapped to PEs, variables are
mapped to memories, and channels are mapped to busses. In the SpecC system,
thepartitioned model, like the initial specification, is modeled in SpecC.

In order to perform partitioning, accurate information about the design has
to be obtained before. This is the task ofestimation. Estimation tools determine
design metrics such as performance (execution time) and memory requirements
(code and data size) for each part of the specification with respect to the allocated
components. Estimation can be performed either statically by analyzing the spec-
ification or dynamically by execution and profiling of the design description. Ob-
viously estimation has to support both software and hardware components. The
estimation results usually are stored in a table which lists each obtained design
metric for each allocated component.

The table of estimation results can then be used by the designer (or an au-
tomated partitioner) to tradeoff hardware vs. software implementation. It is also
used to determine whether each partition meets the design constraints and to op-
timize the partitions with respect to an objective function.

In our methodology, architecture exploration is separated in three steps,
namely behavior partitioning, channel partitioning and variable partitioning,
which can be executed in any order.

13

3.3.1. Behavior partitioning
First, behaviors are partitioned among the allocated processing elements. This
decides which behavior is going to be executed on which PE. Thus, it separates
behaviors to be implemented in software from behaviors to be implemented in
hardware.

PE0 PE1

B0

B2
B5

B6

B7

B3

B4_ctrl

B1

B4

Top
B1_start B1_done B4_start B4_done

B1_ctrl
B1_start

B1_done

B4_start

B4_done

syncdata

data, sync

Figure 4. Intermediate model reflecting behavior partitioning

For example, given an allocation of two processing elementsPE0 andPE1
(e.g. a processor and an ASIC), the specification model from Figure 3 can be
partitioned as shown in Figure 4. Here, the behaviorsB0, B2, B3, B5, B6 and
B7 are mapped toPE0 (executing in software), and the behaviorsB1 andB4 are
assigned toPE1 (implemented in hardware). In order to maintain the execution
semantics of the specification, two additional behaviors,B1 ctrl andB4 ctrl ,
are inserted which synchronize the execution withB1 andB4, respectively. Also,
for this synchronization, four global variables,B1 start , B1 done , B4 start
andB4 done , are introduced, as shown in Figure 4.

The assignment of behaviors to a sequential PE, for example a processor, re-
quiresschedulingto be performed. As a preparation step, the approximate exe-
cution time for each leaf behavior, which was already obtained from estimators
for the partitioning phase, is annotated with the behaviors, so that it can be used
during scheduling.

The task ofschedulingdetermines the order of execution for the behaviors that
execute on a processor. The scheduler ensures that the schedule does not violate
any dependencies imposed by the specification and tries to optimize objectives

14

B1

B3

B4

B6

B7

sync

PE0 PE1

Top

B1_crtl

B4_crtl

B1_start

B1_done

B4_start

B4_done

B1_start B1_done B4_start B4_donedata

data, sync

(a)

(b)

syncTop B6_start B3_start

B3

B6

B7

PE0

B1

B4

PE1

B6_start

B3_start

data

data, sync

Figure 5. Intermediate model after scheduling: (a) non-optimized, (b) optimized.

specified by the designer. After a schedule is determined, the design model is
refined so that it reflects the sequential execution of the behaviors.

In general, scheduling can be either time-constrained or resource-constrained.
For time-constrained scheduling, the designer supplies a set of timing constraints.
Each timing constraint specifies the minimum and maximum time between two
behaviors. The scheduler therefore has to compute a schedule, in which no be-
havior violates any of the timing constraints, and can minimize the number of
resources used. On the other hand, forresource-constrained scheduling, the de-
signer specifies constraints on the available resources. The scheduler then creates
a schedule while optimizing execution time, such that all the subtasks are com-
pleted in the shortest time possible given the restrictions on the resource usage.
In this methodology, resource-constraint scheduling is used, since the available
resources are already determined during allocation.

Scheduling may be done statically or dynamically. Instatic scheduling, each
behavior is executed according to a fixed schedule. The scheduler computes the

15

best schedule at design time and the schedule does not change at run time. On
the other hand, indynamic scheduling, the execution sequence of the subtasks
is determined at run-time. Anembedded operating systemmaintains a pool of
behaviors ready to be executed. A behavior becomes ready for execution when all
its predecessor behaviors have been completed and all inputs are available. With
a non-preemptivescheduler, a behavior is selected from the ready list as soon as
the current behavior finishes, whereas for a scheduler withpreemption, a running
behavior may be interrupted in its computation when another behavior with higher
priority becomes ready to execute.

After a schedule is created, the scheduler moves the leaf behaviors into the
scheduled order and also adds necessary synchronization signals and constructs
to the behaviors. This refined model then reflects the tasks performed for behavior
partitioning including scheduling. Since, in the SpecC system, all design models
are captured with the same language, thescheduled modelis also specified in
SpecC.

We illustrate the scheduling process with the intermediate model after behav-
ior partitioning, as shown before in Figure 4. Figure 5 shows how scheduling is
performed with the example. As shown in Figure 5(a), the behavioral hierarchy
inside PE1 is flattened and its leaf behaviors are sequentialized. ForPE2, the
behavior changes from (potentially) concurrent to sequential execution.

Due to scheduling, some explicit synchronization can become redundant.
Figure 5(b) shows the optimized version of the example. Here, the behaviors
B1 ctrl and B4 ctrl), which were introduced in the partitioning stage, are
removed, together with their synchronization signals.

After scheduling is done, the task of PE allocation and behavior partitioning is
complete. Figure 6 shows the resulting design. In the lower part, it also shows the
example from a structural view which emphasizes on the communication struc-
ture. This representation helps to explain the insertion of communication channels
and memory behaviors which is described next.

3.3.2. Channel partitioning
Up to this point, communication between the allocated PEs is still performed via
shared variables. In order to refine this abstract communication, these variables
are first grouped and encapsulated in virtual channels.

In other words, in order to define the communication structure of the system
architecture, channels are allocated into which the variables are partitioned. Later,
during communication synthesis, these virtual channels will be refined to system
busses.

In our example, channel partitioning is performed as shown in Figure 7. Here,
due to the simplicity of the example, channel partitioning is easy. Since we have
to connect only two PEs, we allocate one channelCH0and group all the variables
into this channel, as shown in Figure 7(a).

16

(a)

(b)

syncTop B6_start B3_start

PE0

B3

B6

B7

PE1

B1

B4

data

PE1PE0
data

sync

B6_start

B3_start

Figure 6. Model after behavior partitioning

Please note that in Figure 7, the leaf behaviors ofPE0 andPE1, which for-
merly could access the shared variables directly, are transformed in order to use
the protocols supplied by the channel. For example, the behaviorB4, formerly
containing statements likex = data , is now transformed into one which uses
statements likex = CH0.read data() instead.

3.3.3. Variable partitioning
The last partitioning step is the allocation of memory components and the map-
ping of variables onto these memories. This is calledvariable partitioning.

Variable partitioning essentially decides whether a variable used for commu-
nication is stored in a memory outside the PEs or is directly sent by use of message
passing. It also assigns variables to be stored in a memory to one of the allocated
memory behaviors.

In our example, a single memory behaviorM0 is allocated and inserted in the
architecture, as shown in Figure 8. The four variables, that were formerly kept
locally in the channelCH0, are partitioned into two groups. The possibly com-
plex variabledata andsync are assigned to the memoryM0, whereas message

17

(a)

(b)

Top

PE0 PE1

B7

B3

B1
B6

B4

CH0 data sync B6_start B3_start

PE0 PE1

CH0

Figure 7. Model after channel partitioning

passing is used for the synchronization variablesB6 start andB3 start , as
illustrated in Figure 8(a).

Please note that the channelCH0 is modified only internally in order to ac-
commodate the communication to the inserted memory. Its interfaces to the PEs
and the connected PEs themselves are not affected by this refinement step and,
thus, need not be modified.

After variable partitioning, the task of architecture exploration is complete.
However, it should be emphasized that in the SpecC environment, the sequence
of allocation and partitioning tasks is determined by the designer and usually con-
tains several iterations. The designer repeats these steps based on his experience
and the performance metrics obtained with the estimation tools. This designer-
driven design space exploration is easily possible in the SpecC Environment, be-
cause all parts of the system and all models are captured in the same language.
This is in contrast to other environments where, for example, translating C code
to VHDL and vice versa must be performed and verified. This design space ex-
ploration helps to obtain a “good” system architecture and finally an optimized
implementation of the design with good performance and less costs.

18

(a)

(b)

Top

PE0 PE1

B7

B3

B1
B6

B4

data
sync

M0

CH0 B6_start B3_start

PE0 PE1

M0

CH0

Figure 8. Model after variable partitioning

3.4. COMMUNICATION SYNTHESIS

The purpose of communication synthesis is to resolve the abstract communica-
tion behavior in the virtual architecture through a series of refinements that lead
to an implementation consisting of processing elements, busses and memories.
During this process, new processing elements may be introduced in the form of
transducers which serve to bridge the gap between differing protocols.

In our methodology, communication synthesis consists of three tasks, namely
protocol selection, interface synthesis and protocol inlining.

3.4.1. Protocol selection
The designer selects the appropriate communication medium for mapping the ab-
stract channels from a library of bus/protocol schemes during the task of protocol
selection. Further, the designer has the option of including custom protocols or
customizing available protocols to suit the current application. Protocol specifi-
cations contained in the library are written in terms of channel primitives of the
SpecC language and supply common interface function calls to facilitate reuse.

19

For example, a given VME bus description will supplysend() andreceive()
as would the PCI specification. In this way, we can easily interchange protocols (as
channels) and perform some simulation to obtain performance estimates. Later,
the remote procedure calls (RPCs) to the channels will be replaced by local I/O
instructions for software, or additional behavior to be synthesized for hardware
entities.

(a)

(b)

Top

PE0 PE1

B7

B3

B1
B6

B4

data
sync

M0

CH0 BUS

PE0 PE1

M0

CH0
BUS

Figure 9. Model after bus allocation

The virtual channels in the design model after architecture exploration can
now be refined into hierarchical channels which are implemented in terms of se-
lected lower level channels. This process can be either manual or automatic. The
cost of manual refinement is still lower than in the traditional way, since the user
does not have to bother about issues such as detailed timing, thanks to the abstrac-
tion provided by the channel construct. Automatic refinement will generate code
which assembles high level messages from low level messages, or vice versa, that
can be delivered by the lower level channel.

In our example, this refinement is shown in Figure 9. A single bus channel
BUS, e. g. a PCI bus, is selected in order to carry out the communication between
the three behaviors. The methods of the virtual channelCH0are refined to use

20

the methods of the bus protocol that is encapsulated in the channelBUS. It should
be noted, that the channel hierarchy, as shown in Figure 9(b), directly reflects the
layers of the communication between the PEs.

3.4.2. Protocol inlining
During the task of protocol inlining, methods that are located in the channels, are
moved into the connected behaviors if these behaviors were assigned to a syn-
thesizable component. Thus, the behavior now includes the communication func-
tionality also. Its port interfaces are composed of bit-level signals as compared to
the abstract function calls before inlining was done. The “communication behav-
ior” can then be synthesized/compiled with the rest of the component’s functional
(computational) behavior.

It should be noted that, since all information necessary is available in the de-
sign model, protocol inlining is a fully automatic task that requires no designer
interaction.

(a)

(b)

Top

PE0 PE1

B7

B3

B1
B6

B4

data
sync

wrrd dt ad

M0

PE0 PE1

M0

Figure 10. Model after inlining in synthesizable behaviors

In case, in our example,PE0, PE1 andM0 are all synthesizable behaviors,
the methods of both channelsCH0andBUScan be inlined into the behaviors, as
shown in Figure 10. After this protocol inlining, the channel variablesrd , wr , dt

21

andad are exposed and serve as interconnection wires between the accordingly
created ports of the components.

3.4.3. Transducer synthesis

On the other hand, the designer may decide to use a non-synthesizable IP to im-
plement a behavior in the system architecture. Such an IP can be selected from
the component library, which contains both behavior models andwrapperswhich
encapsulate the proprietary protocols of communication with the IPs. In the de-
sign model, a IP is introduced by creation of atransducerwhich bridges the gap
between the IP component and the channels which the original behavior is con-
nected to. Again, such a transducer can be easily created manually thanks to the
high level nature of the wrapper and the connected channel.

It should be emphasized that the replacement of synthesizable behaviors with
IP components is not limited to the communication synthesis stage. In fact, it is
possible at any time during architecture exploration and communication synthesis.
The key to this feature is the encapsulation of IP components in wrappers.

(b)

(a)

T0
IP0

T1

IP1

MEM

T2

IP2

CH0
BUS

Top

IP0 IP1 IP2

T0 T1 T2

CH0 BUS

Figure 11. Alternative model with IPs

22

In our example, Figure 11 shows the design model where the synthesizable
behaviorsPE0, PE1 andM0are all replaced with non-synthesizable IP compo-
nents encapsulated in wrappers and connected to the channelCH0via the inserted
transducersT0, T1 andT2.

(b)

(a)

T0

IP0

T1

IP1

T2

IP2

Top

IP1 IP2

T0 T1 T2

wrrd

IP0

dt ad

Figure 12. Model with IPs after inlining

Finally, Figure 12 shows this new model with the inserted IP components
after protocol inlining is performed. Here, the methods from all the channels and
wrappers, are inlined into the transducers which communicate with the IPs via
proprietary busses. Again, the bus variablesrd , wr , dt andad are exposed and
serve as interconnection wires between the transducers.

3.5. HAND-OFF

Communication synthesis, as the last step in the synthesis flow, generates the
hand-off model for our system. This model is then further refined using traditional
back-end tools as shown in Figure 1.

23

The software portion of the communication (hand-off) model consists of code
in C for each of the allocated processors in the target architecture. Retargetable
compilers or special compilers for each of the different processors can be used to
compile the C code. The hardware portion of the model consists of synthesizable,
behavioral models in C or VHDL. The behavioral models can be synthesized us-
ing standard high-level synthesis (HLS) tools. The interfaces between hardware
and software components are also separated in software (device drivers) and hard-
ware parts (transducers). Thus, this is just a special case of hardware and software
parts and can be handled in the same way.

Finally, this design process generates theimplementation modelconsisting of
assembly code executing on the different processors and a register transfer level
(RTL) or gate-level netlist of the hardware components. Thus, the implementation
model is ready for manufacturing.

4. The Language

With this generic methodology in mind, Section 4.1 discusses the requirements
and goals for system description languages and Section 4.2 compares traditional
languages with these requirements. Since none of the languages supports all con-
cepts a new modelling language called SpecC is proposed and presented in Sec-
tion 4.3.

4.1. MODELLING LANGUAGE REQUIREMENTS

For the codesign methodology presented above, it is desirable thatone language
is used for all models at all stages. Such a methodology is calledhomogeneousin
contrast to heterogeneous approaches [19, 31], where a system is specified in one
language and then is transformed into another, or is represented by a mixture of
several languages at the same time.

This homogeneous methodology does not suffer from simulator interfacing
problems or cumbersome translations between languages with different seman-
tics. Instead one set of tools can be used for all models and synthesis tasks are
merely transformations from one program into a more detailed one using the same
language. This is also important forreuse, because design models in the library
can be used in the system without modification (“plug-and-play”) and a new de-
sign can be used directly as a library component.

System design places unique requirements on the specification and modelling
language being used. In particular the language must be

1. executable,
2. modular and
3. complete.

24

1. Executability of the language is of crucial importance for simulation. The
system specification must be validated to assure that exactly the intended
functionality is captured. Simulation is also necessary for the intermediate
design models whose functionality must be equivalent to the behavior of the
model before the refinement.

2. Modularity is required to clearly separate functionality from communication,
which is necessary in a model at a high level of abstraction. It also enables
the decomposition of a system into a hierarchical network of components.
Behavioral hierarchyis used to decompose a system’s behavior into sequen-
tial or concurrent subbehaviors, whereasstructural hierarchydecomposes a
system into a set of interconnected components.
Modularity is also required to support design reuse and the incorporation of
intellectual property. During refinement, modularity helps to keep changes
in the system description local so that other parts of the design are not af-
fected. For example, communication refinement should only replace abstract
channels with more detailed ones without modifying the components using
these channels. The locality of changes makes refinement tools simpler and
the generated results more understandable.

3. Completeness is obviously a requirement. A system language must cover all
concepts commonly found in embedded systems. In addition to (a) behav-
ioral and (b) structural hierarchy this includes (c) concurrency, (d) synchro-
nization, (e) exception handling and (f) timing, as discussed in detail in [11].
For explicit modelling of Mealy and Moore type finite state machines, (g)
state transitions have to be supported.
Furthermore, it is desirable that these concepts are organized orthogonally
(independent from each other) so that the language can be minimal. In ad-
dition to these requirements, the language should be easy to understand and
easy to learn.

4.2. TRADITIONAL LANGUAGES

Most traditional languages lack one or more of the requirements discussed in Sec-
tion 4.1 and therefore cannot be used for system modelling without problems. Fig-
ure 13 lists examples of current languages [34, 17, 15, 29, 37, 1, 39] and shows
which requirements they support and which are missing.

Because the traditional languages are not sufficient, a new language must be
developed, either from scratch or as an extension of an existing language. The
SpecC language [6] represents the latter approach as it is built on top of C.

25

Behavioral
Hierarchy

Structural
Hierarchy

Concurrency

Synchronization

Exception
Handling

Timing

C JavaVHDLVerilog SpecCharts SpecCStatecharts

State
Transitions

not supported partly supported fully supported

Figure 13. Language Comparison

4.3. THE SPECC LANGUAGE

This section introduces the SpecC language and shows how SpecC covers all the
requirements discussed before. SpecC is a superset of ANSI-C. C was selected
because of its high acceptance in software development and its large library of
already existing code.

A SpecC program can be executed after compilation with the SpecC com-
piler which first generates an intermediate C++ model of the program that is then
compiled by a standard compiler for execution on the host machine.

Modularity, providing structural and behavioral hierarchy, and the special con-
structs making SpecC complete are described next.

4.4. STRUCTURAL HIERARCHY

Semantically, the functionality of a system is captured as a a hierarchical network
of behaviors interconnected by hierarchical channels. Syntactically, a SpecC pro-
gram consists of a set ofbehavior, channelandinterfacedeclarations.

A behavioris a class consisting of a set of ports, a set of component instan-
tiations, a set of private variables and functions, and a publicmain function.
Through its ports, a behavior can be connected to other behaviors or channels
in order to communicate. A behavior is called a composite behavior if it con-
tains instantiations of child behaviors. Otherwise it is called a leaf behavior. The
functionality of a behavior is specified by its functions starting with themain
function.

26

c1

c2

b1 b2

B
p1 p2

p1 p2 p3

L R

p1 p2 p3

Figure 14. Basic Structure of a SpecC Model

A channelis a class that encapsulates communication. It consists of a set of
variables and functions, called methods, which define a communication protocol.
A channel can be hierarchical, for example subchannels can be used to specify
lower level communication.

An interfacerepresents a flexible link between behaviors and channels. It con-
sists of declarations of communication methods which will be defined in a chan-
nel.

For example, the following SpecC description specifies the system shown in
Figure 14:

interface L { void Write(int x); };
interface R { int Read (void); };

channel C implements L, R
{
int Data; bool Valid;

void Write(int x)
{ Data = x; Valid = true; }

int Read(void)
{ while(! Valid) waitfor(10);

return(Data); }
};

behavior B1(in int p1, L p2, in int p3)
{
void main(void)

{ /* ... */ p2.Write(p1); }
};

behavior B2(out int p1, R p2, out int p3)

27

{
void main(void)

{ /* ... */ p3 = p2.Read(); }
};

behavior B(in int p1, out int p2)
{
int c1;
C c2;
B1 b1(p1, c2, c1);
B2 b2(c1, c2, p2);

void main(void)
{ par { b1.main(); b2.main(); } }

};

The example system specifies a behaviorB consisting of two subbehaviorsb1
andb2 which execute in parallel and communicate via integerc1 and channelc2 .
Thus structural hierarchy is specified by the tree of child behavior instantiations
and the interconnection of their ports via variables and channels. Behaviors define
functionality, and the time of communication, whereas channels define how the
communication is performed.

4.5. BEHAVIORAL HIERARCHY

The composition of child behaviors in time is called behavioral hierarchy. Child
behaviors can either be executed sequentially or concurrently. Sequential execu-
tion can be specified by standard imperative statements or as a finite state machine
with explicit state transitions. Concurrent execution is either parallel or pipelined.

For example, we can specify a behavior being the sequential composition of
the child behaviors using sequential statements, as shown in Figure 15(a), whereX
finishes when the last behaviorCfinishes. Second, we can use the parallel compo-
sition using thepar construct, as shown in Figure 15(b), whereX finishes when
all its child behaviorsA, B andC are finished. Also, pipelined composition is
supported using thepipe construct, as shown in Figure 15(c), whereX starts
again when the slowest behavior finishes.

Syntactically, behavioral hierarchy is specified in themain function of a com-
posite behavior. For example, witha, b, andc being instantiated child behaviors,
the sequence of calls

a.main(); b.main(); c.main();

simply specifies sequential execution ofa, b, c . Thepar andpipe statements
specify concurrent execution. For example,

par { a.main(); b.main(); c.main(); }

28

A

B

C

X

A

B

C

X

Sequential Concurrent Pipelined

(b) (c)

A

B

C

X

(a)

Figure 15. Behavioral Hierarchy

executesa, b, c in parallel, whereas

pipe { a.main(); b.main(); c.main(); }

specifies execution in a pipelined fashion (a in the first iteration,a andb in the
second,. . .). Thepar statement completes when its last statement finishes, the
pipe statement implicitly specifies an endless loop.

SpecC also supports explicit specification of state transitions. For example

fsm { a: { if (x > 0) break;
if (x <= 0) goto b; }

b: { if (y > 0) goto a;
if (y == 0) goto b; }

c: { break; }
}

specifies the state transitions of a finite state machine model with three behaviors
a, b, c . Implicitly the first label in thefsm statement specifies the initial state (a).
The FSM exits when abreak statement is executed.

In summary, behavioral hierarchy is captured by the tree of function calls to
the behaviormain methods.

4.6. SYNCHRONIZATION

Concurrent behaviors usually must be synchronized in order to be cooperative. In
SpecC, a built-in typeeventserves as the basic unit of synchronization. Events can
only be used as arguments towait andnotify statements (or with exceptions
as explained in Section 4.7). Await statement suspends the current behavior
from execution until one of the specified events is notified by another behavior.

29

Thenotify statement triggers all specified events so that all behaviors waiting
on one of these events can resume their execution.

(b)(a)

IL
ef

t

IR
ight

valid

storage

wakeup

interface ILeft {
 void write(int val);
 };
interface IRight {
 int read(void);
 };

channel CShared(void)
 implements ILeft, IRight {
 int storage;
 bool valid;
 event wakeup;
 void write(int val) {
 storage = val;
 valid = true;
 notify(wakeup); }
 int read(void) {
 while (!valid)
 wait(wakeup);
 valid = false;
 return storage; } };

Figure 16. Example for simple Shared Memory Channel

For example, Figure 16 shows a simple shared memory channelCShared
that, in addition to avalid bit, uses the eventwakeup to allow only synchro-
nized accesses to itsstorage . With this channel, it is assured that a consumer
will always get valid data.

4.7. EXCEPTION HANDLING

SpecC provides support for two types of exceptions, namelyabortion (or trap)
andinterrupt, as shown in Figure 17.

The try-trap construct, illustrated in Figure 17(a), aborts behaviorx im-
mediately when one of the eventse1 , e2 occurs. The execution of behaviorx
(and all its child behaviors) is terminated without completing its computation and
control is transferred to behaviory in case ofe1 , to behaviorz in case ofe2 .
This type of exception usually is used to model the reset of a system.

On the other hand, thetry-interrupt construct, as shown in Figure 17(b),
can be used to model interrupts. Here again, execution of behaviorx is stopped
immediately for eventse1 ande2 , and behaviory or z , respectively, is started
to service the interrupt. After completion of interrupt handlersy andz control is
transferred back to behaviorx and execution is resumed right at the point where
it was stopped.

For both types of exceptions, in case two or more events happen at the same
time, priority is given to the first listed event.

It should be noted that interrupt and abortion type exceptions can be mixed in
SpecC. For example, the following code specifies a behaviorB with a resetable
child behaviorb1 and an interrupt handlerb2 .

behavior B (in event IRQ, in event RST)

30

void main(void) {
 try { x.main(); }
 interrupt(e1) { y.main(); }
 interrupt(e2) { z.main(); }
 }

X

Y Z

e1 e2

e1 e2

X

Y Z

e1 e2

e1 e2

(a) (b)

void main(void) {
 try { x.main(); }
 trap(e1) { y.main(); }
 trap(e2) { z.main(); }
 }

Figure 17. Exception handling: (a) abortion, (b) interrupt.

{
B_sub b1, b2;

void main(void)
{ try { b1.main(); }

interrupt IRQ { b2.main(); }
trap RST { b1.main(); }

}
};

4.8. TIMING

In the design of embedded systems the notion of real time is an important issue.
However, in traditional imperative languages such as C, only the ordering among
statements is specified, the exact information on when these statements are exe-
cuted, is irrelevant. While these languages are suitable for specifying functionality,
they are insufficient in modeling embedded systems because of the lack of timing
information. Hardware description languages such as VHDL overcome this prob-
lem by introducing the notion of time: statements are executed at discrete points
in time and their execution delay is zero. While VHDL gives an exact definition
of timing for each statement, such a treatment often leads toover-specification.

One obvious over-specification is the case when VHDL is used to specify
functional behavior. The timing of functional behaviors is unknown until they are
synthesized. The assumption of zero execution time is too optimistic and there
are chances to miss design errors during specification validation. Other cases of
over-specification are timing constraints and timing delays, where events have to

31

happen, or, are guaranteed to happen in atime range, instead of at a fixed point in
time, as restricted by VHDL.

SpecC overcomes this problem by differentiating between two types of timing
information,exact timingandtiming ranges. Exact timing is used when the timing
is known, for example the execution delay of an already synthesized component.
This is specified with awaitfor statement which suspends the execution of the
current behavior for a specified time. The time is measured in real time units such
as nanoseconds. Simulation time is only increased bywaitfor statements, other
statements are always executed in zero time.

(a)

a

t1 t2 t4 t5 t6

d

t7

10/200/

10/20 10/20

5/100/0/

t3

in Read

in Write

inout Data

in Address

(b) (c) (d)

channel C_SRAM(void)
 implements I_SRAM {

interface I_SRAM {
 void read_word(bit[15:0] a,
 bit[15:0] *d);
 };

behavior B_SRAM(
 in bit[15:0] addr,
 inout bit[15:0] data,
 in bool rd,
 in bool wr) {
 void main(void) { ... }
 };

bit[15:0] Address, Data;
bool Read, Write;
B_SRAM sram(
 Address, Data,
 Read, Write);

 void read_word(bit[15:0] a,
 bit[15:0] *d) { ... }
 };

void read_word(
 bit[15:0] a, bit[15:0] *d) {
 do {
 t1 : { Address = a; }
 t2 : { Read = 1; }
 t3 : { }
 t4 : { *d = Data; }
 t5 : { Address = 0; }
 t6 : { Read = 0; }
 t7 : { break; }
 }
 timing {
 range(t1; t2; 0;);
 range(t1; t3; 10; 20);
 range(t2; t3; 10; 20);
 range(t3; t4; 0;);
 range(t4; t5; 0;);
 range(t5; t7; 10; 20);
 range(t6; t7; 5; 10);
 }
 }

void read_word(
 bit[15:0] a, bit[15:0] *d) {
 Address = a;
 Read = 1;
 waitfor(10);
 *d = Data;
 Address = 0;
 Read = 0;
 waitfor(10);
 }

Figure 18. Timing Example: SRAM Read Protocol: (a) timing diagram, (b) SRAM channel, (c)
specification level timing, (d) implementation level timing.

32

Timing ranges are used to specify timing constraints at the specification
level. SpecC supports timing information in terms oftiming diagramswith min-
imum and maximum time constraints. Timing ranges are specified as 4-tuples
T = hl1; l2;min;maxi with therange statement. For example,

range(l1; l2; 10; 20);

specifies at least 10 but not more than 20 time units spent between labelsl1 and
l2 .

Consider, for example, the timing diagram of the read protocol for a static
RAM, as shown in Figure 18(a). In order to read a word from the SRAM, the
address of the data is supplied at theaddress port and the read operation is
selected by assigning 1 to theread and 0 to thewrite port. The selected word
then can be accessed at thedata port. The diagram in Figure 18(a) explicitly
specifies all timing constraints that have to be satisfied during this read access.
These constraints are specified as arcs between pairs of events annotated with
x/y , wherex specifies the minimum andy the maximum time between the value
changes of the signals.

Figure 18(b) shows the SpecC source code of a SRAM channelC SRAM,
which instantiates the behaviorB SRAM, and the signals, which are mapped to
the ports of the SRAM. Access to the memory is provided by theread word
method, which encapsulates the read protocol explained above (due to space con-
straints write access is ignored).

Figure 18(c) shows the source code of theread word method at the speci-
fication level. Thedo-timing construct used here effectively describes all in-
formation contained in the timing diagram. The first part of the construct lists all
the events of the diagram, which are specified as a label and its associated piece
of code, which describes the changes of signal values. The second part is a list of
range statements, which specify the timing constraints between the events, as
explained above.

This style of timing description is used at the specification level. In order
to get an executable model of the protocol,schedulinghas to be performed
for eachdo-timing statement. Figure 18(d) shows the implementation of the
read word method after an ASAP scheduling is performed. All timing con-
straints are replaced by delays, which are specified using thewaitfor construct.

4.9. ADDITIONAL FEATURES

In addition to the concepts explained in the last sections, the SpecC language
supports further constructs that are necessary for system-level design. First, SpecC
provides explicit support forBoolean(bool) andbitvector (bit[:]) types, in
addition to all types provided by ANSI-C.

33

Also, constructs for binary import of pre-compiled SpecC code and support
of persistent annotation for objects in the language are provided. Since these con-
structs are beyond the scope of this paper, please refer to [6] for further details.

In conclusion, the Sections 4.4 to 4.8 show that the SpecC language satisfies
the requirements of executability, modularity and completeness, as discussed in
Section 4.1.

It has to be emphasized, that the advantage of SpecC lies in itsorthogonal
constructswhich implementorthogonal concepts. All SpecC constructs are in-
dependent of each other, unlike for example signals in VHDL, which are used
for synchronization, communication and timing. The SpecC language covers the
complete set of system concepts with a minimal set of constructs. Therefore it is
easy to learn and easy to understand.

5. Reuse and IP

This section takes a closer look at how well the SpecC language and the SpecC
methodology supports the reuse and integration of intellectual property.

Reuse essentially deals with the check-in (“Design for Reuse”) and check-out
(“Reuse of Designs”) of components in the design library. Because all compo-
nents in the design library are specified using the same SpecC language, reuse
becomes easy. Also, the SpecC language encourages the specification of modu-
lar components which are decoupled from each other and therefore can be used
independently.

In particular, a SpecC design library consists of behaviors, channels, and inter-
faces. A new design can be developed from scratch and/or composed from existing
parts by selecting components from this library. As described earlier, behaviors
represent functional units such as hardware components, and channels encapsu-
late communication such as bus protocols and bus media. Thus computation and
communication are clearly separated. Interfaces connect behaviors and channels,
as they declarewhat kind of communication is performed. Channels definehow
the communication is performed by implementing the interface.

A behavior’s port of type interface can be mapped to any channel that imple-
ments that interface. Thus channels delivering the same type of communication
can be exchanged without modification of the connected behaviors, for example
a PCI bus can be easily replaced with a VME bus (“plug-and-play”). The same
applies to behaviors. A behavior can be replaced with another behavior without
affecting the channels as long as both implement the same functionality and have
compatible ports.

For integration of intellectual property, three IP configurations are possible
with SpecC. First, an IP vendor can offer design specifications which still need
to be synthesized. This is called Soft-IP and is useful for standard busses and bus

34

protocols for example. In this case the IP consists of a SpecC interface declaration
and a channel definition.

On the other hand, Hard-IP integrates already synthesized components such as
cores. Here, in addition to the actual core (layout), the IP vendor delivers a SpecC
behavior declaration which only specifies the ports of the component, and an ob-
ject or library file that can be linked to the executable SpecC code for simulation.
Note, in this case the IP vendor keeps the implementation of the core secret.

As a third configuration, a combination of Soft-IP and Hard-IP is possible,
where the IP consists of a wrapper (a SpecC channel definition with interface)
in addition to the Hard-IP parts. This is exactly the situation as described in Fig-
ure 2(b), where the wrapper supplies higher-level functions dealing with the com-
munication to the internal component.

6. The System

We have developed the SpecC Environment as shown in Figure 19. The design
is specified with the help of theSpecC Editorwhich provides a graphical user
interface (GUI). The SpecC Editor is also used for displaying the system models
at different design stages and allows the designer to execute transformations on
the models in an interactive or automatic manner. Different aspects of the design
model are displayed in separate windows. For example, the structural hierarchy of
the system under design is displayed in a hierarchy browser, whereas the mapping
of ports and variables is shown in a connectivity window. All windows support
interactive modification of the design.

In analogy to the methodology described in Section 3, the SpecC synthesis
system consists of a set of tools, such as theEstimator, theAllocator andParti-
tioner, theScheduler, and theCommunication Synthesizer, which operate on the
SIR, the SpecC Intermediate Representation. A SIR file can be obtained initially
by compiling SpecC source code using theSpecC Compiler. It contains the sym-
bol table and the abstract syntax tree of the corresponding SpecC code. It also
contains explicit information such as the type of each expression which is implicit
in the source.

The SpecC compiler can also automatically generate simulation code in the
form of C++, which can then be compiled and linked with a set of predefined
libraries in order to generate an executable.

TheSimulation Libraryimplements a discrete event simulator by maintaining
a time wheel which schedules concurrent threads. TheType Libraryprovides an
implementation of data types such as bitvector and multi-valued logic. TheGUI
Library helps to visualize signal waveforms and supports graphical entry of stim-
uli.

A standard source-level debugger can be used to debug the executable. The
HW/SW Code Generatorexports the implementation level SIR into C or HDL

35

Debugger

SpecC Compiler

C++ Compiler

SpecC
Code

SIR

Estimator

Scheduler

SpecC Editor

Type
LibraryLibrary

Simulator GUI
Library

HW/SW Code
Generator

Backend

IP

C++
Code

Executable

Allocator
Partitioner

Communication
Synthesizer

Figure 19. The SpecC Environment (SCE)

code.

7. Conclusion

With the background of a specify-explore-refine paradigm, an IP-centric method-
ology for the codesign of embedded systems was presented. The methodology
consists of a set of well-defined tasks and design models which allow the easy
insertion and reuse of intellectual property.

In particular, the design methodology starts with an executable specification
of the system under design and eventually creates an implementation architec-
ture ready for manufacturing. The intermediate tasks of allocation, partitioning,
scheduling, and communication synthesis are performed by the designer interac-
tively, either manually or with the help of automatic tools. In other words, for
architecture exploration the designer is in the loop.

In order to incorporate IP components and allow “plug-and-play”, protocol
encapsulation and separation of communication and computation is necessary. A
wrapper concept is used to hide details of communication protocols and replace
these details with an abstract high-level interface.

For this system design methodology, the language being used is important.
Since none of the traditional languages meets all the requirements for system level
design, the SpecC language was presented. SpecC precisely satisfies all require-

36

ments for codesign languages and explicitly supports structural and behavioral
hierarchy, concurrency, state transitions, exception handling, timing and synchro-
nization in an orthogonal way. SpecC encourages reuse and supports integration
of IP. Since SpecC is a superset of C, a large library of already existing algorithms
can directly be used. SpecC is easy to learn and easy to understand.

Finally, the SpecC Environment was presented. The system is based on the
described methodology and the SpecC language.

Acknowledgements

We would like to acknowledge the support of the various granting agencies who
have contributed research funding, without which this work would not have been
possible. This work was supported in part by grants from: Hitachi, Grant #-
H22003; Toshiba, Grant #-TC-20881; SRC, Grant #-97-DJ-146; and Rockwell,
Grant #-RSS-24141.

References

1. K. Arnold, J. Gosling;The Java Programming Language; Addison-Wesley, 1996.
2. F. Balarin, P. Giusto, A. Jurecska, C. Passerone, E. Sentovich, B. Tabbara, M. Chiodo,

H. Hsieh, L. Lavagno, A. Sangiovanni-Vincentelli, K. Suzuki.Hardware-Software Co-Design
of Embedded Systems, The POLIS approach. Kluwer Academic Publishers, April 1997.

3. F. Chan, M. Spiller, R. Newton. “WELD – An Environment for Web-Based Electronic De-
sign”. In Proceedings of the Design Automation Conference, San Francisco, 1998.

4. M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno, A. Sangiovanni-Vincentelli. “A For-
mal Specification Model for Hardware/Software Codesign”. InProceedings of International
Workshop on Hardware-Software Codesign, Oct. 1993.

5. P. Chou, R. Ortega, G. Borriello. “The Chinook Hardware/Software Co-Synthesis System”.
In International Symposium on System Synthesis, Cannes, France, Sept. 1995.

6. R. Dömer, J. Zhu, D. Gajski.The SpecC Language Reference Manual. University of Califor-
nia, Irvine, Technical Report ICS-TR-98-13, March 1998.

7. D. Drusinsky and D. Harel. “Using Statecharts for hardware description and synthesis”. In
IEEE Transactions on Computer Aided Design, 1989.

8. R. Ernst, J. Henkel, T. Benner. “Hardware-software cosynthesis for microcontrollers”. InIEEE
Design and Test, Vol. 12, 1993.

9. R. Ernst, et. al. “The COSYMA Environment for Hardware-Software Cosynthesis of Small
Embedded Systems”. InMicroprocessors and Microsystems, Vol. 20, No. 3, May 1996.

10. D. Gajski, F. Vahid, and S. Narayan. “SpecCharts: a VHDL front-end for embedded systems”.
University of California, Irvine, Technical Report ICS-TR-93-31, 1993.

11. D. Gajski, F. Vahid, S. Narayan, J. Gong.Specification and Design of Embedded Systems.
Prentice Hall, New Jersey, 1994.

12. D. Gajski, J. Zhu, R. D¨omer. “Essential Issues in Codesign”. InHardware/Software Co-
Design: Principles and Practice, edited by J. Staunstrup, W. Wolf. Kluwer Academic Pub-
lishers, 1997.

13. R. Gupta, C. Coelho., G. De Micheli. “Synthesis and simulation of digital systems contain-
ing interacting hardware and software components”. InProceedings of the 29th ACM, IEEE
Design Automation Conference, 1992.

14. R. Gupta, S. Liao. “Using a Programming Language for Digital System Design”. InIEEE
Design & Test of Computers, IEEE, 1997.

37

15. D. Harel; “StateCharts: a Visual Formalism for Complex Systems”;Science of Programming,
8, 1987.

16. J. Henkel, R. Ernst. “A Hardware-Software Partitioner Using a Dynamically Determined
Granularity”. InProceedings of the Design Automation Conference, 1997.

17. IEEE Inc., N.Y.IEEE Standard VHDL Language Reference Manual, 1998.
18. T. Ismail, M. Abid, A. Jerraya. “COSMOS: A Codesign Approach for Communicating Sys-

tems”. InProceedings of the International Workshop on Hardware- Software Codesign. IEEE
CS Press, 1994.

19. A. Kalavade, E. Lee. “A Hardware/Software Codesign Methodology for DSP Applications”.
In IEEE Design and Test, Sept. 1993.

20. G. Koch, U. Kebschull, W. Rosenstiel. “A prototyping architecture for hardware/software
codesign in the COBRA project”. InProceedings of the third International Workshop on
Hardware/Software Codesign, IEEE Computer Society Press, 1994.

21. D. Ku, G. De Micheli. “HardwareC – A Language for Hardware Design, Version 2.0”.
Tech. Rep. CSL-TR-90-419, Stanford University, April 1990.

22. E. Lee and D. Messerschmidt. “Static scheduling of synchronous data flow graphs for digital
signal processors”. InIEEE Transactions on Computer-Aided Design, 1987.

23. S. Liao, S. Tjiang, R. Gupta. “An Efficient Implementation of Reactivity for Modeling Hard-
ware in the Scenic Design Environment”. InProceedings of the 34th Design Automation Con-
ference, Anaheim, California, USA, 1997.

24. C. Liem, F. Nacabal, C. Valderrama, P. Paulin, A. Jerraya. “System-on-a-chip cosimulation
and compilation”. InIEEE Design & Test of Computers, 1997.

25. C. Liem, P. Paulin. “Compilation Techniques and Tools for Embedded Processor Architec-
tures”. In Hardware/Software Co-Design: Principles and Practice, edited by J. Staunstrup,
W. Wolf. Kluwer Academic Publishers, 1997.

26. J. Madsen, J. Grode, P. Knudsen. “Hardware/Software Partitioning using the LYCOS System”.
In Hardware/Software Co-Design: Principles and Practice, edited by J. Staunstrup, W. Wolf.
Kluwer Academic Publishers, 1997.

27. P. Marwedel, G. Goossens.Code Generation for Embedded Processors. Kluwer Academic
Publishers, 1995.

28. G. De Micheli.Synthesis and Optimization of Digital Circuits. McGraw Hill, 1994.
29. S. Narayan, F. Vahid, D. Gajski. “System Specification and Synthesis with the SpecCharts

Language”. InProceedings of the International Conference on Computer Aided Design, 1991.
30. A. Österling, T. Benner, R. Ernst, D. Herrmann, T. Scholz, W. Ye. “The Cosyma System”.

In Hardware/Software Co-Design: Principles and Practice, edited by J. Staunstrup, W. Wolf.
Kluwer Academic Publishers, 1997.

31. K. Rompaey, D. Verkest, I. Bolsens, H. De Man. “CoWare – A design environment for het-
erogeneous hardware/software systems”. InProceedings of the European Design Automation
Conference, 1996.

32. W. Rosenstiel. “Prototyping and Emulation”. InHardware/Software Co-Design: Principles
and Practice, edited by J. Staunstrup, W. Wolf. Kluwer Academic Publishers, 1997.

33. B. Stroustrup.The C++ Programming Language, third edition. Addison-Wesley, 1997.
34. D. Thomas, P. Moorby.The Verilog Hardware Description Language. Kluwer Academic Pub-

lishers, 1991.
35. C. Valderrama, M. Romdhani, J. Daveau, G. Marchioro, A. Changuel, A. Jerraya. “Cosmos:

A Transformational Co-design tool for Multiprocessor Architectures”. InHardware/Software
Co-Design: Principles and Practice, edited by J. Staunstrup, W. Wolf. Kluwer Academic
Publishers, 1997.

36. W. Wolf. “Hardware/Software Co-Synthesis Algorithms”. InHardware/Software Co-Design:
Principles and Practice, edited by J. Staunstrup, W. Wolf. Kluwer Academic Publishers, 1997.

37. X3 Secretariat.The C Language. X3J11/90-013, ISO Standard ISO/IEC 9899. Computer and
Business Equipment Manufacturers Association, Washington, DC, USA, 1990.

38. T. Yen, W. Wolf.Hardware-software Co-synthesis of Distributed Embedded Systems. Kluwer
Academic Publishers, 1997.

39. J. Zhu, R. D¨omer, D. Gajski. “Syntax and Semantics of the SpecC Language”. InProceedings

38

of the Synthesis and System Integration of Mixed Technologies, Osaka, Japan, Dec. 1997.

