
1676 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 9, SEPTEMBER 2007

Automatic Layer-Based Generation of
System-On-Chip Bus Communication Models

Andreas Gerstlauer, Member, IEEE, Dongwan Shin, Member, IEEE, Junyu Peng, Member, IEEE,
Rainer Dömer, Member, IEEE, and Daniel D. Gajski, Fellow, IEEE

Abstract—With growing market pressures and rising system
complexities, automated system-level communication design with
efficient design space exploration capabilities is becoming increas-
ingly important. At the same time, customized network-oriented
communication architectures become necessary in enabling a
high-performance communication among the system components.
To this end, corresponding communication design flows that are
supported by efficient design automation techniques need to be
developed. In this paper, we present a system-level design environ-
ment for the generation of bus-based system-on-chip architectures.
Our approach supports a two-stage design flow using automated
model refinement toward custom heterogeneous communication
networks. Starting from an abstract specification of the desired
communication channels, our environment automatically gener-
ates tailored network models at various levels of abstraction. At its
core, an automatic layer-based refinement approach is utilized. We
have applied our approach to a set of industrial-strength examples
with a wide range of target architectures. Our experimental results
show significant productivity gains over a traditional communica-
tion design, allowing early and rapid design space exploration.

Index Terms—Communication synthesis, embedded systems,
heterogeneous multiprocessor system-on-chip (MPSoC), system-
level design, transaction-level modeling (TLM).

I. INTRODUCTION

A S SYSTEM-ON-CHIP (SoC) designs grow in size and
complexity, on-chip communication is becoming an in-

creasingly important factor. New classes of optimization prob-
lems arise as communication delays and latencies across the
chip start dominating computation delays. As a result, simple
communication architectures based on a single shared bus are
not sufficient anymore. Therefore, new heterogeneous multibus
communication architectures and design flows are needed.

Communication design for SoC poses unique challenges
for the system designer, including a wide range of architec-
tures and many opportunities for optimizations due to the
application-specific nature of system design. A corresponding
communication design flow is needed that enables automation
and rapid design space exploration. This design flow must be

Manuscript received May 21, 2006; revised October 26, 2006. This paper
was recommended by Associate Editor L. Benini.

A. Gerstlauer, D. Shin, J. Peng, and D. D. Gajski are with the Center for
Embedded Computer Systems, University of California, Irvine, CA 92697-
2625 USA (e-mail: gerstl@cecs.uci.edu; dongwans@cecs.uci.edu; pengj@
cecs.uci.edu; gajski@cecs.uci.edu).

R. Dömer is with the Department of Electrical Engineering and Com-
puter Science, University of California, Irvine, CA 92697-2625 USA (e-mail:
doemer@uci.edu).

Digital Object Identifier 10.1109/TCAD.2007.895794

well defined, with unambiguous abstraction levels, models, and
transformations.

Typically, design models are manually written, which is
a tedious, error-prone, and time-consuming process. Also, to
achieve the required accuracy, models are often written at a
low abstraction level, resulting in a slow simulation. Together,
this severely limits the design space that can be explored in a
reasonable time.

A. Scope of Work

We propose a communication design environment that gener-
ates SoC models and implementations through refinement from
an abstract specification of the system. Automatic refinement
tools produce communication models at various abstraction
levels to trade off simulation speed versus accuracy. Our design
flow supports complex nontraditional communication architec-
tures using a heterogeneous network of buses.

Our design environment is interactive. Since we want to
benefit from designer experience and keep the designer in the
loop, all decisions are made by the designer. As such, our
environment does not currently provide an automated decision
making or a fully automatic synthesis. Instead, it automates the
generation of models based on designer decisions. Thus, instead
of dealing with model writing, the designer can focus on the
decision making and exploration process.

The quickly generated models can then be evaluated through
simulation for a rapid feedback about the design quality. The
generated models are also used for further system implementa-
tion, e.g., through back-end synthesis.

B. Target Architecture

We target architectures that are networks of shared buses over
which processing elements (PEs) communicate. Multiple buses
can be connected via communication elements (CEs). All buses
are assumed to be reliable, i.e., error-free and lossless. The
network of buses forms a forest-of-trees topology, i.e., there
are no cycles, and there exists only one path between any two
PEs. PEs are connected to buses through logical ports. Each
PE can have multiple ports, where each port connects to any
single bus (two ports can be connected to the same bus, e.g.,
one master and one slave port). PEs perform computation and
are communication endpoints, producing and consuming data.
PEs do not perform any routing or bus translation. CEs have
exactly two ports, where each port connects to a different bus.
CEs are void of computation functionality and only provide bus
connectivity and protocol translation.

0278-0070/$25.00 © 2007 IEEE

GERSTLAUER et al.: AUTOMATIC LAYER-BASED GENERATION OF SoC BUS COMMUNICATION MODELS 1677

The rest of this paper is organized as follows. After an
overview of related work, our proposed design flow and the
supported communication semantics are outlined in Sections II
and III. In Section IV, the different communication layers,
where our design flow is structured, are introduced. Sections V
and VI describe the automatic network and link refinement,
respectively. Finally, we present the experimental results in
Section VII and conclude this paper with a summary and an
outlook on future work in Section VIII.

C. Related Work

Many system-level design languages (SLDLs) are available
in modeling systems at different levels of abstraction [1], [2].
However, SLDLs themselves do not define any actual design
flows. Recent SLDLs have been used as vehicles for the so-
called transaction-level modeling (TLM) [1], [3], [4]. However,
the level of abstraction in TLM is not well defined, and TLM
approaches, so far, focus only on simulation, which lacks a path
to vertical integration for synthesis and implementation.

Several approaches deal with automatic generation and syn-
thesis of communication [5], [6]. None of these, however,
provides intermediate models that break the design task into
smaller steps required for early exploration. Historically, a lot
of work have focused on automating the decision making for
communication design [7]–[11] without, however, providing
corresponding design models or a path for implementation.
More recently, work has been done to target automatic gener-
ation [12], [13], refinement [14], [15], or estimation [16]–[18]
of communication; but in all cases, the approaches are limited
to specific target architecture templates or narrow input model
semantics. To our knowledge, no other approach that system-
atically deals with an automated implementation of customized
communication over heterogeneous bus networks exists.

References [19] and [20] show SystemC/C++ extensions for
modeling of systems and communication at different abstrac-
tions, with automatic or manual refinement between levels.
However, none of the approaches includes a path to HW/SW
implementation across multiple processor with support for
advanced architectural features like arbitration and interrupt
handling.

In [21]–[23], the network-on-chip (NoC) approach is pro-
posed. Following the ISO-OSI reference layers [24], these
approaches partition communication into layers to maximize
reuse and provide a programmer with an abstraction of the
underlying communication framework. We believe that the lay-
ered approach, if properly adapted, is well suited in addressing
the problems in SoC communication. Thus, our work is layer-
based in its models and transformations.

In the NoC area, a lot of recent researches deal with applica-
tion mapping [25], [26] or architecture specialization [27], [28].
In contrast to NoCs which are based on regular homogeneous
topologies that are scalable to varying requirements, our ap-
proach is targeted toward custom heterogeneous bus networks
for multiprocessor SoC (MPSoC) designs.

In our previous works [29]–[31], we have introduced layer-
based modeling and corresponding point tools for a stepwise
network and communication refinement, respectively. Based on

Fig. 1. Two-stage communication design flow.

these, this paper presents our overall communication design
environment and clarifies and details our input semantics, data-
base format, database contents, supported target architectures,
and features implemented in each layer. Furthermore, we have
extended our refinement tools to support a wider variety of
target architectures and implementation options. Specifically,
we support new synchronization mechanisms using shared in-
terrupt or polling and the generation of arbiters and bus bridges.
Finally, we have applied our flow to a larger set of benchmarks,
including experiments with state-of-the-art MPSoC examples
and industry-standard ARM/AMBA platforms.

II. COMMUNICATION DESIGN FLOW

Fig. 1 shows our proposed communication design flow which
contains two successive stages: network design and link design.
In each stage, design decisions are made and entered by the
user through a graphical user interface. These decisions specify
the desired target architecture and communication parameters.
By applying the decisions to the input model, refinement tools
automatically implement the communication and generate the
resulting output model, relying on databases that provide mod-
els of CEs, buses, and bus-functional (BF) PEs.

A. Architecture Model

Our communication design flow starts with the architecture
model which represents a virtual architecture of the system
[32]. Each component in the model is a PE that executes its
application in parallel with other PEs. Communication inside a
PE is not a concern for our system communication synthesis.
Inter-PE communication, however, takes place through abstract
channels providing untimed message passing or shared memory
semantics, as explained later in Section III.

Fig. 2 shows an example of an architecture model that
consists of a processor CPU, a custom hardware unit HW1, a
peripheral HW2, and a shared memory MEM that is running
application behaviors B1 to B4. Inside the CPU, tasks are
dynamically scheduled under the control of an operating system
model [33]. In addition to communication via message-passing
channels c1, c2, and c3 (see Section III), PEs exchange data
through variables v1 and v2 that are stored in the MEM. The

1678 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 9, SEPTEMBER 2007

Fig. 2. Architecture model example.

Fig. 3. Target communication architecture for the example.

memory provides interface methods used to read and write each
variable it contains.

B. Network Design

The overall network topology of PEs and CEs, together
referred to as stations from here on, is defined in network
design. CEs are introduced into the system to connect network
segments and route communication between them. End-to-
end messages between PEs are then implemented as packet
transfers over point-to-point links between the stations.
1) Designer Decisions: Network design decisions include

allocation of system buses, protocol selection, allocation and
selection of CEs such as bridges and transducers, and definition
of connectivity between stations and buses.

Fig. 3 shows the target architecture for the example shown in
Fig. 2. Three buses have been allocated: a CPU bus (Bus1) as
the main system bus, a memory bus (MBus), and a peripheral
bus (Bus2). The CPU and HW1 are directly connected to Bus1,
whereas a memory controller (MEMCtrl) bridges the system
and memory bus protocols. Finally, a transducer CE (TX) is
inserted to connect and translate between Bus1 and Bus2.
2) CE Database: CEs are taken from the CE database [34]

and range from simple bridges, which transparently connect
buses at the protocol level, up to complex transducers that
contain buffers and translate between protocols. In our data-
base, CEs carry attributes like name, type, and associated bus
protocols. The database models, however, are empty shells that
are void of any functionality. Their actual behavior will be
synthesized and inserted by the refinement tools later.

C. Network Model

The network model [32] is an intermediate model in our
design flow. It accurately reflects the network topology of
the architecture. PEs and CEs communicate via logical links
that carry streams of packets between directly connected

Fig. 4. Network model example with address and interrupt mapping.

components.1 The network model can be simulated for fast
validation of the overall network structure [29].

Fig. 4 shows the network model generated from the initial
example (Fig. 2) using the target architecture in Fig. 3. Here,
the CPU and HW1 communicate via a designated logical link
L3. The communication between the CPU and HW2, on the
other hand, is routed through transducer TX via logical links
L1 and L2. Shared memory accesses to MEM are transparently
forwarded by the MEMCtrl bridge. Inside the MEM, the vari-
ables are refined into an array of bytes reflecting the memory
layout. Inside the PEs, the upper layers of the protocol stacks
are generated in order to implement the application channels
and variable accesses over the logical links.

D. Link Design

The logical links between adjacent stations in each network
segment are implemented over the underlying physical bus.
Packet transfers are implemented over the available bus trans-
actions for the given protocol. In this process, timing-accurate
protocol descriptions and BF models (BFMs) of PEs are taken
from the bus and PE databases, respectively.
1) Designer Decisions: For each link in the system,

designer decisions include the definition of masters and slaves,
the selection of arbitration schemes and access priorities, and
the assignment of bus addresses and interrupts. Depending
on the channel requirements and bus capabilities, up to two
addresses (for data transfers and polling) and one interrupt (for
slave to master synchronization) are used per link and bus.

Fig. 4 shows the link design decisions for our example.
The CPU is a master on Bus1, driving the MEM and HW1 as
slaves. MEMCtrl is a slave on Bus1 and a master on MBus.
HW1 is a bus-mastering direct-memory-access component on
Bus1, acting as a slave which receives commands and as a
master in accessing the memory. Finally, The HW2 is a slave
on Bus2, where the transducer TX translates between Bus1 and
Bus2. In this example, each logical link channel is assigned
one interrupt and one address on its bus, e.g., L1 is assigned
intA and address 0×00020000. The MEM is mapped into the

1Note that the number and the types of links in the network model depend
on the decisions made during network design. This influences the link design
choices about address and interrupt assignments.

GERSTLAUER et al.: AUTOMATIC LAYER-BASED GENERATION OF SoC BUS COMMUNICATION MODELS 1679

Fig. 5. Generic bus component model in the bus database.

Fig. 6. Programmable component in the PE database.

address space of Bus1 at 0×0001000, where it occupies a
range matching its size.
2) Bus Database: Our bus database contains models of

buses and their protocols.2 Our bus models consist of a stack of
two layers, a protocol, and a media access (MAC) layer (Fig. 5)
[34]. The protocol layer is connected to the signals representing
the actual bus wires and implements the transactions defined
by the bus protocol for data transfers, synchronization, and
arbitration. In addition to this pin-accurate implementation,
each bus model also includes a transaction-level version of
the protocol layer. The MAC layer provides an abstraction
of external communication into packet transfers and memory
accesses. It uses the underlying bus protocol transactions to
arbitrate media accesses and slice data packets into bus words.
In our database, we also distinguish two sides for each layer in
order to allow different implementations for masters and slaves.
3) BF PE Database: BFMs are needed for intellectual prop-

erty (IP) components with fixed functionality and for program-
mable components with fixed communication interfaces. For
the IPs, the model accurately describes the component interface
at the pin level and provides functionality for simulation. For
programmable components (Fig. 6), the model provides at least
two layers: a BF layer describing the external pin interface and
an internal hardware abstraction layer (HAL) describing the bus
interface for access from the software inside. The HAL shell
also provides templates of interrupt handlers for each external
interrupt line of the processor. Together with models of the
interrupt controller (PIC) and the interrupt service routine ISR,

2Our database currently contains models of AMBA AHB, Motorola ColdFire
and DSP, MIPS EC, CAN and simple double-handshake and RS232 protocols.
Since necessary CEs are automatically generated (see Section V-D), a design
can use any combination of buses except for restrictions imposed by the target
architecture (Section I-B).

Fig. 7. PAM example.

this accurately describes the interrupt handling of the processor.
The HAL, in turn, can contain an OS shell (PE_OS) which
includes an abstract model of the PEs operating system [33].
The OS shell and interrupt handlers will be filled with actual
application tasks by the refinement tools later.

E. Transaction-Level and Pin-Accurate Models (PAM)

The transaction-level model and PAM [32] are the results of
link design. These accurately reflect the system communication
architecture in terms of both components and connections. At
the top level, the PAM consists of a set of components con-
nected by wires of the system buses. The components internally
are refined down to timing-accurate BFMs communicating via
their pins. The TLM, on the other hand, abstracts away pin-
related protocol details [3]. Here, PEs and CEs communicate
via transaction-level bus channels from the bus database. Inside
the components, stacks of bus protocol layers implement each
logical link down to the level of individual bus transactions
or, in case of the PAM, down to the sampling and driving of
individual wires. The TLM allows for a fast validation through
simulation, whereas the PAM can be handed off to backend
tools for RTL generation [35] and software synthesis [36].

Fig. 7 shows the PAM generated for Fig. 4. By reflecting
the target architecture shown in Fig. 3, the four components
communicate via buses Bus1, Bus2, and MBus. The MAC and
protocol layer adapters from the bus database, together with
automatically generated implementations of higher layers, are
inserted into each component. For the programmable CPU, its
BFM has been inserted from the PE database and connected
at the MAC layer. The TLM generated for the example is
equivalent to the PAM, except that the protocol layers are
removed and the components communicate via corresponding
TLM channels for each bus.

III. COMMUNICATION CHANNELS

We will now shift our attention to the communication se-
mantics supported by our design environment. In general, we
decided to support a limited but sufficiently general set of
typical communication mechanisms. Specifically, our design
flow supports synchronous and asynchronous message passing,

1680 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 9, SEPTEMBER 2007

Fig. 8. Synchronization semantics of abstract communication channels.
(a) Synchronous MP. (b) Asynchronous MP. (c) Memory. (d) Event.

memory access, and events. Fig. 8 shows the semantics of these
four channels as state diagrams.

In a synchronous message passing [Fig. 8(a)], the sender and
the receiver meet in a rendezvous fashion to safely exchange
data. The sender stores the data in the channel, notifies the
receiver, and then waits for acknowledgment. The receiver, on
the other hand, waits for the data, copies them, and acknowl-
edges the reception. In short, synchronous message passing
utilizes a two-way handshake mechanism to ensure a reliable
data transport. Both the receiver and the sender may be blocked
in their execution.

In an asynchronous message passing [Fig. 8(b)], only the
receiver may be blocked if data are not yet available. To avoid
loss, sent data are stored in a queue channel3 until they are
received. Thus, asynchronous message passing is also reliable,
but the sender does not know when the receiver actually gets
the data.

A shared memory access [Fig. 8(c)] exhibits nonblocking
communication for both the sender and the receiver. The sender
simply writes data into the memory where they can be read
by the receiver at any time. Since there is no built-in synchro-
nization between the communicating parties, this type of data
transfer is unreliable.

Finally, an event channel [Fig. 8(d)] exhibits pure synchro-
nization semantics without any data transfer. The receiver sim-
ply waits for an event from the sender before proceeding in its
execution. Note that this event channel can easily be combined
with a memory channel to achieve reliable communication in a
shared memory fashion.

Fig. 9 shows the four channels in our design flow. In the
architecture model [Fig. 9(a)], all four channel types are sup-
ported. In the network model [Fig. 9(b)], both message-passing
channels are implemented as synchronous channels via the
introduced CE1. Buffering in the queue is now implemented
explicitly as a buffer4 in CE1. Note that, while communica-
tion over each link (PE1 to CE1 and CE1 to PE2) is now
synchronous, the overall transfer from PE1 to PE2 may be
asynchronous due to buffering in CE1.5 In the TLM [Fig. 9(c)],

3To support asynchronous message passing, queues of infinite capacity
are assumed in the input architecture model. The actual queue depths are
implementation dependent.

4In the network model, buffers are of fixed sizes, which are determined by
the user as part of the network refinement task. In case of zero buffering (no
CEs), communication will end up being synchronous.

5For a synchronous message passing as required by the architecture model,
protocols that restore synchronicity via an exchange of additional messages will
be inserted into the PEs during refinement.

each bus in the network is now represented with one TLM and
a set of interrupt channels (e.g., Bus1 and Int1). In the PAM
[Fig. 9(d)], on the other hand, no channels are present anymore.
Instead, bus wires are explicitly represented by signals of
bitvector type.

IV. COMMUNICATION LAYERS

Our design approach is systematically structured along a
layering of communication functionality [29]. We divide the
layers based on separation of concerns, grouping of common
functionality, and dependences across layers. Table I summa-
rizes our layers for SoC communication which are based on
the ISO-OSI reference model [24]. To minimize the impact of
dependences, the ordering of steps, as identified by the ISO-OSI
model, is the basis for our flow. However, due to the unique
characteristics of SoC communication, we have tailored our
layers specifically to SoC requirements. During synthesis, tools
can optimize and customize layers further, depending on the
specific requirements of the application and the target archi-
tecture, e.g., to eliminate unnecessary functionality or adjust
hardware resource parameters. For example, transport layers
are optimized away if there are no transducers between two
PEs. Details of the optimizations performed for each layer are
included in Sections V and VI.

Communication functionality in a SoC can often be imple-
mented in different ways, depending on the application and the
chosen target architecture. Table I summarizes the implementa-
tion options that are specifically supported by our environment
[37]. Details of layer implementation and corresponding refine-
ment are described in detail in the remainder of this paper.

V. NETWORK REFINEMENT

Network design refines the architecture into a network model
that reflects the network topology of the system. Our refinement
process can be divided into four main steps corresponding to the
previously introduced layers: presentation, session, transport,
and network layer.

A. Presentation Layer: Data Formatting

The presentation layer is responsible for data formatting
in the PEs and on the network. When transferring data, we
use a common format between the communicating partners.
Similarly, we use a common data layout in shared memories
accessed by different PEs. For each PE and shared memory,
data layout parameters (size, alignment, and char width) are
stored in the PE database. In addition, the database defines a
canonical network endianess and includes corresponding byte-
swapping functions for each PE.

For each message exchanged between PEs, its data type is
converted into an untyped block of bytes passed to the next
lower layer. In order to reduce overall network traffic, messages
between each pair of PEs are formatted based on a fixed
alignment of one (i.e., avoiding any byte padding) and by using
the size parameters of the PE with smaller data types.6

6Note that, since value ranges are limited by the capabilities of the smaller
PE, no precision is lost.

GERSTLAUER et al.: AUTOMATIC LAYER-BASED GENERATION OF SoC BUS COMMUNICATION MODELS 1681

Fig. 9. Communication channels in different models of the design flow. (a) Architecture model. (b) Network model. (c) Transaction-level model. (d) PAM.

TABLE I
COMMUNICATION LAYERS

The presentation layers in the components accessing a shared
memory are responsible for converting variables in the applica-
tion into size and offset values for shared memory accesses. For
a memory, all variables stored inside are grouped into a single
array of bytes following the memory’s data layout.

B. Session Layer: Synchronization and Merging

The session layer is responsible for synchronization and
multiplexing of different application channels into a number
of end-to-end message streams. To maintain end-to-end syn-
chronicity, we automatically insert acknowledge messages if
the application requires a synchronous data transfer and if there
are buffers in the path between endpoints. Since the channel
configuration is statically known, dynamic session creation and
tear-down are not needed. Instead, channel merging is imple-
mented through static connectivity. Channels are merged based
on their ordering. During refinement, sequential transactions
are automatically combined using a channel-merging algorithm
[30] in order to reduce the number of logical link channels in
the system.

C. Transport Layer: Packeting

The transport layer is responsible for packeting, error cor-
rection, and flow control. In our case, underlying buses are

Fig. 10. Synchronous message passing over a transducer.

reliable, and error correction is not necessary. Furthermore,
since lower layers can be dimensioned to avoid unnecessary
network congestion,7 flow control is not required either.

Packeting splits messages into smaller packets to reduce the
required buffer sizes. Since packeting is only necessary in cases
where a message is traversing a path that includes intermediate
transducer stations, transport layers are empty for channels
where communication endpoints are on the same (or bridged)
bus. We will discuss an example of transducer communication,
including implementations of transport and session layers, in
Fig. 10 and Section V-D2.

7By implementing separate nonshared buffers for each transport path, we
avoid blocking of streams due to buffer saturation by another stream.

1682 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 9, SEPTEMBER 2007

Packet sizes are fixed and can be set by the designer for
each channel. Since buffered transducers are typically used for
translation of relatively slow low-volume peripheral I/O proto-
cols (e.g., a UART that is used as a transducer between RS232
and CPU buses), packet size defaults to one. In all other cases,
transport layer implementations, which pad the packets with
dummy data if necessary, will be generated during refinement.

D. Network Layer: CE Synthesis and Insertion

The network layer inserts CEs from the database and
routes end-to-end communication over the network of CEs and
point-to-point logical links. In our target architectures, there
exists only one path between any two PEs, and we assume
reliable stations and links. Hence, routing is simplified to be
deterministic and static over dedicated links between stations.
In our environment, we distinguish between two types of
CEs, bridges, and transducers. Both are empty shells in the
database. Their functionality is synthesized as part of network
refinement.
1) Bridges: Bridges transparently connect one bus to an-

other at the protocol level. A bridge in the database has exactly
two bus interfaces/ports. It is always a slave on one bus and a
master on the other and transparently implements every match-
ing transaction on its slave side by a corresponding transaction
on its master side. The bridge maps the address space of the
master side bus into the address space of its slave side bus where
the bridge model in the database specifies the range of addresses
mapped.

A bridge does not buffer a complete transaction but rather
blocks the transaction on its slave side until the shadow trans-
action on its master side is complete. Therefore, a bridge pre-
serves synchronization semantics inherent to the bus protocols.
As such, a bridge is a CE that only covers conversions at the
protocol level and that is transparent to higher communication
layers. A good example of a bridge is a memory controller
(see Section II) which bridges processor and memory buses.
2) Transducers: In cases where simple bus bridges are not

sufficient (incompatible bus protocols), transducer CEs are
used. Transducers operate on packets using a store-and-forward
principle, routing packets between their incoming and outgoing
links. Transducers can connect any two bus protocols and can
be a master or a slave on either side. In contrast to a bridge,
transducers internally buffer each individual bus transaction on
one side before performing the equivalent transaction on the
other side.

Transducers take part in high-level point-to-point commu-
nication protocols. As such, a transducer does not preserve
synchronicity but rather decouples each end-to-end channel
into point-to-point channel. Since memory transfers cannot be
decoupled, memory interface transactions cannot be mapped
and implemented over a transducer. In case of a synchronous
message passing over a transducer, network refinement will
automatically insert necessary protocol implementations into
the PE endpoints in order to restore synchronicity lost over the
transducer.

As shown in Fig. 10, a generated transducer contains cor-
responding state machines for each direction of each channel

crossing the transducer. Each state machine contains its own
local buffer, avoiding potential deadlocks. In the example, PE1
first packets the data and sends it to the transducer (1) which
in turn forwards it to PE2 (2). In order to preserve synchronous
semantics, PE2 then sends an acknowledge packet through the
transducer (3) back to PE1 (4).

VI. LINK REFINEMENT

Link design refines the network model into a PAM or TLM
of the system. Again, we divide our refinement into four steps,
matching the link, stream, MAC, and protocol layers.

A. Link Layer: Synchronization

The link layer is responsible for implementing synchroniza-
tion through interrupts, interrupt sharing, or polling. Link layers
have different implementations depending on the type of station
(master/slave). Methods on the master side wait for synchro-
nization from slaves before invoking MAC layer methods to
perform the actual data transfer. On the other hand, a slave
will notify the master before continuing to listen for incoming
data transfer requests.8 No synchronization is necessary for
slaves that are always ready (memory or memory-mapped I/O
register accesses) or in case of buses with inherent two-way
synchronization (e.g., RS232).
1) Interrupts: Our link refinement uses interrupts for syn-

chronization if they are available in the master PE. BFMs for
programmable components in the PE database include their
interrupt capabilities. The BF PE layer defines the interrupt pins
available at the physical component interface. The PEs HAL
provides corresponding interrupt handler shells that define an
insertion point for custom interrupt code inside a properly set up
context. During link refinement, interrupt lines from slaves are
connected to the interrupt pins of programmable components,
and interrupt handlers and interrupt tasks are generated in the
HAL and OS shell, respectively. In this process, the existing
interrupt handler templates in the HAL are filled with codes
to spawn an interrupt task that, in turn, notifies the link layer
through a semaphore.

Fig. 11 shows the state machines synthesized for master and
slave components that are synchronized by interrupts. When
a slave process reaches the communication point, it notifies
the master that it is ready to start data transfer by sending an
interrupt (1). Upon receiving the interrupt event, the interrupt
handler in the master sets a SlaveReady flag. The master side
process waits until the flag is set to initiate the bus transfer (3).
Finally, the slave component waits for the master to initiate the
bus transfer by checking the address bus (4). This mechanism
retains the two-way blocking property of any original synchro-
nous message-passing communication. Once the data transfer
is complete, the master component resets the SlaveReady flag
to prepare for the next request.

8Note that, on a bus, master/slave assignments are independent from and
orthogonal to sender/receiver status. Moreover, the same station can have
different designations for different incoming/outgoing links.

GERSTLAUER et al.: AUTOMATIC LAYER-BASED GENERATION OF SoC BUS COMMUNICATION MODELS 1683

Fig. 11. Slave to master synchronization.

2) Interrupt Sharing and Polling: In case of an insufficient
number of interrupts available in the master, we implement
interrupt sharing. For each incoming request, interrupt handling
is extended to determine the source of the request via polling of
all interrupt sources. As shown in Fig. 11, link refinement op-
tionally inserts additional code to poll slaves as part of interrupt-
based synchronization (2): After receiving an interrupt, the
master queries the state of all associated slaves using a unique
address (PollAddr). When polling, only the slave that actually
triggered the interrupt will answer the request by writing its ID
to the bus. Note that, in case of master PEs without interrupt
capabilities (e.g., nonprogrammable PEs), a similar polling of
slaves is implemented. In this case, code is inserted to poll all
connected slaves in regular intervals (busy-waiting) directly in
the master’s link layer.

B. Stream Layer: Addressing

The stream layer multiplexes multiple logical links over a
single bus by separating them through addressing. During link
design, each logical link is assigned a unique bus address
by the designer.9 Stream layer instances are generated inside
the PEs and CEs to add the associated link address around
each transaction before passing it to the shared MAC layer
underneath. Note that, in case of point-to-point buses (e.g.,
serial RS232 protocols), addressing is not supported, and only
one logical link per bus can be implemented.

C. MAC Layer: Data Slicing and Arbitration

The MAC layer is responsible for slicing of data packets
into bus transactions and arbitration of conflicting transactions.
For data slicing, MAC layer instances are taken from the bus
database and inserted into the components during refinement.
MAC layers split data packets into individual bus transactions
supported by the underlying protocol. By using the available
transaction types (including burst modes), slicing is optimized
to perform at its best.

9Since in our bus-based systems we typically have a large number of bus
addresses available, in this way, we can avoid sharing of bus addresses and
associated overhead for additional IDs in the packet headers. Note that transfers
of the same link carry the same address since they can implicitly be separated
based on their order and the fixed packet size.

Fig. 12. Round-robin arbiter.

Arbitration becomes necessary in resolving conflicting ac-
cesses if multiple masters are connected to a bus. Inside the
masters, arbitration protocols from the bus database are inserted
as part of the bus master protocol. In case of a distributed
arbitration scheme, arbitration protocols regulate bus accesses
among themselves. In case of a centralized arbitration scheme,
an arbiter is added to the system architecture and connected to
arbitration protocol instances in all masters.

A generic arbiter supports bus request and bus grant ports
(req and gnt, respectively), as shown in Fig. 12. Based on
designer decisions, we generate a priority-based or round-robin
arbiter component. Fig. 12 shows a round-robin arbiter with
support for two masters. Upon receiving a request (1), the
arbiter chooses a master to serve and sends the grant to the
selected master (2).

D. Protocol Layer: Bus Interface Synthesis

The protocol layer is responsible for implementing the state
machines that drive and sample the actual bus wires according
to the timing diagrams and constraints defined by the protocol.
For any synthesizable component, bus protocol state machines
from the database are inserted into the component during
refinement. On the other hand, special handling is required for
BF PEs with fixed protocols and for bridges.

BFMs for PEs with fixed predefined bus interfaces (IPs or
programmable processors) already include a timing-accurate
description of the PEs interface at the pin level. For
those PEs, BFMs are inserted from the database into the
design.

Bridges transparently translate between two bus protocols
directly at the protocol level. A bridge state machine is gen-
erated as the product of the two bus protocol state machines.
In the process, the two protocols are properly interleaved such
that data dependences and timing constraints are observed.
Between listening for and serving transactions on the slave side,
it interleaves corresponding mirror transactions on its master
side (blocking the slave side if necessary).

Fig. 13 shows a bridge which handles data transfers between
PE1 on its slave side (bus1) and PE2 on its master side (bus2).
When idle, the bridge listens for requests on its slave side. Upon
receiving a write request (1), it reads the data from the slave
bus by serving the slave write request (2) before performing a

1684 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 9, SEPTEMBER 2007

Fig. 13. Bridge model in protocol layer.

write transaction on its master side (3). On the other hand, when
receiving a read request (4), it first performs a corresponding
read transaction on its master side (5) before serving the read
request on the slave side by writing the data received on the
master side to the slave bus (6).

VII. EXPERIMENTS AND RESULTS

We have implemented network and link refinement tools
that automatically generate design models corresponding to
our communication layers [30], [31]. Given designer decisions,
our tools automatically refine a virtual architecture model of
the system down to TLM and PAM implementations. Both
refinement tools are integrated into our overall SoC design
environment [38]. For our implementation, we used the SpecC
SLDL [2] in describing the designs and, hence, also as input
and output of the tools.
1) Setup: To demonstrate the feasibility and benefits of our

approach, we have applied our tools to several industrial-
strength examples: a JPEG encoder (JPEG) [39], a voice codec
for the GSM standard for mobile telephony (Vocoder) [40],
floating- and fixed-point versions of an MP3 decoder (MP3float
and MP3fix), a mobile phone baseband example (Baseband)
[29], and a platform (Cellphone) similar to the one used in the
RAZR cellphone [41].

Table II summarizes the target architectures and parame-
ters of the examples. Each architecture is specified as lists
of masters and slaves for each bus. The bus type is implic-
itly determined to be the protocol of the primary master on
the bus. JPEG and MPfloat examples use Motorola ColdFire
processors (CF) assisted by various configurations of custom
hardware (HW) and DCT (IP) blocks. Vocoder uses a Motorola
DSP56600 processor (DSP) and custom hardware coprocessors
(HW). MP3fix is based on an ARM platform with additional
IO and DCT units. In all cases, we have examined various
communication architectures using DSP, CF, ARM (AMBA
AHB), and simple handshake buses.

Baseband and Cellphone examples are true system designs.
Baseband combines JPEG on CF with the Vocoder on DSP.
Cellphone consists of an ARM subsystem running MP3fix
and JPEG tasks in connection with a DSP subsystem run-
ning the Vocoder (Fig. 14). In both cases, subsystems com-
municate via transducers (T) that connect CF/AMBA and
DSP buses.

TABLE II
DESIGN EXAMPLES AND TARGET ARCHITECTURES

Table II also shows the number of inter-PE channels and the
total inter-PE traffic for each example. We have successfully
simulated all generated models for functional correctness.
2) Results: Table III shows the results of design space ex-

ploration for the different examples. Overall model complexi-
ties are given in terms of code size using lines of code (LOC)
as a metric. The results show significant growth in complexity
from the input to the generated output models due to the extra
implementation detail at lower abstraction levels. To quantify
the actual refinement effort, the number of modified lines
is calculated as the sum of lines inserted and lines deleted.
Codes coming from database models are listed separately (ex-
cluded from the modified LOC count). Even when using opti-
mistic assumptions (e.g., that a designer can correctly modify
10 LOC/h, including testing and debugging), manual refine-
ment would require days for our reasonably complex designs.
Our automatic refinement, on the other hand, completes this
task in a few seconds.10 Therefore, our approach yields signifi-
cant productivity gains.
3) Analysis: Our approach benefits from automating the

straightforward yet tedious and error-prone model rewriting
process. Our experiments show that automatically generated
models provide a functionally correct and structurally and
timing-accurate representation of the target design in a manner
very similar to models typically implemented by designers. In
addition, due to complexity and time pressure, optimizations
that can be performed by designers are limited, whereas auto-
mated tools can easily exploit optimization opportunities. For
example, the channel merging implemented by our network
refinement tool (Section V-B) significantly reduces the design
complexity (as indicated by the code size of the network
models) in the JPEG and Vocoder examples.

10In this comparison, we assumed that all designer decisions are given in
both cases, i.e., the time required for decision making is the same.

GERSTLAUER et al.: AUTOMATIC LAYER-BASED GENERATION OF SoC BUS COMMUNICATION MODELS 1685

Fig. 14. Cellphone example platform.

TABLE III
RESULTS FOR EXPLORATION EXPERIMENTS

As a result, using our approach, we are able to efficiently and
rapidly explore the communication design space. For instance,
for the Vocoder example, we were able to explore the design
space and arrive at an optimal solution in less than 1 h, includ-
ing the time needed for model simulations [30].

VIII. SUMMARY AND CONCLUSION

In this paper, we have presented a communication design
flow with well-defined design steps and design models. By
starting from a virtual architecture model with different types
of abstract message-passing communication, a design model
is automatically refined to a transaction-level and pin-accurate
implementation through network and link design stages. We
have demonstrated the feasibility and benefits of our approach
using industrial-strength examples.

Our design flow supports a wide range of target communi-
cation architectures with different media and protocols. It is
systematically structured along a layering of communication
functionality where communication layers have been identified,
defined, and tailored based on the specific requirements of
SoC design. Our flow includes customization and optimization
of communication layers using an automatic generation of
application- and platform-specific architectures.

Out of many possible models, we have defined intermediate
models based on accuracy versus simulation speed tradeoffs, al-
lowing early validation of critical design decisions. In between
design stages, the network model defines the implementation of
the end-to-end network on top of point-to-point logical links.
Furthermore, the transaction-level model provides an accu-
rate simulation at a significantly improved speed compared to
the PAM.

All our models and layers have been systematically defined
such that they can be automatically generated. Automating the
tedious and error-prone process of refining high-level commu-
nication abstractions to actual implementation results in signifi-
cant gains in productivity, thus enabling rapid early exploration
of the communication design space.

In the future, we plan to extend our databases with ad-
ditional components, including advanced bus structures like
crossbars or bus matrices (e.g., AMBA AXI). Further fu-
ture work includes adding algorithms for decision mak-
ing to provide a completely automated synthesis process.
Finally, we plan to extend design tasks and refinement tools
to implement error-correction, flow control, and dynamic rout-
ing for off-chip, long-latency, and error-prone communication
media.

REFERENCES

[1] T. Grötker, S. Liao, G. Martin, and S. Swan, System Design With SystemC.
Norwell, MA: Kluwer, Mar. 2002.

[2] D. D. Gajski, J. Zhu, R. Dömer, A. Gerstlauer, and S. Zhao, SpecC: Spec-
ification Language and Design Methodology. Norwell, MA: Kluwer,
2000.

[3] G. Schirner and R. Dömer, “Quantitative analysis of transaction level
models for the AMBA bus,” in Proc. DATE, Mar. 2006, pp. 1–6.

[4] M. Coppola, S. Curaba, M. Grammatikakis, and G. Maruccia, “IPSIM:
SystemC 3.0 enhancements for communication refinement,” in Proc.
DATE, Mar. 2003, pp. 106–111.

[5] W. O. Cesário, D. Lyonnard, G. Nicolescu, Y. Paviot, S. Yoo, and
A. A. Jerraya, “Multiprocessor SoC platforms: A component-based de-
sign approach,” IEEE Des. Test Comput., vol. 19, no. 6, pp. 52–63,
Nov./Dec. 2002.

[6] K. van Rompaey, D. Verkest, I. Bolsens, and H. D. Man, “CoWare: A
design environment for heterogeneous hardware/software systems,” in
Proc. Eur. Des. Autom. Conf., 1996, pp. 252–257.

[7] T.-Y. Yen and W. Wolf, “Communication synthesis for distributed embed-
ded systems,” in Proc. ICCAD, Nov. 1995, pp. 288–294.

1686 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 9, SEPTEMBER 2007

[8] M. Gasteier, M. Münch, and M. Glesner, “Generation of interconnect
topologies for communication synthesis,” in Proc. DATE, Mar. 1998,
pp. 36–42.

[9] M. Gasteier and M. Glesner, “Bus-based communication synthesis on
system-level,” in Proc. ISSS, Nov. 1996, pp. 65–70.

[10] R. B. Ortega and G. Borriello, “Communication synthesis for distributed
embedded systems,” in Proc. ICCAD, Nov. 1998, pp. 437–444.

[11] K. Lahiri, A. Raghunathan, and S. Dey, “Efficient exploration of the SoC
communication architecture design space,” in Proc. ICCAD, Nov. 2000,
pp. 424–430.

[12] W. Klingauf, H. Gädke, and R. Günzel, “TRAIN: A virtual transaction
layer architecture for TLM-based HW/SW codesign of synthesizable
MPSoC,” in Proc. DATE, Mar. 2006, pp. 1–6.

[13] I. Bolsens, H. D. Man, B. Lin, K. V. Rompay, S. Vercauteren, and
D. Verkest, “Hardware/software co-design of the digital telecommunica-
tion systems,” Proc. IEEE, vol. 85, no. 3, pp. 391–418, Mar. 1997.

[14] D. Lyonnard, S. Yoo, A. Baghdadi, and A. A. Jerraya, “Automatic gener-
ation of application-specific architectures for heterogeneous multiproces-
sor system-on-chip,” in Proc. DAC, Jun. 2001, pp. 518–523.

[15] W. O. Cesario, A. Baghdadi, L. Gauthier, D. Lyonnard, G. Nicolescu,
Y. Paviot, S. Yoo, A. A. Jerraya, and M. Diaz-Nava, “Component-
based design approach for multicore SoCs,” in Proc. DAC, Jun. 2002,
pp. 789–794.

[16] K. Lahiri, A. Raghunathan, and S. Dey, “System-level performance analy-
sis for designing on-chip communication architectures,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 20, no. 6, pp. 768–783,
Jun. 2001.

[17] X. Zhu and S. Malik, “A hierarchical modeling framework for
on-chip communication architectures,” in Proc. ICCAD, Nov. 2002,
pp. 663–670.

[18] M. Lajolo, C. Passerone, and L. Lavagno, “Scalable techniques for
system-level co-simulation and co-estimation,” Proc. Inst. Electr. Eng.—
Computers Digital Techniques, vol. 150, no. 4, pp. 227–238, Jul. 2003.

[19] R. Siegmund and D. Müller, “SystemCSV : An extension of SystemC for
mixed multi-level communication modeling and interface-based system
design,” in Proc. DATE, Mar. 2001, pp. 26–32.

[20] R. Pasko, S. Vernalde, and P. Schaumont, “Techniques to evolve a C++
based system design language,” in Proc. DATE, Mar. 2002, pp. 302–309.

[21] M. Sgroi, M. Sheets, M. Mihal, K. Keutzer, S. Malik, J. Rabaey, and
A. Sangiovanni-Vincentelli, “Addressing the system-on-a-chip inter-
connect woes through communication-based design,” in Proc. DAC,
Jun. 2001, pp. 667–672.

[22] L. Benini and G. D. Micheli, “Networks on chips: A new SoC paradigm,”
Computer, vol. 35, no. 1, pp. 70–78, Jan. 2002.

[23] A. Jantsch and H. Tenhunen, Eds., Networks on Chip. Norwell, MA:
Kluwer, 2003.

[24] Reference Model of Open System Interconnection, 2nd ed., International
Organization for Standardization, 1994, ISO/IEC 7498 Standard.

[25] J. Hu and R. Marculescu, “Energy- and performance-aware mapping for
regular NoC architectures,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 24, no. 4, pp. 551–562, Apr. 2005.

[26] S. Murali and G. D. Micheli, “SUNMAP: A tool for automatic
topology selection and generation for NoCs,” in Proc. DAC, Jun. 2004,
pp. 914–919.

[27] U. Y. Ogras and R. Marculescu, “Energy- and performance-driven cus-
tomized architecture synthesis using a decomposition approach,” in Proc.
DATE, Mar. 2005, pp. 352–357.

[28] K. Srinivasan, K. S. Chatha, and G. Konjevod, “Linear-programming-
based techniques for synthesis of network-on-chip architectures,” IEEE
Trans. VLSI Syst., vol. 14, no. 4, pp. 407–420, Apr. 2006.

[29] A. Gerstlauer, D. Shin, R. Dömer, and D. D. Gajski, “System-level com-
munication modeling for network-on-chip synthesis,” in Proc. ASPDAC,
Jan. 2005, pp. 45–48.

[30] D. Shin, A. Gerstlauer, R. Dömer, and D. D. Gajski, “Automatic network
generation for system-on-chip communication design,” in Proc. CODES
+ ISSS, Sep. 2005, pp. 255–260.

[31] D. Shin, A. Gerstlauer, R. Doemer, and D. D. Gajski, “Automatic genera-
tion of communication architectures,” in From Specification to Embedded
Systems Application, A. Rettberg, M. C. Zanella, and F. J. Rammig, Eds.
New York: Springer-Verlag, Aug. 2005.

[32] D. Shin et al., “System-on-chip modeling style guides,” UC Irvine,
Irvine, CA, Tech. Rep. CECS-TR-04-22 through CECS-TR-04-24,
Jul. 2004.

[33] A. Gerstlauer, H. Yu, and D. D. Gajski, “RTOS modeling for system level
design,” in Proc. DATE, Munich, Germany, Mar. 2003, pp. 130–135.

[34] A. Gerstlauer et al., “System-on-chip component models,” UC Irvine,
Irvine, CA, Tech. Rep. CECS-TR-06-10, May 2006.

[35] D. Shin et al., “C-based interactive RTL design methodology,” UC Irvine,
Irvine, CA, Tech. Rep. CECS-TR-03-42, Dec. 2003.

[36] H. Yu, R. Dömer, and D. D. Gajski, “Embedded software generation
from system level design languages,” in Proc. ASPDAC, Jan. 2004,
pp. 463–468.

[37] A. Gerstlauer et al., “Necessary and sufficient functionality and parame-
ters for SoC communication,” UC Irvine, Irvine, CA, Tech. Rep. CECS-
TR-06-01, May 2006.

[38] S. Abdi et al., “System-on-chip environment (SCE Version 2.2.0 beta):
Tutorial,” UC Irvine, Irvine, CA, Tech. Rep. CECS-TR-03-41, Jul. 2003.

[39] Digital Compression and Coding of Continous-Tone Still Images, Inter-
national Telecommunication Union (ITU), Sep. 1992, ITU Recommen-
dation T.81.

[40] Digital cellular telecommunications system; Enhanced Full Rate (EFR)
speech transcoding, Final draft ed., European Telecommunication Stan-
dards Institute (ETSI), 1996, GSM 06.60.

[41] C. Giridhar, Trendy Phones Incorporate Sophisticated Engineering,
EDN Asia. [Online]. Available: http://www.edn.com/index.asp?layout=
article&articleid=CA6290467

Andreas Gerstlauer (S’97–M’04) received the
Dipl.Ing. degree in electrical engineering from the
University of Stuttgart, Stuttgart, Germany, in 1997
and the M.S. and Ph.D. degrees in information and
computer science from the University of California,
Irvine (UCI), in 1998 and 2004, respectively.

He is currently an Assistant Researcher with the
Center for Embedded Computer Systems, UCI. His
research interests include electronic system-level
(ESL) design languages, methodologies and tools,
system modeling, and embedded hardware and soft-
ware synthesis.

Dongwan Shin (S’00–M’04) received the M.S. de-
gree in electronics engineering from Seoul National
University, Seoul, Korea, in 1997 and the Ph.D.
degree in information and computer science from the
University of California, Irvine (UCI), in 2004.

From 1997 to 1999, he was with LG Semincon,
Company, Ltd., Seoul, Korea. Since 2004, he has
been an Assistant Project Scientist with the Center
for Embedded Computer Systems, UCI. His research
interests include system-level design automation,
high-level synthesis, and low-power system design.

Junyu Peng (S’00–M’04) received the B.S. degree
in physics from Tsinghua University, Beijing, China,
in 1994 and the Ph.D. degree in information and
computer science from the University of California,
Irvine (UCI), in 2004.

He is currently an Assistant Project Scientist with
the Center for Embedded Computer Systems, UCI.
His research interests include system-level modeling
and automatic synthesis of embedded systems and
embedded software.

GERSTLAUER et al.: AUTOMATIC LAYER-BASED GENERATION OF SoC BUS COMMUNICATION MODELS 1687

Rainer Dömer (S’95–M’00) received the Ph.D.
degree in information and computer science from
the University of Dortmund, Dortmund, Germany,
in 2000.

He is currently an Assistant Professor in elec-
trical engineering and computer science with the
Department of Electrical Engineering and Computer
Science, University of California, Irvine (UCI). He
is also a member of the Center for Embedded Com-
puter Systems, UCI. His research interests include
system-level design and methodologies, embedded

computer systems, specification and modeling languages, system-on-chip de-
sign, and embedded software.

Daniel D. Gajski (M’77–SM’83–F’94) received
the Dipl.Ing. and M.S. degrees in electrical en-
gineering from the University of Zagreb, Zagreb,
Croatia, and the Ph.D. degree in computer and infor-
mation sciences from the University of Pennsylvania,
Philadelphia.

After 10 years as a Professor with the University of
Illinois, he has joined University of California, Irvine
(UCI), where he presently holds The Henry Samueli
Endowed Chair in Computer System Design. He
directs the UCI Center for Embedded Computer

Systems, with a research mission that aims to incorporate embedded systems
into automotive, communications, and medical applications. Being a leader
in the areas of embedded systems, design methodologies, and languages, he
headed the research teams that created new design methodologies, tools, and
languages. He was instrumental in developing formalisms and algorithms for
high-level synthesis, the definition of the finite-state-machine with data, system
level languages such as SpecCharts and SpecC, and design tools such as
SpecSyn and system-on-chip environment. He has authored over 300 papers
and numerous textbooks, including Principles of Digital Design (Englewood
Cliffs, NJ: Prentice Hall, 1997) that has been translated into several languages.

