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Abstract—This paper describes an early power estimation
method for Electronic System Level(ESL) design, which provides
a scalable API to support automated power profiling and analysis
at the early stages of the design process. The proposed framework
utilizes a high-level power modeling mechanism along with an
automated profiler to extract energy activity from the simulated
system model. These two features are integrated into PowerMeter,
a framework that automatically annotates power meters as well
as energy and performance functions into the executable model.
This integrated profiling helps the designer to rapidly explore
the design space, trading off performance against power cost in
order to make best design decisions. Our approach also provides
the designer with the ability to quantify the effect of revisions in
the ESL design models, in terms of both power and performance.
Despite the high abstraction level, our results show that the
PowerMeter delivers rapid estimates with high fidelity and at
minimal cost.

Index Terms—Power; Performance; Profiling; System Level
Design; Fidelity;

I. INTRODUCTION

For the past few decades, semiconductor capabilities have

been improving as Moore’s law predicted. Transistor size has

been shrinking and technology size will be less than 20nm

in the near future. These improvements enable the designer

to come up with more complex systems. However, this has

made power dissipation a major design obstacle. The fact that

power dissipation in small technology sizes increases due

to high leakage power makes power optimization a primary

target of the design process.

Conventionally, power consumption is considered in the

later stages of the design process, like the architecture level

[1], RTL [2] [3], gate level [4], and physical level, where

detailed information about the design is available. Although

there are many power-aware design tools at these lower

levels, the simulation and evaluation time are high and often

beyond the time-to-market requirements. To tackle the long

simulation time as well as avoiding time consuming design

modifications at lower levels, designers are changing the

level of abstraction to the system level, typically by means of

trading accuracy in favor of speed. Fig. 1 shows a prospect

of power estimation at the system level. The speed-accuracy

trade-off in power estimation at different design levels is

demonstrated in Fig. 1(a). The accuracy and time trade-off is

the main challenge in power estimation. Here, a powerful and

automated API for system level early estimation, as proposed

in this work, can shorten the design cycle of low-power

systems tremendously. The earlier the optimization starts,

the more efficiently devices can be produced. Consequently,

design constraints such as power, performance and die size

are ought to be taken into account from the early stages of

the design flow.
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Fig. 1. Power Estimation at Different Design Levels

The System level is the starting point for design constraints

characterization as well as design space exploration.

Therefore design decisions, such as component selections,

Hardware(HW)/Software(SW) partitioning, communication

schemes, number of cores, and power reduction techniques,

are ideally all made at the system level. Here, it is critical

to make correct decisions. To achieve this goal, a structured

ESL tool suite is required to perform assessments. In order

to select the best design options at the system level, relative

accuracy and high fidelity [5] are essential. Fig. 1(b) presents

the notion of power estimation from a desirable system

level estimator where the comparative relations of the design

options are accurate. Thus, our goal in this work is to develop

a system level performance estimator with a high level of

fidelity.

For system level power estimation, the two available design

inputs are 1) the specification model implemented in a System

Level Description Language (SLDL), such as SystemC [6]

or SpecC [7]; and 2) the power models of different system

components, such as processors and IPs. Many studies have

been performed on characterizing power dissipation for

memories [8], communication channels [9], and processing

elements (PE) [1] using experimental and statistical analyses

at lower levels, by actual measurement or by applying

power model builders, such as PowerMixer [10]. The fidelity

and accuracy of the system level power estimation directly

depends on available functional information and extracted



power activity details in the design, as well as applying

effective power models.

In this work, PowerMeter, a rapid and automated system

level power estimator, is introduced to monitor the energy

consumption of a system model by extracting comprehensive

power activity of the modules without any manual model

modifications. Although a scheme for ESL power models

creation is described and used in PowerMeter, power

modeling is not the focus of this work.

In the next section, we look at the available tools and

strategies for power estimation in related work, followed

by an introduction to the proposed approach for rapid

power estimation. Our power model database is presented in

Section IV. Section V explains the development steps of the

power estimator; Section VI presents a case study on JPEG

image encoder, Section VII evaluates the approach in terms

of speed, fidelity and accuracy; and Section VIII provides a

summary and conclusion.

II. RELATED WORK

Power estimation and modeling has been the focus of

many research efforts. Although power aware design is crucial

in Electronic System Level (ESL) design, SLDLs are not

supporting this feature natively. Most of the proposed power

estimation methods rely on similar foundations that can be

categorized in to three main groups: cycle accurate, instruction

based, and functional level based models.

In cycle accurate methods, such as McPAT [1], Wattch [11]

and Simplepower [12], power is analytically quantified by

monitoring operations and transactions cycle by cycle and

applying power models from the micro-architectural level for

each involved unit. Generally, the simulation time in this group

is long while the accuracy is high.

Powersim [13], an example of an instruction-based power

model, presents a C++ library that monitors a limited set

of SystemC operators and applies an energy model to the

monitored operations.

A functional level power analysis approach is used in PETS

[14]. PETS uses generic power models while extracting micro

architectural activity to tackle the accuracy-speed trade-off.

COMPLEX [15] is a framework for HW/SW co-design at sys-

tem levels and allows applying hybrid combination of power

models from various works for different design components.

The final group is functional level power analysis which is

applied in several tools, such as TLM POWER3 [16], and

PKtool [17]. In [16], bit level activities are counted in TLM

models, while PKtool is presented in the form of a class library

for SystemC by means of power estimation and analysis at

the system level. Both of these tools help to embed the

power details and abstract power related information, such as

Hamming distance of the signals, to the design. However, the

process is manual and user-oriented, and therefore neither easy

to apply nor scalable.

These power estimators at system level generate general

power reports in form of an average power consumption,

performance, or the trace of total power of the design only.

However, our proposed system level power estimator enables

the designer to concentrate on any HW or SW part of the

design, their working intervals, their power consumption over

time, and modes of operation, with user-defined granularity.

This feature allows to make critical design decisions and find

power optimization solutions easily and rapidly with clear

understanding of the design.

III. OVERVIEW

A design space exploration platform named System-on-

Chip Environment (SCE) [18], has been developed for SpecC

language. This framework uses a top down design approach,
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Fig. 2. Power Estimation Flow

and enables refinement of the specification model all the

way down to an Instruction Set Simulation (ISS) model. We

have integrated the proposed power estimation API into this

framework. Our approach for power analysis introduces power

as a new design constraint for design space exploration using

SCE. Fig. 2 shows an overview of this methodology. The

automated estimation of power consumption at the system

level is performed through the following steps.

A. Profiling the Design Model

The design process of embedded systems starts with the

original specification model of the design. This model only

contains system functionalities, without any timing or archi-

tectural information. In order to evaluate power dissipation,

the specification model is profiled by means of capturing

its energy consumption activities. Similar to SpecC Profiler

[19], our power tool extracts the energy activity details on

operations, communications, and memory characteristics of

each behavior. Our profiler automatically annotates the design

source code to generate both static and dynamic reports. In

a static report, the evaluation is based on pure code, while



in a dynamic report the actual number of executed operations

and statements during simulation is taken in to account. For

power estimation, the static report of each basic block within

the model is used which contains sufficient information on the

ESL model running its application. Monitoring these basic

blocks is also shown to be a fine level of granularity for

performance estimation in [19].

B. Mapping the Design to PEs

Once the specification model is profiled, the next step is

architecture exploration. There are many design choices, such

as processing elements, communication methods and memory

elements, to be evaluated before refining the architecture. At

this stage, energy dissipation and performance are of high

importance. The proposed power estimator uses the profiling

report from the previous step, along with the power models

of the selected PEs from the database, to generate power

reports. The power models can be suggested by the user or

selected from the power model library, which is described in

Section IV.

C. Adding Power Annotation to the Design

Once the PEs are selected, the power estimator can generate

the power dissipation reports. Our power estimator has an

API that automatically annotates the design to extract the

energy dissipation values of each component. The estimator

attaches power meters to monitor the energy dissipation over

time. It also inserts energy and performance functions into

each basic block in order to mimic the energy and time

consumption of the component. The granularity of the power

meters within the model can be selected by the designer. For

instance, a global power meter can be assigned to the entire

model, or power meters can be assigned to each behavior or

component separately. The power and timing parameters, such

as frequency, can also be set by the user.

D. Generating Power Reports

At the final step, the annotated model is simulated at the

system level to produce the report of power dissipation, energy

consumption and performance of the model under designated

PEs. Since our power models are light weight, the slow down

in simulation performance is negligible.

IV. POWER MODELS

To work with the proposed automated power estimator,

any power model can be applied during IP integration and

mapping to the behaviors. Therefore, power characterization

and modeling is not the main focus of this work. However

we used a simple power model generation method to generate

some default power models. Our system level power models

are based on power reports and simulation information from

lower levels of design. The main idea behind these power

models, is similar to power modeling presented in Tiwari et

al. [20]. Later in the experimental results we show that our

proposed power API is able to deliver high fidelity even with

these basic power models. In these models, each expression

and statement has been measured using power simulators [21]

[22]. This process is only performed once for each PE and

the resulting power tables are added to the database as shown

in Fig. 2. During design space exploration within SCE, each

PE power model is automatically added to the design while

mapping design to PEs.

In our studies, we have used ARM-based and Intel Nehalem

processor architectures. Each expression and statement in the

source code of the model owes a dynamic and static energy

consumption value. The dynamic energy is the energy spent as

dynamic switching and short circuit power, and static energy

represents the energy dissipation due to leakage.

TABLE I
DYNAMIC AND STATIC ENERGY VALUES (nJ) FOR OPERATIONS &

STATEMENTS FOR ARM7 PROCESSOR

Operations

Expressions

Types

integer float long long integer
Dynamic static Dynamic static Dynamic static

Add 4.9 0.07 6.0 0.1 13.8 0.2
Division 57.0 1.3 82.1 2.3 298 6.9
do while 6.7 70.1 6.7 0.1 6.7 0.3

Table I shows a section of the generated energy tables for

an ARM7 processor. In order to generate dynamic and static

values, each expression/statement is simulated multiple times.

Furthermore, simulations are statistically analyzed through

regression analysis to even out the effect of cache misses,

pipeline stalls, or any other situation that possibly increases the

simulation time as well as energy consumption. For instance,

the integer ”add” operation has been tested with 101, 102, 104,

105, 106 integer ”add” operations and the energy consumption

is evaluated for each unit of the target architecture. Fig. 3

shows the energy consumption in different units for a series

of ”add” operations. The results show that for a large number

of ”add” operations the consumed energy will not vary

significantly. Hence, we picked the average energy dissipation

of 104 ”add” operations as the reference energy.
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Fig. 3. Power dissipation (nJ) for n ”add” operations

Other expressions, statements, and operations were similarly

studied for each type in order to obtain dynamic and static

power parameters.

V. AUTOMATED POWER ESTIMATOR

In this section, our power estimator API is explained in

detail using an example.



A. Execution and Operator Profiling

The system level model of the design describes the func-

tional blocks and communication channels plus their execu-

tion order(FSM, parallel, sequential, pipeline, etc.). Having

a comprehensive profiler is a key factor in developing an

accurate and fast system level power estimator. In this work we

developed a profiler that summarizes all the execution counts

of all expressions and statements with their associated types.

An example of a profiling report for a specification model is

presented in Fig. 4. In this model, two instances of behavior A,

A1 and A2, are running in parallel with an instance of behavior

B named B1. The profile also shows the number of times that

behaviors A and B are executed, along with their operations

and corresponding data type. Behaviour Main contains A1, A2

and B1 as child behaviors; hence, its profiling report covers

its own operations and expressions plus its child instances.

B. Power API

To evaluate the power consumption of the design at the

system level, we insert the power activity information in to

the system level model. The power activity information is

calculated by applying the obtained profiling information to

the power models. In order to evaluate power dissipation, we

designed a C++ API called PowerMeter [23]. PowerMeter is

automatically attached to each basic block of the system model

to measure and monitor energy and delay. A graphical notion

of basic block is shown in Fig. 5.

behavior A()

{

void main()

{

    int x;

for(x=1;x<11;)

{

      waitfor 1;

      x++;

    }

}

}; 

behavior B()

{

void main()

{

    float y=100;

    do{

        waitfor 2;

        y/=2;

    } while(y>10);

    y++;

}

}; 

behavior Main()

{

A A1,A2;

B B1;

int main()

{

par

{

    A1.main(); 

    A2.main(); 

    B1.main();

}

     return 0;

    }

};

behavior: A

executed : 2
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Fig. 4. Dynamic and Static Profiling Report of Behaviors Main, A and B

PowerMeter  PM_Global;

behavior A(){
…
for (x=1;x<11;){
…
waitfor(10);
consume(PM_Global, 15.1, 0.7);
}
…..

};
behavior B()
{
…..
do{

….
waitfor(12.3);
consume(PM _Global, 3.7, .45);

} while(y>10);
….
waitfor(1.4);
consume(PM _Global, 1.2, .32);
….

};

basic block 1 

basic block 2 

basic block 3 

(a) Global power meter

PowerMeter  PM_A;
PowerMeter  PM_B;
behavior A()
{

……
for (x=1; x<11;){
….
waitfor(10);
consume( PM_A, 15.1, 0.7);
}

}; 
behavior B()
{

…..
do{

       ….
       waitfor(12.3);
       consume( PM_B, 3.7, 0.45);

} while(y>10);
….
waitfor(1.4);
consume( PM_B, 1.2, .32);
…..

}; 

basic block 1 

basic block 2 

basic block 3 

(b) Power meter per behavior

PowerMeter PM_PE1;
PowerMeter PM_PE2;

behavior A_PE1()
{

….
for (x=1;x<11;){
…
waitfor(10);
consume( PM_PE1, 151, 0.7);

}
…

};
behavior A_PE2()
{

…..
for (x=1;x<11;){
….
waitfor(10);
consume( PM_PE2, 127, 1.2);

}
…

};
behavior B()
{

…..
do{
…..
waitfor(12.3);
consume( PM_PE2, 3.7,0.45);

} while(y>10);
…
waitfor(1.4);
consume( PM_PE2, 1.2, .32);
….

};
behavior Main()
{

A_PE1 A1;
A_PE2  A2;
…..

};

basic block 1 

basic block 2 

basic block 3 

basic block 4 

(c) Power meter per PE

Fig. 5. Power annotated system model with global powerMeter, power meter
for every behavior, and power meter per PE

Power Meter per Behavior: In this case, a power meter is

attached to each behavior of the design. During the design, the

system designer may want to analyze each behavior in terms

of computation, power and performance, compared to the rest

of the system. This information may also be used to evaluate

the peak power and power hungry behaviors of the design for

possible thermal issues. This information allows the designer

to balance the computation of the system and adjust the design

at the system level, where altering and re-evaluations are quick

and easy.

Power Meter per Architecture Component: Here power meters

are assigned to each processing element of the design. In

order to explore the design options, different architectures may

need to be evaluated. Power dissipation of each component

is monitored using the profiling information of the behaviors

mapped to the component and shown by the corresponding

meter.

Global Power Meter: In this option, a single power meter is

attached to the entire ESL model, which measures the total

power consumption of the design; this can be used to quickly

determine if the design meets the overall power constraints of

the target system.



Power meters are designed to capture dynamic and static

power dissipation of their assigned component based on the

power model. These components can be any CPU or hardware

accelerator. In addition to the power meters, the waitfor [19]

and consume functions for time and energy consumption are

automatically annotated to each basic block of the design. The

consume functions virtually spend energy and represent the

energy consumption during execution.

Specifically, the consume function for a basic block b is:

consume(PowerMeteri, DynEnergyb, StaticEnergyb)

where PowerMeteri can be one of the three types of power

meters. DynEnergyb and StaticEnergyb are the dissipated dy-

namic and static energy, respectively. In order to employ the

suggested default power models, the dynamic energy of each

basic block is computed directly by applying the number of

operations reported by the profiler to the power models:

DynEnergyb =
∑

j,k OpCountjk × OpEnergyjk (1)

where the OpCountjk is the number of operations j with type

k and OpEnergyjk is the energy consumption of that operation

derived from the power model. For static values, the execution

time of the block (timeb) is divided by the total static energy

(Energyb) spent at each behavior:

StaticPowerb= Energyb / timeb (2)

In Fig. 5, the power annotated specification model is presented

for the profiled code shown in Section III-A. The specification

model is presented for the three different formats of power

meters.

At this step the profiling information and power models are

applied to Equation 1 and Equation 2, and the resulting

energy dissipation is automatically annotated to the model

via the consume functions. Similarly, the performance results

from [19] are annotated automatically to the design using

waitfor functions. For inserting the power meters per PE,

the annotation of behavior A is implemented differently from

the other two types of power meters. Since behavior A is

mapped to two different PEs, PE1 and PE2, the consume

functions use different power models, PE1 and PE2. To resolve

this problem, new behaviors with the same functionality as

behavior A are inserted and named corresponding to their

allocated PEs, A PE1 and A PE2. All instantiations of be-

havior A are modified accordingly, as shown in Fig. 5(c). The

duplications are performed automatically by our PowerMeter

API during power meter insertion without any interaction by

the user. The dissipated power and energy can be monitored

both numerically and graphically using the available power

functions of the PowerMeter API.

VI. CASE STUDY: JPEG IMAGE ENCODER

The PowerMeter is implemented as described in the last

section. Here the PowerMeter API is utilized for monitoring

power consumption in JPEG, as a real-life application. The

PowerMeter is applied at global, PE, and behavior levels.

Our case study uses the JPEG image encoder model shown in

Fig. 7. JPEG image Encoder

Fig. 7. The stimulus reads a BMP color image with 3216x2136

pixels and performs color-space conversion from RGB to

YCbCr. Since encoding of the three color components (Y,

Cb, Cr) is independent, our JPEG encoder performs the DCT,

quantization and zigzag operations for the colors in parallel,

followed by a sequential Huffman encoder at the end. The

image is divided in 9 strips and fed in to JPEG model. The

JPEG monitor collects the encoded data and stores it in the

output file.

The JPEG model is examined on an ARM-based processor

with 3 costum HW units. The 3 color components; Y, Cb,

and Cr are mapped to separate HW units, along with their

sub-behaviors (DCT, Quantize, Zigzag). All units are commu-

nicating through the AMBA BUS.

To comprehensively study power dissipation, we started with

the specification model, and applied architecture, scheduling

and communication refinement to the model, with increasing

amount of implementation detail.

In order to control the size of power and energy log files,

and adjust the precision of the analysis, the user can pick the

sampling frequency. The user can also specify any simulation

intervals to monitor as well. Moreover, PowerMeter supports

merging the graphical reports or stacking up the power dissi-

pation values in different PowerMeters over time.

Fig. 6(a) shows the power dissipation in each design elements

over the whole simulation time with sampling frequency of

1ms. As it was expected from the JPEG model defined in

Fig. 7, where the Y, Cb and Cr are running in parallel, the

custom HW units are executing them in parallel as well. The

Huffman encoder, which is mapped to the ARM processor,

begins working once the Y, Cb and Cr color processing is

over for a strip within all HW units. The encoding process

is divided in to 9 different steps, through 9 sub-images, and

the power dissipation intervals of design elements in Fig. 6(a)

reflects the same behavior.

In Fig. 6(b) power dissipation in the Y-DCT, Y-Quantize, and

Y-Zigzag, which are the leaf behaviors of Y is shown. The

sampling frequency is 10µs. All these behaviors are mapped

to HW1. As it shown, the user can easily pick any behavior
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Fig. 6. Power dissipation of JPEG Image Encoder visualized and optimized by PowerMeters

as well as any interval for power analysis. Using the power

reports of each behavior, the user can easily verify the active

behvaiors at each PE, computationally expensive behaviors,

the woking intervals of each behavior, and modify the design

model rapidly if needed. The PowerMeter allows merging the

power reports in to one graph based on the user selections.

The global PowerMeter monitors the average power dissipa-

tion of the whole system. Fig. 6(c) represent the average power

for selected simulation interval in JPEG application. The PEs,

global and behaviors power dissipation reports support mon-

itoring and analysing the system for power and performance,

and provide a platform for initiating power optimization.

The power estimation API can also provide the energy dissi-

pation graph for each power meter over time. For example,

Fig. 8 displays the energy dissipation graph of a global power

meter in JPEG with 9 sub-image. As shown in the diagram,

for each image, the energy dissipation increases during the

complex encoding process for each sub-image.

VII. EXPERIMENTAL RESULTS

In this section, we describe our experimental results and

analyse the speedup, fidelity, and accuracy of PowerMeter

with real life applications. We implemented the profiler and

PowerMeter API, as well as a platform for automated back

annotation of power meters, consume functions, and waitfor.

Thus, when the specification model is ready, the system

designer can instantly evaluate the design by simply mapping

the ESL system model to architecture components and set the

PowerMeter granularity.

For our experiments, we choose a JPEG image encoder appli-

cation, a MP3 audio decoder and a H.264 video encoder and

decoder application, all specified in SpecC SLDL. To evaluate

the fidelity and accuracy of the proposed power estimation

method, we modified the ISS model of JPEG encoder to

simulate on SimpleScalar [24] and measured the energy and

power consumption using the cycle-accurate SimPanalyzer

[21] for the ARM based architecture. The MP3 and H.264

examples are simulated using the SNIPER 5.2 [22] simulator

and their power is evaluated using the embedded McPAT [1]

against the Intel Nehalem architecture. We also applied these

applications to our power estimator. All results are measured

on a host PC with a 4-core CPU (Intel(R) Core(TM)2 Quad)

at 3.0 GHz.

Our results are presented in Table II. The comparison ex-

ecution time shows significant speedup in PowerMeter, in

comparison to the cycle accurate SimPanalyzer, as well as

SNIPER, with the embedded McPAT power estimator as an

architectural level simulator. The overall speedup shows that

PowerMeter is about one order of magnitude faster than the

alternatives. Furthermore, the PowerMeter is a system level

power estimator and, with its low execution time, provides a

practical platform for design space exploration. As shown in

Table II for computationally expensive applications, a low-

level simulator is not an applicable solution. For instance,

power estimation of the H.264 application with 10 frames did

not complete after two hours of runtime while its simulation



 0

 1e+06

 2e+06

 3e+06

 4e+06

 0  1e+09  2e+09  3e+09

E
n
e
r
g
y
(
n
J
)

time(ns)

Global Energy

Fig. 8. JEPG Encoder energy consumption diagram over time

ended in less than 6 minutes at the system level.

The error reports of simulated applications are as expected in

Fig. 1. The absolute accuracy is not as good as a low level

estimator and goes up to 50% in MP3 application. This is

simply owing to the fact that the accuracy of the estimated

energy dissipation highly depends on the information captured

during lower level simulations. Another reason is the accuracy

of power models and the fact that the accuracy of power

estimation directly depends on the accuracy of these models.

In the applied power models, due to the fact that the models

are not data-dependent and that even minor errors within the

estimated power value for each operation will accumulate in

total power estimation calculations, this results in higher errors

specifically in large applications. For instance, in the MP3

example, the accuracy errors for all four audio streams are

uniformly very close (only 1% difference). This clearly reflects

the error in the original power model. However, the values of

accuracy error using scaled energy for each sample application

show the absolute maximum error is 3.5%, which reveals the

high fidelity of our PowerMeter estimator. The fidelity score

for the system models are also calculated using the Equation 3

proposed in [25].

Fscore(modelm)=100 × 2
n(n−1)

∑n
i,j=1
i<j

µij (3)

Here, fidelity score Fscore is calculated for system model

m with n different design samples using predictor fidelity

function µ. This function compares the referenced(i) and

generated(j) design samples under multiple criteria, and

returns 0 or 1 accordingly. As shown in Table II, this

confirms the perfect fidelity score of 100 in all three of the

applications.

The relative accuracy and high level of fidelity are the main

achievements of our system level power estimator, which

make SCE PowerMeter a solid starting point for power

evaluations at the early system level.

Fig. 9 shows the results of PowerMeter API against McPAT

and SimPanalyzer power estimators. As demonstrated, all

pairs of curves, which represent energy values of different

inputs for each application, all show the same shape,

confirming the high fidelity of our approach.
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Fig. 9. Power Evaluation Fidelity for System Level and RTL

VIII. SUMMARY AND CONCLUSIONS

In this paper, we have addressed power as a main challenge

in the system design cycle. Power estimation at ESL is a

method for evaluating power rapidly at the early stages of the

design process. In order to have an ideal power estimator with

high fidelity, it is essential to incorporate all possible informa-

tion on the target system. In this work, we demonstrated that

PowerMeter, a system level power estimator that automatically

profiles the power activity of a ESL model, integrates a power

model, and back-annotates the design with energy dissipation

and performance functions.

The PowerMeter allows for fast power evaluation of functional

blocks and integrated IPs without manual intervention. Power

dissipation reports for JPEG image encoder application are

presented as a case study.

Our experimental results show significant increase in power

evaluation speed, up to one order of magnitude, with a

high degree of fidelity. These results show that design space

exploration at the system level can be easily equipped with

power and performance estimation, and power optimization

approaches can be initiated early and rapidly at the system

level.
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