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Abstract. With the growing complexity of embedded applications, sys-
tem architects integrate more processors into System-on-Chip (SoC)
designs. Since scalability of such systems is a key criterion for their effi-
ciency, regular array-type architectures are preferred that can easily grow
in size. In this work, we model in SystemC TLM-2.0 a Grid of Processing
Cells (GPC) with a Checkerboard arrangement of processors and mem-
ories. To demonstrate its scalability, we evaluate the performance of a
highly parallel Mandelbrot renderer on growing Checkerboard platforms.
Our results confirm that the performance scales well with the number of
processors.

Keywords: SystemC · Scalability · System-on-Chip Design ·
TLM-2.0 · Grid of Processing Cells (GPC)

1 Introduction

The Grid of Processing Cells (GPC) has been proposed as a regular system
architecture of many cores with local memories that are arranged in a scalable
2-dimensional array with only local interconnect [6]. The “Checkerboard” variant
places memories in between processing cores in alternating fashion, allowing pro-
cessors to access only neighboring memories. While the proposed GPC platform
intuitively appears scalable, its scalability has not actually been shown. In this
work [19], we design a detailed Checkerboard GPC model and describe it in Sys-
temC TLM-2.0 [2]. Our model is fully functional, scalable in width and height,
and can accurately simulate timing and thus measure performance. For our per-
formance and scalability analysis, we choose the visualization of the Mandelbrot
set [14] as a suitable application, because it is a perfectly (embarrassingly) par-
allel program, and map it onto the processing cells of the Checkerboard GPC.
In addition to detailed timing measurements with growing Checkerboard sizes,
we also compare the performance to a theoretical model with perfect linear scal-
ability to show that the Checkerboard model also scales well.

1.1 Background and Related Work

Many computer architectures have been proposed and used throughout the
years. The classic von Neumann computer architecture [11] has one memory
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bus between the memory and the central processing unit (CPU). The original
Harvard architecture [9] and its modern implementation, the modified Harvard
architecture, all use a single shared memory bus. While modern computers are
typically organized as symmetric multiprocessors (SMPs) [12], there is only a sin-
gle shared memory connected via a bus interface. Having a single memory with
a shared bus for CPU(s) severely limits the scalability of these architectures.

Knowing that the architectures with a single memory bus have a memory
bottleneck, other architectures with better scalability have been proposed. The
Raw architecture [15] is a 4× 4 tiled architecture designed with multiple buses
and multiple memories. It allows application-specific resource allocation and data
flow within the chip. The tiled architecture of Raw also allows it to scale with
increasing silicon density [15]. Another scalable architecture is the Tile Processor
[20] [4]. The TILE64 and the TILEPro64 processor are both manufactured by
Tilera. Both processors show the scalability of the tiled architecture. With each
tile containing a general-purpose processor, a cache, and a router, TILE64 and
TILEPro64 are able to communicate with each other and other I/O devices on a
large 8× 8 scale [1,16,17]. Intel’s Teraflops Research Chip, codenamed Polaris,
is another scalable many-core design with a network-on-chip architecture [18].
Polaris consists of a 10 × 8 2D mesh network (80 cores) with a sustained per-
formance of 1.28 teraFLOPS, demonstrating very good scalability [13]. Intel’s
Single-Chip Cloud Computer (SCC) is another tiled platform that communicates
through an architecture similar to a cloud computer in a data center. The chip
contains tiles in a 4 × 6 2D-mesh with 2 P54C Pentium cores and a router in each
tile. Intel hopes to make SCC scale to 100+ cores by having each chip commu-
nicate with another chip [8,10]. KiloCore processor array, which contains 1000
independent processors and 12 memory modules on a single chip, is another scal-
able tiled-like architecture with multiple memory buses [3]. Their data indicates
that under most conditions, the processor array has a near-optimal proportional
scaling of power dissipation.

While the aforementioned related tiled architectures offer a large degree of
scalability, the Checkerboard GPC studied in this work [19] promises to scale
better in the sense that each processing core has only access to local/neighboring
memories (which restricts application size and poses a burden on programma-
bility). Thus, the memory access speed is not influenced by the size of the grid.
Regardless of where a core is located in the grid, it has constant access to its
neighboring memories, making Checkerboard GPC truly scalable.

1.2 Problem Definition

The Checkerboard Grid of Processing Cells has been proposed in [6] but not
implemented. There is a need for a simulatable model to demonstrate the viabil-
ity of the proposed architecture. In this work [19], we design a SystemC TLM-2.0
model and map a perfectly parallel application to it. We compare our experi-
mental results to a theoretical model to show that the Checkerboard GPC truly
scales well.
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2 The “Checkerboard” Grid of Processing Cells

In this section, we review the Checkerboard GPC [6] and present its implemen-
tation in SystemC TLM-2.0.

2.1 Overview of Checkerboard SystemC Model
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Fig. 1. Schematic of Checkerboard 4× 4 GPC Model

Checkerboard Model Components. An example Checkerboard 4 × 4 model
schematic is shown in Fig. 1. Our Checkerboard SystemC model contains many
TLM-2.0 modules. The highest level module is named Top, and contains modules
Stimulus, Monitor, Off-Chip Memories, Multiplexers, and Checkerboard. The
Checkerboard module contains width by height Cell modules. Each Cell contains
four modules, Core, On-Chip Memory, Demultiplexer and Multiplexer.
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Checkerboard Model Configuration. In the Top module, modules Stimulus,
Monitor, Multiplexers, and Off-Chip Memories are configurable. In Checkerboard
module, the number of Cells can be configured based on need with two param-
eters, Grid Width and Grid Height. We built a Python-based code generator
that takes Grid Width and Grid Height and generates the corresponding Sys-
temC code [19]. The user can also limit the size of both On-Chip and Off-Chip
Memories. In module Cell, each Core module contains a SystemC thread, where
the user provides the code for each Core. Timing (delay) for On-Chip Memories,
Off-Chip Memories, and Multiplexers is also configurable.

Functionalities of Checkerboard Modules. Module Top is a container for
other modules. Inside Top, if the user does not provide their customized Off-Chip
Memory, a default one-port memory is provided with basic read and write func-
tions. The same rule applies to Monitor and Stimulus. All Off-Chip Memories
in Top use TLM-2.0 standard sockets, shown as blue rectangles on the outside
of Checkerboard module in Fig. 1.

The Multiplexers inside Top contain sockets for connecting Checkerboard ’s
border cells to Off-Chip Memories. The purpose of these Multiplexers is to route
incoming read and write requests from the Cells to the connected Off-Chip
Memory. The Off-Chip Multiplexers are automatically configured.

Cell

Memory
on-chip

Demux Mux

Core

Cell

Memory
on-chip

Core

DemuxMux

Fig. 2. Schematic of Cells Inside Checkerboard

The Checkerboard module contains a user-defined number of Cells. Each
Cell, marked as green or red boxes in Fig. 1, encloses 1 Core, 1 Demultiplexer
(Demux), 1 On-Chip Memory, and 1 Multiplexer (Mux ), as shown in Fig. 2. The
Checkerboard contains 2 types of Cells : one with the Core module and Core
Demux on the left side and Memory and Mem Mux on the right side; the other
type is the opposite. Having 2 types of cell layouts allows each Core to have
access to 4 adjacent memories without crossing wires. A Core has only 1 socket,
and it is connected to aDemux. The Core’s Demux takes the request from that
Core and forwards it to the 4 connected memories based on the address of the
Core and the address of the payload. Each Core has its own SystemC thread.
The user is in charge of providing the functionalities of each thread.

Core-Memory-Core Communication. The yellow lines that go across Cells
in Fig. 1 are SystemC event signals used to notify nearby Cores about memory
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accesses. There is one event associated with each On-Chip and Off-Chip memory.
This memory-event setup allows each Core to notify the events of neighboring
memories and wake up nearby Cores, thus allowing safely synchronized Core to
Core message passing.

Checkerboard Address Space. As described in Sect. 2.1, when a Core sends
a read or write request to a specific memory address, the payload goes through
the Core’s Demux. The Demux forwards the payload to the correct memory
based on the requested address and the sender’s address.

0

31

lg(height) lg(width)

Bit
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1 pos rest of addressOff-chip memory

Fig. 3. Memory Address for Checkerboard Model

As shown in Fig. 3, the most significant address bit is used to differentiate
the On-Chip and Off-Chip Memories. For Off-Chip Memories, two more bits
are needed to identify the four Off-Chip Memories. Address bits for On-Chip
Memories depend on the number of bits needed to represent Grid Height and
Grid Width of the Checkerboard. Each Core only uses its local address space,
so the Checkerboard can truly scale to any size.

Model Limitations. The current version of Checkerboard uses a 32-bit address
space. As Checkerboard grid grows in size, each On-Chip Memory has a smaller
maximum size. This also limits the current Checkerboard to a maximum size of
16× 16 Cells. In the future, we design a 64-bit address space or higher to allow
even larger Checkerboards. The mapping of any application onto the Checker-
board is currently done manually, which is prone to human error and also time-
consuming. We plan to automate this process.

3 Mandelbrot Set Visualization on Checkerboard

We now describe the parallel application chosen to demonstrate scalability. For
a detailed definition of the Mandelbrot Set, please refer to the original documen-
tation [14].

3.1 Theoretical Model of Mandelbrot Set Visualization

As a perfectly scalable reference we also build a Theoretical Mandelbrot Set
Visualization model, theoretical model for short. The theoretical model is imple-
mented with SystemC TLM-2.0 with accurate memory behavior.
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Fig. 4. Schematic of Theoretical Mandelbrot Set Visualization Model

Overview of Theoretical Model. As shown in Fig. 4, the highest level module
that contains all submodules is named TOP. TOP contains module Stimulus,
Monitor, Platform, and two communication Channels. Module Platform contains
module Data In, Data Out, four-port Memory, and DUT.

Stimulus is in charge of creating the coordinates used for the Mandelbrot algo-
rithm. The coordinates have a custom data structure with four floating point num-
bers that represent the top, left, right, and bottom bounds. Because each image
requires a coordinate, the number of coordinates generated from stimulus equals
the number of images. Each coordinate generated after the first one will be zoomed
in based on a zoom factor. The zoom factor is user-defined and defaults to 0.7.

Platform contains module Data In, Data Out, and DUT. The module in charge
of communication between Stimulus and Platform is a SystemC channel class.
When a coordinate reaches Platform, it is received by the module Data In. Data In
runs an infinite loop of sending coordinates right after receiving coordinates from
Stimulus. Similarly, Data Out runs an infinite loop of sending images to Monitor.
The purpose of Data In and Data Out is to represent I/O units.

Module DUT wraps all the Mandelbrot parallel units, as shown in Figure 4.
The number of parallel units n used is a preprocessor macro and can be power
of 2 with a maximum of 256. Each parallel unit calculates � heightofimage

numberofparallelunits�
rows of pixels. If the height of the image is not divisible by n, the last parallel
unit will compute the extra rows of pixels.
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Fig. 5. Example of 640 * 512 Mandelbrot with 16 Parallel Units

All parallel units work on the same instance of image, as illustrated in Fig.
5. An image consists of three 2D array of values to store a pixel’s red, green and
blue intensity. Inside each thread, the function fc(zn+1)) = z2n + c is executed
in a loop to determine the number of iterations each pixel takes to breach the
threshold. After getting the iteration number for a pixel, that number is mapped
to a colored pixel on the image. After calculating and displaying all assigned
pixels, the thread pauses and waits for the next coordinate to start the next
image. When the entire image is filled, DUT sends the image to memory and
reads the next coordinate. The Monitor is in charge of stopping the program
when it receives the expected number of images.

3.2 Mapping on the Checkerboard Model

Figure 6 shows our mapping of Mandelbrot slices on each Core in the Checker-
board model. Each image is divided into GridWidth ∗ GridHeight slices, and
each Core in the mapped Checkerboard is in charge of 1 slice of the image. In
this example, each black line in Fig. 6 represents a flow of 4 slices of the image.

The simplified dataflow of a single column of Mandelbrot on Checkerboard
4× 4 is shown on the right of Fig. 6. A red block represents a Core, and a
blue block represents a memory. Every Core uses the same functions: PopCo-
ord(), PushCoord(), PopSlice(), and PushSlice(). PopCoords() takes the gener-
ated coordinates from the memory above that Core. If the Core is in the first row,
then PopCoords() take the coordinate from Off-Chip Memory. Function Push-
Coords() pushes a coordinate to the local memory of that Core. PushSlice()
function writes a finished image slice to a Core’s local On-Chip Memory, if Core
is in the last row, then PushSlice() write to Off-Chip Memory at the bottom.
PopSlice() reads a image slice from the memory of the Cell above.
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Fig. 6. Mapping of Mandelbrot slices on a Checkerboard 4x4 Model

When a Core receives a coordinate for Mandelbrot calculation, it forwards
that coordinate to the next Core. That Core then starts the Mandelbrot calcu-
lation function. Once all the pixels in a slice are calculated, the Core pushes this
slice to memory. For Cores that are not in the first row, the number of Pushing
and Popping depends on the vertical location of that Core.

Module Monitor checks the bottom Off-Chip Memory for every write. It
waits until every slice of the image is filled and then displays a message that
an image has been completed. Once the number of images matches the specified
number, Monitor terminates the simulation.

4 Experiments and Results

This section introduces our experimental setup and testing methodology for
Mandelbrot Set Visualization on the theoretical model and on the Checkerboard
model. All recorded results are in unit time since the actual timing delay for On-
Chip Memory, Off-Chip Memory, Multiplexers and Demultiplexers is irrelevant1
for our goal of showing scalability.

1 Please note that the irrelevant timing delays do not include contention time when
modules wait for access to shared bus resources. Contention is a very relevant cri-
terion when comparing system architectures with shared resources and would be
highly desirable in our comparison. However, measurement of contention was unfor-
tunately not yet available in the described models at the time of the experiments
reported in this section.
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4.1 Experimental Setup

All experiments use the same parameters, the only difference is the number of
parallel units. Experiments run for Mandelbrot Set Visualization use the fol-
lowing parameters: 576 Image Height, 640 Image Width, 4096 Max Iteration, 5
Images. All experiments are run on the same machine with fixed frequency of
3.4GHz. For repeatability we turn off all I/O functions and frequency scaling of
the host. 1 computation unit time equals 1 iteration taken in the Mandelbrot Set
calculation loop. 1 communication unit time equals 1 word read/write from/to
the memory and 1 read/write request forwarded by the mux/demux.

4.2 Results and Evaluation for the Theoretical Model

We built and simulated the theoretical model in SystemC TLM-2.0. Here we
report for an increasing number of parallel units (PU), the computation unit
time (Comp UT), the communication unit time (Comm UT), the simulator run
time (SRT), and improvement factor (IF). IF is calculated from previousCompUT

currentCompUT .

Table 1. Experimental Results for Mandelbrot Set Visualization Theoretical Model

PU Comp UT Comm UT SRT (sec) IF

1 4075078882 1658988 18.45
2 2543059511 1658988 18.85 1.602431585
4 1471609768 1658988 19.06 1.728080070
8 764406229 1658988 19.49 1.925167159
16 389276159 1658988 19.83 1.963660531
32 196793623 1658988 19.89 1.978093360
64 98881005 1658988 20.24 1.990206542

Table 1 shows the simulation results for the theoretical model. For a growing
number of parallel units, the calculation time decreases almost proportionally
while the communication time remains constant due to the single memory bus.
Taking into account that the slices require a different number of iterations (slices
in the middle of the image are more expensive to calculate), both observations
match the expectation for the otherwise perfectly scalable model. The simula-
tor runtime increases slightly, which is also expected as the simulator needs to
manage more threads and has increasing context switching activity. The values
of Table 1 are also plotted in Figs. 7 and 8 for comparison.

4.3 Results and Evaluation for the Checkerboard Model

Table 2 shows the simulation results for the Checkerboard model. The improve-
ment factor in Table 2 is only calculated when number of PU matches Table 1. For
a growing number of parallel units, the calculation time decreases proportionally
while the communication time varies based on the layout. The observed calcula-
tion time matches our expectation for the same reason as in the theoretical model.



74 Y. Wang et al.

Table 2. Experimental Results for Mandelbrot on Checkerboard Model

PU Layout Comp UT Comm UT SRT IF

1 1× 1 4075078982 1659029 18.61
2 1× 2 2543059611 829598 18.72 1.602431561
3 1× 3 1799580598 553130 19.22
4 2× 2 1471609868 1106205 19.30 1.728080021
6 2× 3 1001359981 553151 19.40
8 2× 4 748676317 553270 19.69 1.965615627
9 3× 3 677227735 430285 19.87
12 3× 4 513788640 530309 19.96
16 4× 4 388649106 484295 20.26 1.926355433
20 5× 4 304283538 430599 20.00
24 6× 4 260990624 461403 20.19
28 7× 4 218037155 423066 19.75
32 8× 4 196733139 415443 20.07 1.975514181
36 9× 4 174894521 398790 20.19
40 10× 4 153292084 417555 19.88
44 11× 4 142358440 400279 20.23
48 12× 4 131401723 404199 20.52
52 13× 4 120450230 391782 20.17
56 14× 4 109542155 394545 20.34
60 15× 4 98877301 416078 19.75
64 16× 4 98877301 381393 20.36 1.989669388
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Because the Checkerboard model features multiple Cells reading and writing to
memories at the same time, the layout of the Checkerboard model reduces the com-
munication time since the model assumes a contention-free Off-Chip Memory. For
example, although the 2 × 2 layout has more PU, the 1× 3 layout has one more col-
umn, so the 1 × 3 layout has less communication time than the 2 × 2 layout. The
values of Table 2 are also plotted in Figs. 7 and 8 for comparison.
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4.4 Comparison

The improvement factors in Tables 1 and 2 are listed for all cases where the PU
double. The values come close to the naively expected value 2.0, but do not
fully reach this perfect score due to differences in slice complexity. Table 1 shows
that the theoretical model is computationally scalable. Figure 7 shows that the
Checkerboard model in this graph has an almost identical curve to the theoretical
model. Therefore, the Checkerboard model is also computationally scalable.

The theoretical model has a single data bus and writes the entire image
after all parallel units are done working. Therefore the communication unit time
remains constant for different numbers of parallel units. Figure 8 shows that the
Checkerboard model (except 1 × 1 layout) always has less communication time
than the theoretical model. Because the Checkerboard model allows multiple
Core-Memory-Core communication at the same time, the Checkerboard model
has better communication scalability than the theoretical model.

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

1 2 4 8 16 32 64

Co
m

m
un

ic
at

io
n 

U
ni

t T
im

e 

Number of Parallel Units

Checkerboard

Ideal Model

Fig. 8. Communication Unit Time vs Number of Parallel Units Comparison

5 Conclusion

In this work [19], we deliver a simulatable SystemC Checkerboard Grid of Pro-
cessing Cell model and show that scalable software can be mapped onto this
model. Our results show that the Checkerboard model has better communica-
tion performance and almost identical computation performance to the theoreti-
cal model, confirming that the Checkerboard GPC scales well. The Checkerboard
model, while still a high-level software model, is a good starting point for a more
complex and accurate SystemC model. This Checkerboard project is also proven
to be a stable from other mapping projects [5,7]. The Checkerboard project also
serves as a stable and flexible platform for more software simulations and enables
further explorations of the true scalability of the Checkerboard GPC architec-
ture. In future work, we aim to automate the mapping of applications to GPC
platforms so that they can be programmed similar as regular shared memory
architectures.
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