
Enabling IP Reuse and Protection in
Out-of-Order Parallel SystemC Simulation

Zhongqi Cheng, Tim Schmidt and Rainer Doemer

University of California at Irvine, USA

Abstract. Parallel discrete event simulation has presented itself to be a
tempting approach for high speed SystemC simulation. To preserve the
simulation semantics, a compiler based approach statically analyzes race
conditions in the design model. However, there are severe restrictions:
the source code for the input design must be available in one file, which
does not scale. This disables the use of Intellectual Property (IP) and
hierarchical file structures. In this paper, we extend the static analysis
design flow to support separate files and IP reuse by introducing Partial
Segment Graph (PSG) abstraction and prevent IP security leakage. Ex-
periments demonstrate the effective design flow and sustained speedup
with parallel IPs.

Keywords: Out-of-order PDES · Intellectual Property · SystemC.

1 Introduction

The complexity of system design has been growing with the increasing function-
ality of modern embedded systems. As a system level design language, the IEEE
SystemC standard [1] is widely used for testing, validation and verification of
system level models. The proof-of-concept Accellera SystemC simulator [2] is
based on Discrete Event Simulation (DES) and runs sequentially. In contrast,
Out-of-order Parallel Discrete Event Simulation (OoO PDES) [3] can exploit the
parallel computation of modern multi- and many-core platforms. In OoO PDES,
threads comply with a partial order such that different simulation threads may
run in different time cycles to increase the parallelism of execution.
The Recoding Infrastructure for SystemC (RISC) [4] has been developed to im-
plement OoO PDES for SystemC. RISC includes a dedicated compiler and an
OoO PDES library. The RISC compiler is the frontend that processes the input
SystemC file. It first builds the Abstract Syntax Tree (AST) of the input file
and then derives from the AST the behavior model (BM) of the input SystemC
design. With BM available, the RISC compiler then performs static analysis re-
garding potential thread race conditions of the design.
The BM is an abstraction of the execution of the SystemC processes in the de-
sign. The RISC compiler represents BM with a statically built Segment Graph
(SG) data structure. Based on the SG, the RISC compiler is able to analyze the
data conflicts, timing conflicts and event hazards in the design.

2 Zhongqi Cheng, Tim Schmidt and Rainer Doemer

1.1 Problem De�nition

To completely build the BM of the input SystemC design, the RISC compiler
needs the entire AST for the input model. Thus the user has to provide all the
source code in one single translation unit. In other words, the RISC compiler
cannot build BM for SystemC designs whose source code is separately structured
in multiple source files or 3rd party Intellectual Properties (IP). With the wide
use of IP, this requirement severely restricts the RISC compiler to meet industrial
system level design needs.
In this paper, we propose a solution that scales the RISC compiler to support
multiple file inputs, especially for the integration of IPs, as shown in Figure 1.
In the new design flow, the construction of BM no longer relies on the complete
AST. Besides the usual object and header files, component providers supply a
partial design (PD) file that abstracts the BM of integrated design components.
Specifically, in the PD file, the BM is abstracted by a Partial Segment Graph
(PSG). IP providers can inspect and redact the PD file, in order to further
minimize the PSG, which protects the security of their IP. On the user’s side,
by combining all the received PSGs, the RISC compiler is able to reconstruct
the BM of the whole design.

Fig. 1: Scaled RISC tool flow with IP components

1.2 Related Work

IP reuse and protection have not received a lot of attentions in parallel simula-
tion. In [5], the authors described an effective methodology for IP reuse in SOC
design. They studied the IP enhancement and also proposed a framework for the

Title Suppressed Due to Excessive Length 3

reuse of customer IP.
Parallel SystemC simulation is well-studied. In [6], the SystemC-clang is pro-
posed. It analyzes SystemC models with a mixture of transaction-level and
register-transfer level components. In [7], the authors studied the distributed
parallel simulation, where SystemC models are organized into small executable
units and distributed onto different host machines to run in parallel.
In [8], the authors proposed a way to use pre-defined graphs to represent the
BM of IP components. However, this simple approach requires the users to man-
ually analyze the design and insert pragmas where needed. Furthermore, there
are only three kinds of predefined graphs, which is insufficient. In contrast, we
propose PSG as the data structure to represent the BM of IP components, which
is accurate and is automatically built by a compiler.

2 Partial Segment Graph

We now describe the PSG technique that represents the BM in each seperate
translation unit.

2.1 Behavior Model and Segment Graph

The behavior model of a SystemC design can be described by the Segment
Graph, which provides a way to analyze threads and their position during exe-
cution. The SG is a directed graph where each node is a sequence of code state-
ments executed between two scheduling steps, i.e., wait statements [3]. During
the execution of the model, the scheduling step is the entry to the simulator ker-
nel. The edges in the SG indicate the transition between segments. An example
of SystemC source code and corresponding SG is shown in Figure 2a and Figure
2b.
In this example, line 8 y++ and line 12 s=s*s could possibly be executed in
the same simulation cycle, so they are put both into segment 3. One statement
may also belong to multiple segments as it may occur in different cycles. Both
segment 2 and segment 3 contain s=s*s. Note that a new segment starts only
on wait statements except for the first one, which is the entry point of a thread.

2.2 Concept of PSG

In our proposed design flow, we store the BM specified in each translation unit
as a PSG in a PD file and when the PSGs are loaded and integrated together,
they reconstruct the complete SG.
The main difference between PSG and SG is that PSG is built based on an

incomplete AST, where definitions of function calls may be unknown. An exam-
ple is shown in Figure 3a. It contains only the definition and implementation
of module M. Function p->func() is called in M::th(), but it is not defined
in this translation unit. We refer to a function call that lacks the definition as

4 Zhongqi Cheng, Tim Schmidt and Rainer Doemer

void foo(){

 index++;

 wait(2,SC_NS);

 k=1;

 if(flag){

 x++;

 wait(10,

 SC_NS);

 y+;

 }else{

 a=5;

 }

 s=s*s;

 wait(1,SC_NS);

 t=s+1;

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

(a) Example Source
Code

(b) SG of Fig. 2a

Fig. 2: SystemC Code and corresponding SG

a non-defining function call. Because the compiler cannot determine from the
current AST if a non-defining function call contains scheduling steps or not, the
simulation cycle of the code statements following the non-defining function call
cannot be statically determined. In the example, we cannot know if line 5 and
line 7 execute in the same cycle.
To deal with this uncertainty incurred by the non-defining function calls, we
introduce three types of PSG nodes:

{ Segment node contains a sequence of code statements executed in the same
determined simulation cycle. In Figure 3a, M::a++ belongs to a segment
node because its simulation cycle is determined, which is the first cycle of

SC_MODULE(M){

 ...

 sc_port<C> p;

 void th(){

 M::a++;

 p->func();

 M::b=1;

 }

 ...

}

1

2

3

4

5

6

7

8

9

10

(a) Example Source Code

M::a++

(b) PSG of Fig. 3a

Fig. 3: SystemC Code and PSG

Title Suppressed Due to Excessive Length 5

the sc thread M::th(). A segment node becomes a segment after the inte-
gration of PSGs.

{ Partial segment node contains a sequence of code statements executed in
the same non-determined simulation cycle. In Figure 3a, M::b=1 belongs to
a partial segment node because it is executed after the non-defining function
call p->func(). Later during the PSG integration phase, the partial segment
node will be merged with other segment nodes.

{ Partial function call node is created as a place holder for the non-defining
function call in the PSG such that during the PSG integration phase, the
partial function call node can be replaced by the sub-PSG corresponding to
the function’s definition. In Figure 3a, node 3 is a partial function call node
for the non-defining function call p->func().

2.3 Create PSG

A PSG is recursively built by traversing the AST of the current translation unit,
as shown in Algorithm 1. If the current statement CurrStmt is a scheduling entry
point (wait statement), then an empty segment node is created and connected to
the nodes in the CurrNodes. On the other hand, if CurrStmt is not a scheduling
point, then it is added to all the nodes in CurrNodes. This is similar as in the
BuildSG in [8]. The main difference is that to build PSG, the compiler also needs
to deal with non-defining function calls. If CurrStmt contains a non-defining
function call, for example f(), the compiler first builds a partial function call
node NewNode and stores the qualified name M::f(). Next, the compiler connects
NewNode to all the nodes in CurrNodes. Then, a partial segment node NextNode

is created and connected to NewNode, and the compiler sets NextNode as the
only node in the CurrNodes.

2.4 Store and Load PSG

The PD file stores an abstraction of the PSG. For each node, we omit the de-
tailed code statements and store only the access types (R,W,RW) to non-local
variables. This is sufficient for the RISC compiler to analyze the data and event
conflicts. In addition, some meta-data is stored for each node, which is needed for
the integration of PSGs, as listed in Table 1. Note that the PD file is compatible
with dot format and the PSG therefore can easily be visualized. An example of
PSG is later shown in Figure 8.
A PSG is loaded from the PD file with a dot file parser. The parser reads the
attributes of each PSG node, and reconstructs the data in memory. For example,
a node has a variable access attribute (W)M::a, which indicates that M::a is been
written in the node. To load the node into memory, the PSG parser locates the
symbol of M::a in the AST and puts it into the variable write list of the node.
PSG edges are constructed according to the connections specified in the PD file.
After the loading of individual PSGs, the compiler integrates them together to
construct the complete SG.

6 Zhongqi Cheng, Tim Schmidt and Rainer Doemer

Algorithm 1 Partial Segment Graph Generation

1: function BuildPSG(CurrStmt, CurrNodes)
2: if isBoundary(CurrStmt) then
3: NewNode ← new segmentNode
4: for Node ∈ CurrNodes do
5: AddEdge(Node, NewNode)
6: end for
7: return CurrNodes ∪ { NewNode }
8: else if isNonDefiningFunctionCallStmt(CurrStmt) then
9: NewNode ← new partialFuntionCallNode

10: Mark(NewNode, getFuncName(CurrStmt))
11: for Node ∈ CurrNodes do
12: AddEdge(Node, NewNode)
13: end for
14: NextNode ← new partialSegmentNode
15: AddEdge(NewNode, NextNode)
16: else if isControlFlow(CurrStmt) then
17: BuildSG(CurrStmt, CurrNodes)
18: ...
19: end if
20: end function

2.5 Integration phase

A complete segment graph is the basis for accurate static analysis. After loading
all the PSGs, first the partial function call nodes are recursively replaced with
the corresponding sub-PSG. Second, all the partial segment nodes are merged
with segment nodes they follow. All remaining nodes in the graph are segment
nodes (with underlying wait boundaries) and belong to determined simulation
cycles, such that the integrated graph by definition becomes a proper segment
graph. With the reconstructed SG, the RISC compiler has the complete the BM
and can perform the needed static analysis of the design.
We illustrate the merging process of two PSGs in Figure 4a, 4b and 4c. In this
example, node 2 is a partial function call node that holds the non-defining func-
tion call func(), and node 5, node 6 and node 7 are loaded from the psg in
func.pd and forms the sub-PSG of func(). node 5 and node 7 are respectively
the entry and exit node of func(). First, node 3 is merged into node 7 because
they belong to the same simulation cycle. After merging, node 4 is connected
to node 7 since it was connected to node 3. Then, node 5 is merged into node 1
because it is the starting node of func(). node 6 is connected to node 1 since
it was connected to node 5.

3 IP Protection and Security

IP reuse is an important feature in semiconductor industry. Basically, an IP
consists of two parts: a header file that describes the interfaces and protocols,

	Enabling IP Reuse and Protection in Out-of-Order Parallel SystemC Simulation

