
AN INTERACTIVE MODEL RE-CODER
FOR EFFICIENT SOC SPECIFICATION∗

Pramod Chandraiah and Rainer Dömer
Center for Embedded Computer Systems
University of California Irvine
pramodc@uci.edu, doemer@uci.edu

Abstract To overcome the complexity in System-on-Chip (SoC) design, researchers
have developed sophisticated design flows that significantly reduce the
development time through automation. However, while much work has
focused on synthesis and exploration tools, little has been done to sup-
port the designer in writing and rewriting SoC models. In fact, our
studies on industrial size examples have shown that about 90% of the
system design time is spent on coding and re-coding of SLDL models,
even in the presence of algorithms given in the form of C code. Since
the quality of the design model has tremendous impact on the cost and
quality of the resulting system implementation, creating and optimizing
the model is a critical task toward successful SoC design.
In this paper, we present an interactive source re-coder which integrates
static analysis and code transformation tools into an editor to assist
the designer in tedious modeling and optimization tasks. This novel
approach allows the designer to use her/his limited modeling time effi-
ciently, and thus yields significant gains in productivity.

Keywords: System-level Design, Specification Modeling, Embedded systems,
System-on-Chip

1. INTRODUCTION
In the past, the system-level design community has focused on solving

various problems of system synthesis. Researchers have been working to-
wards design automation at various abstraction levels with the goal to
automate steps in the design process and reduce the design time. Mo-
tivated by the need to meet the time to market and aggressive design
goals like low power, high performance, and low cost, researchers have

∗This work was supported in part by Nicholas Endowment through the Henry T. Nicholas
III Research Fellowship.

Chandraiah, P., Dömer, R, 2007, in IFIP International Federation for Information Processing, Volume
231, Embedded System Design: Topics, Techniques and Trends, eds. A. Rettberg, Zanella, M., Dömer,
R., Gerstlauer, A., Rammig, F., (Boston: Springer), pp. 193–206.

Pramod Chandraiah and Rainer Dömer

proposed various design methodologies for effective design development,
including top-down and bottom-up approaches. All these technological
advances have significantly reduced the development time of embedded
systems. However, design time is still a bottleneck in the production of
systems, and further reduction through automation is necessary. One
critical aspect neglected in optimization efforts so far is the design spec-
ification phase, where the intended design is captured and modeled for
use in the design flow.
Each design methodology expects a specific type of input model and
most methodologies depend on intermediate design models for interac-
tion between tools and the designer. The specification needs to be either
hand-written from scratch, or modified from a reference model. While
much of the research has focused on SoC synthesis and refinement tools,
little has been done to support the designer in forming these models.

1.1 Motivation
In order to study the intricacies and complications involved

Figure 1. Motivation: Design time of
MP3 decoder in a refinement-based design
flow.

in writing a system specification,
we have applied a top-down de-
sign methodology, as shown in
Figure 1, to the example of a mul-
timedia application, a MP3 audio
decoder. Here, the design process
starts with an abstract specifica-
tion model which is then refined
to create models at lower abstrac-
tion levels, including transaction-
level, bus-functional and imple-
mentation models. After a se-
ries of refinement steps, an actual
implementation model is finally
derived. Each of the refinement
steps in the design flow is auto-
mated to the extent that model
generation is fully automatic, and
the designer has to only make the
design decisions such as component allocation, mapping and scheduling.
Due to this automation, we were able to implement our MP3 decoder
model, an industry-size application, in less than a week [1]. In con-
trast, manually re-coding the reference implementation into a specifica-
tion model took 12-14 weeks. Writing and re-writing this model was

194

Specification Model

Refinement-1

Intermediate Model-1

Refinement-N

Intermediate Model-N

Implementation Model

Capture/Re-Coding

Less than 1
week

12-14 weeks

...

...

Manual

Automatic

Reference
Model

the main bottleneck of the whole process. More than 90% of the overall
design time was spent in creating the specification model.
Also, we need to emphasize that specification capturing is not a one time
task. Every time a change in the design is required for a successful refine-
ment step, it is necessary to re-code/change the input specification (as
shown by back arrows in Figure 1), making the whole task of specifica-
tion writing iterative. Such interruptions in the design flow cause costly
delays. The problem of lengthy re-coding of models is not a problem
specific to a top-down methodology. Its importance is also emphasized
in [12, 6].
In conclusion, any step towards automation of model coding and re-
coding is highly desirable and will likely improve overall design time
significantly.
In Section 2, we discuss model re-coding and related work. In Section 3,
we present our solution to the modeling problem, an interactive source
re-coder. Section 4 lists our experimental results. Finally, we will draw
conclusions and outline future work in Section 5.

2. MODEL RE-CODING
Reference models of the algorithm obtained from software vendors,

standardizing committees (eg. ISO/IEC) or similar sources act as a
good starting point for creating the SoC specification. Depending on
the design flow, these reference models must be recoded in System Level
Description Languages (SLDLs) such as SystemC [7], SpecC [4] or Sys-
temVerilog [18]. Apart from the recoding of the C model into a SLDL
model, various modeling guidelines recommended by the design flow
must also be incorporated into the model. Typical modeling guide-
lines [5] include, clear separation of communication and computation,
sufficient computational granularity, and exposing concurrency.

2.1 Automated Re-Coding
Apart from the time consuming textual operations, re-coding a sys-

tem model involves a lot of decision making. Many of these decisions
can only be taken by the designer. For example, if the designer decides
to map a C function onto a separate hardware component, the model
needs to be re-coded to encapsulate this function in a separate block
(behavior/module). In the absence of efficient hardware/software parti-
tioning tools, this decision needs to be taken by the designer. However,
the tedious recoding of the model can be automated.
To leverage the idea of re-coding automation, we need to distinguish
re-coding tasks that can be automated from decision tasks that require

195An Interactive Model Re-Coder for Efficient SoC Specification

Pramod Chandraiah and Rainer Dömer

designer’s experience. Textual re-coding operations such as introducing
blocks, changing scope of variables, grouping functions, etc. can be per-
formed automatically, if the decision is made by the designer. By such
automation, the designer is relieved from mundane text editing tasks
and can focus on actual modeling decisions. To address such issues, it
is efficient to have a re-coder that is interactive and applies the changes
on the fly. Since the model being derived is under full control of the
designer, the output of such a tool can suit many design flows based on
similar C-like languages.

2.2 Related Work
In this section, we will briefly present some work related to re-coding.

First, we will look at the general area of program transformations and
then focus on interactive ones.

2.2.1 Program transformations. In the past, researchers have
developed program transformations for many different areas, including
to improve aesthetics, to parallelize applications, and to perform high
level synthesis (HLS). For example, the SUIF compiler [9] identifies loop
level parallelism in a program and transforms a sequential program into
a single-program, multiple data program. The Spark HLS framework
[8] applies source and low level parallelizing transformations to a design
to improve the quality of the target hardware. Unlike SUIF and Spark,
our re-coder specifically aims at re-coding a C reference implementation
into models in SLDLs suitable for design space exploration and system
synthesis. The SpecSyn [3] synthesis system expects input specification
in the SpecCharts language, but provides no facilities to create the ini-
tial SpecChart model. Our transformations are interactive and give the
designer complete control (”designer-in-the-loop”) to code/re-code the
C reference model in order to arrive at the most suitable design imple-
mentation.

2.2.2 Interactive program transformations. To compare
existing interactive coding environments and their capabilities, we dis-
tinguish textual abilities, syntax awareness, semantics awareness, analy-
sis and program transformation capabilities. Figure 2 shows a set of
tools and the extent to which they meet these capabilities. A simple
text-aware editor, such as Textpad, supports plain textual entry and ba-
sic formatting. Better editors are syntax aware. By syntax awareness
we mean the ability to recognize syntactical elements of the language.
For example, highlighting of keywords and matching of braces requires
syntax awareness. A semantics- aware editor provides advanced features

196

197

Text Pad

VIM/EMACS

Eclipse JDT [15]

Visual Studio
C++ [16]

D Editor [11]

Parascope [13]

Syntax
Aware

Semantics
Aware

Analysis Program
Transformations

SUIF Explorer
[14]

Text Aware

Our Re-coder

Figure 2. Capabilities of Interactive coding environments.

like context-assist, auto-complete, error indications, etc. Examples in-
clude Eclipse Java Development Tool (JDT) [15], and Microsoft Visual
studio [16]. In addition to syntax and semantics, the Fortran D editor
[11] is equipped to provide dependency analysis and other information
about parallelism and communication.
The ParaScope editor [13] for Fortran and SUIF explorer [14] for C/Fort-
ran provide program transformations to parallelize a program and relieve
the programmer from tedious manual typing. SUIF explorer provides
graphical means of setting compiler directives, but does not support
editing. ParaScope provides the user with powerful interactive program
transformations and reconstructs the dependency information, incre-
mentally, while editing. Of all, ParaScope combines the most features.
Our goal is to build similar and more advanced capabilities into our
source re-coder, aiming specifically at analysis and transformations nec-
essary to re-code a C reference source into a SLDL model. It is also
necessary to mention that our transformations are generic and will not
address specific transformations such as reimplementing data structures,
replacing a slow algorithm with a faster implementation, and so on.
However, such complex transformations can be realized by the designer
using the set of generic transformations provided by our re-coder.

3. INTERACTIVE SOURCE RE-CODER
To aid the designer in coding and re-coding, we propose a source

re-coder. Our source re-coder is a controlled, interactive approach to
implement analysis and refinement tasks. In other words, it is an intelli-
gent union of editor, compiler, and powerful transformation and analysis
tools.

An Interactive Model Re-Coder for Efficient SoC Specification

Pramod Chandraiah and Rainer Dömer

Document
Object

Parser

Text
Editor

Transformation
Tools

Preproc

GUI

Code Generator

AST

Figure 3. Conceptual Structure of the Source Re-
Coder.

Unlike other program
transformation tools, our
re-coder keeps the de-
signer in the loop and
provides complete con-
trol to generate and
modify a model suit-
able for her/his design
flow. By making the
re-coding process inter-
active, we rely on the
designer to concur, aug-
ment or overrule the analysis results of the tool, and use the combined
intelligence of the designer and the re-coder for the modeling tasks.
Our re-coder supports re-modeling of SLDL models at all levels of ab-
straction. It can be used to re-code intermediate design models as well
as the reference C implementation to generate the initial specification
model. The conceptual structure of our source re-coder is shown in
Figure 3. It consists of 5 main components:

Textual editor maintaining the textual document object

Abstract Syntax Tree (AST) of the design model

Preprocessor and Parser to convert the document object into AST

Transformation and analysis tool set

Code generator to apply changes in the AST to the document
object

3.1 Editor
We have chosen a QT [19] and Scintilla [17] based textual editor as the

front-end of our source re-coder. The basic document object is based on
the data structures in the Andrew text editor [10]. This editor has built-
in support for features like syntax highlighting, auto-completion, search,
ctags, text folding, bookmarks, undo-redo, and more, for programming
languages including C and C++. As an initial step, we have adapted and
extended these features for support of SystemC and SpecC SLDLs. The
designer makes all the re-coding decisions through the Graphical User
Interface (GUI) provided by the editor, for example, through extended
context-menus.

198

3.2 Abstract Syntax Tree
For the editor, the source code being edited is a mere text. In order to

analyze and transform the code, the source re-coder needs to recognize
the complete structure of the program. When the source code of the
design is loaded from a file, a scanner/parser is invoked which creates
an object-oriented data structure, AST [21]. internal representation.

Design

Blocks

Symbol Table

Type Table

Interfaces

Variables

Functions

Ports

Implemented
interfaces
Block
instances
Channel
instances
Variables
Functions

Arguments

Variables

Statements

Expressions

Expression

Constant

Event

Exceptions

Constraints…

…

… …

…

Figure 4. Information in the Abstract Syntax Tree.

of the amount and the
kind of information em-
bedded in the AST

The pre-
serves all structural in-
formation, block, chan-
nel, port, and

The completeness of the AST makes the correspondence between the
data structure and the text in the editor possible. Locating an object
in the AST for a given line and column in the source window, and vice-
versa, is achieved by maintaining line and column information in the
AST.

3.3 Preprocessor and Parser
When the design is initially loaded, the preprocessor is run on the

source to process file inclusions and macros. The lexer and the parser
are extended to provide advanced syntax highlighting in the editor. In
addition, the parser creates the AST.
Since we use two separate data structures to maintain text data and
syntax tree, we need to synchronize between the two. When the de-
signer modifies the text in the document object, these changes need to
be reflected in the AST. Our parser provides this synchronization by
applying the changes to the AST immediately while editing 1.

1If the text added results in an invalid source code (syntax error), which naturally happens
when the designer is typing in the code, the parser parses the program until the point of error
and creates only a partial AST. Transformations cannot be invoked during such transient
phases, but as soon as the typing is complete and the code is parse’able again, the AST is
updated immediately and transformations are available again.

199An Interactive Model Re-Coder for Efficient SoC Specification

Figure 4 gives an overview

ob ject-oriented data
structure. AST

interface,
along with C constructs
and file information. The
AST also provides a set of
operations on each object.

Pramod Chandraiah and Rainer Dömer

3.4 Analysis and Transformation Tools
The transformation and analysis tool set is the heart of our source re-

coder. All re-coding tasks invoked by the user are implemented by these
refinement tools. When the designer points to an object in the source
window, a node corresponding to the pointed co-ordinates is located in
the AST, and a list of available and possible tasks are provided in a
context menu. We categorize our re-coding operations into 3 classes.

Structural transformations change the structure of the program by
introducing/removing computational blocks, channels and func-
tions. In this category, we further distinguish

Granulating transformations

Composing transformations

Re-organizing transformations

Functional transformations modify computational blocks and func-
tions. For example, the designer may change the interface of blocks
by introducing or removing ports. This category is further subdi-
vided into:

Transformations to contain communication

Transformation to break dependencies

Pruning transformations

Analysis functions provide dependency information of an object with-
out introducing any changes to it. Analysis functions also provide
information to the designer about potential parallelism at function
and block level. In addition, analysis to deal with pointers is also
provided.

The description of these transformations is beyond the scope of this
paper.

3.5 Code Generator
Any modification in the AST introduced by the transformation tools

needs to be reflected in the text in the editor. This synchronization is
provided by the code generator, which generates SLDL source code from
the modified AST. As such, the code generator is the corresponding tool
to the preprocessor and parser which update the AST for text changes.

200

Table 1. Time to create AST [secs]

Operation Simple JPEG MP3 GSM

Lines of code 174 1642 7086 7492

Size in bytes 2757 32863 223464 217414

Read file, 0.099 0.104 0.220 0.208
create doc.obj.

Preprocess 0.027 0.026 0.012 0.028
(0.001) (0.001) (0.014) (0.013)

Parse/Build AST 0.023 0.055 0.431 0.299
(0.034) (0.046) (0.151) (0.147)

Update editor view 0.005 0.005 0.011 0.010

Total time 0.155 0.190 0.675 0.546
(0.035) (0.047) (0.165) (0.160)

4. EXPERIMENTS AND RESULTS
To demonstrate the feasibility and benefits of our re-coding approach,

we have implemented the software infrastructure of the proposed re-
coder and some of the analysis and transformations to recode a C-based
SLDL model. Figure 5 shows the source re-coder at run time. Imple-
mented transformations include

Localizing global variables

Re-scoping variables across structural hierarchy

Synchronizing variable access by introducing channels

Introducing/Deleting ports in behaviors

Besides, other basic transformations such as semantic-sensitive renam-
ing, deletion, and dependency-analysis functions are also incorporated
into the recoder The details of the above transformations are discussed
in [2].
To prove the concept of instant refinement in the editor window, we will
focus on the responsiveness of the recoder. Following this, we quantify
the productivity gains achieved by using our source re-coder.

4.1 Results for Responsiveness
One concern with any interactive environment is its responsiveness.

Since our re-coder, in addition to textual editing, builds and maintains
a complete AST, and performs complex analysis and transformations,
we have measured the time consumed by various operations. Table 1
shows the time it takes to load and build a design from a file. For 4 dif-
ferent designs of varying sizes, the table summarizes timing results for

201An Interactive Model Re-Coder for Efficient SoC Specification

Pramod Chandraiah and Rainer Dömer

Figure 5. Screen shot of Source Re-Coder.

each sub-operation. The measurements were performed on a Pentium-4
3GHz Linux PC. Even for the designs with more than 7000 lines of code,
the responsiveness of the re-coder is satisfactory. Clearly, the creation of
the editor data structure and the AST are the most time intensive oper-
ations. In the current implementation of our re-coder, synchronization
between the editor document object and the AST are implemented using
file I/O. These file I/O overheads are indicated in parenthesis. Clearly,
our re-coder is sufficiently responsive, even in the presence of the file
I/O overhead. In the future, if the performance of the source re-coder
becomes critical, some of the overhead will be eliminated. We will also
consider incremental updates of the data structures, which promise to
cut down the processing times even further.

the designer while using the source re-coder on the MP3 design example.

202

Table 2 shows the timing of different transformations as experienced by

Table 2. Re-coding time in MP3 example[secs] [2]

Operation No. of times Lines Interactive
applied changed Re-coding

time (secs)

Localizing
variables 26 330 90

Re-scope 38 839 126

Synchronize
with channels 6 172 30

Total 70 1341 246

Table 3. Productivity gains [2]

Transformations JPEG MP3 GSM

Global Variables localized 8 70 83

New Ports added 2 146 163

New Channels added 1 6 2

Re-coding time (secs) 27 246 260

Estimated Manual time (mins) 53 497 585

Productivity factor 117 121 135

The table lists 3 transformations used to create explicit communication
structure [2] in the SoC models, the number of times they were invoked
for the MP3 example, and the resulting number of lines affected. The
interactive recoding time in the table is the wall clock time as experi-
enced by the designer. These otherwise time consuming transformations
can be implemented in seconds.

4.2 Productivity gain
We will now assess the productivity gains resulting from our source

re-coder. We have applied the above mentioned transformations on dif-
ferent design examples and compared the design time taken to implement
these manually over using our source recoder. Table 3 shows the produc-
tivity gain for different transformations. The manual time is obtained by
actually realizing the transformations manually for a set of 10 variables
and extrapolating the results for all the variables. The manual editing
of the code was performed using Vim [20], an advanced text editor with
block editing capability. Re-coding time is the time taken to imple-
ment the same transformations using the source re-coder by the same
designer. Given the decision information, our source re-coder needs less
than a second to implement these transformations. On the contrary, it
will take fractions of an hour (instead of fraction of a second) to manu-
ally implement these transformations.
In general, measuring productivity is a difficult task. Factors such as
designer’s experience and tools used must be considered for accurate

203An Interactive Model Re-Coder for Efficient SoC Specification

Pramod Chandraiah and Rainer Dömer

measurement of productivity gains. However, in our experiments, since
productivity gains are in the order of hundreds, any increased accuracy
in the measurements will not significantly influence the end conclusions.
In other words, since our improvements are by multiple orders of mag-
nitudes, small adjustments to measurement accuracy will not make any
significant difference.

5. SUMMARY AND CONCLUSIONS
In model-based design flows using automated synthesis tools, the cre-

ation and maintenance of the design model is often the main bottleneck
towards further reducing of the design time. Little or no tool support
is typically available for specification coding and re-coding. Usually, de-
signers have to edit the design model manually, using simple text-based
editors, requiring significant effort and time in tedious coding. At the
same time, modeling is a critical task in SoC design, as the quality of
the resulting implementation directly depends on the quality of the in-
put model.
In this paper, we have proposed a novel approach to design specification
and modeling, that is based on interactive decision making by the de-

transformation tasks. Eliminating mundane and error-prone text edit-
ing tasks, our recoding approach utilizes the precious time and effort of
the system designer efficiently.
In particular, we have introduced an interactive source re-coder which
integrates compilation, analysis and transformation tools into a text-
based editor, to assist the designer in modeling and re-modeling of SoC
designs. Our source re-coder is fully text-, syntax-, and semantics-aware,
enabling powerful model analysis and transformation operations.
Our approach is especially useful in re-coding of reference models into
SoC specification models, which is often the case for new designs. Our
source re-coder aids the designer in the analysis and comprehension of
the reference model, as well as in restructuring of the model towards a
well-specified input model for the system design flow.
For initial analysis and transformation tasks, our experimental results
clearly demonstrate that an interactive approach is not only feasible, but
also effective. Analysis results or transformed code are presented to the
user instantaneously, relieving the designer from tedious coding. More-
over, we have demonstrated tremendous productivity gains through the
reduction of modeling time.

204

signer (designer-in-the-loop”), and automation of model analysis and

”

sis and transformation tasks, including coupling it with system profiling
and estimation tools.

References
[1] P. Chandraiah and R. Dömer. Specification and design of an mp3 audio decoder.

Technical report, Center for Embedded Computer Systems, May 2005.

[2] P. Chandraiah, J. Peng, and R. Dömer. Creating explicit communication in soc
models using interactive re-coding. In Proceedings of the Asia and South Pacific
Design Automation Conference (ASPDAC), Yokohama, Japan, January 2007.

[3] D. D. Gajski, F. Vahid, S. Narayan, and J. Gong. Specification and Design of
Embedded Systems. Prentice Hall, 1994.

[4] D. D. Gajski, J. Zhu, R. Dömer, A. Gerstlauer, and S. Zhao. SpecC: Specification
Language and Design Methodology. Kluwer Academic Publishers, 2000.

[5] A. Gerstlauer, R. Dömer, J. Peng, and D. D. Gajski. System Design: A Practical
Guide with SpecC. Kluwer Academic Publishers, 2001.

[6] A. Gerstlauer, S. Zhao, D. D. Gajski, and A. M. Horak. SpecC system-level
design methodology applied to the design of a GSM vocoder. In Proceedings of
the Workshop of Synthesis and System Integration of Mixed Information Tech-
nologies, Kyoto, Japan, April 2000.

[7] T. Grötker, S. Liao, G. Martin, and S. Swan. System Design with SystemC.
Kluwer Academic Publishers, 2002.

[8] S. Gupta, R. K. Gupta, N. D. Dutt, and A. Nicolau. Coordinated paralleliz-
ing compiler optimizations and high-level synthesis. ACM Trans. Des. Autom.
Electron. Syst., 9(4):441–470, 2004.

[9] M. W. Hall, J.-A. M. Anderson, S. P. Amarasinghe, B. R. Murphy, S.-W. Liao,
E. Bugnion, and M. S. Lam. Maximizing multiprocessor performance with the
SUIF compiler. IEEE Computer, 29(12):84–89, 1996.

[10] W. J. Hansen. Data structures in a bit-mapped text editor. Byte Magazine,
12(1):183–189, January 1987.

[11] S. Hiranandani, K. Kennedy, C.-W. Tseng, and S. K. Warren. The D editor: a
new interactive parallel programming tool. In Supercomputing, 1994.

[12] A. Jerraya, H. Tenhunen, and W. Wolf. Guest editors’ introduction: Multi-
processor systems-on-chips. Computer, 38(7):36–40, 2005.

[13] K. Kennedy, K. S. McKinley, and C.-W. Tseng. Analysis and transformation in
the ParaScope Editor. In ACM International Conference on Supercomputing,
Cologne, Germany, 1991.

[14] S.-W. Liao, A. Diwan, R. P. B. Jr., A. M. Ghuloum, and M. S. Lam. SUIF
explorer: An interactive and interprocedural parallelizer. In Principles Practice
of Parallel Programming, 1999.

[15] Eclipse java development tool-kit. http://eclipse.org/jdt/index.html.

[16] Microsoft visual studio. http://msdn.microsoft.com/vstudio/.

[17] Scintilla source code editing component. http://www.scintilla.org.

[18] S. Sutherland, S. Davidmann, P. Flake, and P. Moorby. System Verilog for
Design: A Guide to Using System Verilog for Hardware Design and Modeling.
Kluwer Academic Publishers, 2004.

205An Interactive Model Re-Coder for Efficient SoC Specification

For the future, we will extend our approach to include further analy-

Pramod Chandraiah and Rainer Dömer

[19] Trolltech Inc. Qt application development http://www.trolltech.

com/products/qt/.

[20] Vim, advanced text editor. http://www.vim.org/index.php.

[21] I. Viskic and R. Dömer. A flexible, syntax independent representation (SIR) for
system level design models. In Proceedings of EuroMicro Conference on Digital
System Design, August 2006.

206

framework.

